
A Measurement Study of Available Bandwidth Estimation
Tools ∗

Jacob Strauss
jastr@mit.edu

Dina Katabi
dk@mit.edu

Frans Kaashoek
kaashoek@mit.edu

MIT Computer Science and Artificial Intelligence Laboratory

ABSTRACT
Available bandwidth estimation is useful for route selection
in overlay networks, QoS verification, and traffic engineer-
ing. Recent years have seen a surge in interest in available
bandwidth estimation. A few tools have been proposed and
evaluated in simulation and over a limited number of Inter-
net paths, but there is still great uncertainty in the perfor-
mance of these tools over the Internet at large.

This paper introduces Spruce, a simple, light-weight tool
for measuring available bandwidth, and compares it with
two existing tools, IGI and Pathload, over 400 different In-
ternet paths. The comparison focuses on accuracy, failure
patterns, probe overhead, and implementation issues. The
paper verifies the measured available bandwidth by com-
paring it to Multi-Router Traffic Grapher (MRTG) data and
by measuring how each tool responds to induced changes in
available bandwidth.

The measurements show that Spruce is more accurate
than Pathload and IGI. Pathload tends to overestimate the
available bandwidth whereas IGI becomes insensitive when
the bottleneck utilization is large.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network Monitoring

General Terms
Measurement, Experimentation, Performance

Keywords
Available bandwidth

∗This research was conducted as part of the IRIS project
(http://project-iris.net/), supported by the National
Science Foundation under Cooperative Agreement No. ANI-
0225660, along with support from the Defense Advanced Re-
search Projects Agency (DARPA) and the Space and Naval
Warfare Systems Center, San Diego, under contract N66001-
00-1-8933.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’03, October 27–29, 2003, Miami Beach, Florida, USA.
Copyright 2003 ACM 1-58113-773-7/03/0010 ...$5.00.

1. INTRODUCTION
Recent years have seen a strong interest in techniques

for estimating available bandwidth along an Internet path.
The path diversity in overlay networks creates a need for
estimating the available bandwidth over these paths as a
method for choosing the best route. Further, in an over-
lay, one can assume the cooperation of both the sender and
the receiver, which is necessary for most probing techniques.
Many available bandwidth estimation tools have emerged
such as Pathload [12], TOPP [18], PTR/IGI [9], Delphi [21],
and Pathchirp [22].

This paper introduces Spruce, a simple tool for estimat-
ing available bandwidth, and compares it with two existing
tools Pathload, and IGI. In comparison with previous work,
this paper provides the first wide-scale Internet experiments
to evaluate current tools for measuring available bandwidth.
Reported experiments with IGI, Pathload, and TOPP have
been limited to a few Internet-wide paths [9, 12, 18]. In con-
trast, our measurements involve 400 different Internet-wide
paths. We have collected our measurements using PlanetLab
nodes [2] and the RON testbed [4], targeting paths with a
variety of capacity, hop count, latency, load, and link tech-
nology.

The available bandwidth (ABW) at a link is its unused ca-
pacity. (See Figure 1 for the definitions used in this paper.)
Since, at any time, a link is either idle or transmitting pack-
ets at the maximum speed, the definition of the available
bandwidth ought to look at the average unused bandwidth
over some time interval T . Thus,

Ai(t, T) =
1

T

�
T+t

t

(Ci − λi(t)) dt, (1)

where Ai(t, T) is the available bandwidth at link i at time
t, Ci is the link’s capacity, and λi is its traffic. The available
bandwidth along a path is the minimum available bandwidth
of all traversed links.

Spruce (Spread PaiR Unused Capacity Estimate) is a tool
for end hosts to measure available bandwidth. It samples the
arrival rate at the bottleneck by sending pairs of packets
spaced so that the second probe packet arrives at a bottle-
neck queue before the first packet departs the queue. Spruce
then calculates the number of bytes that arrived at the queue
between the two probes from the inter-probe spacing at the
receiver. Spruce computes the available bandwidth as the
difference between the path capacity and the arrival rate at
the bottleneck.

Similarly to IGI [9] and Delphi [21], Spruce is designed
around the probe gap model (see §2), which assumes a sin-

Term Definition
Capacity The maximum rate at which packets can be transmitted by a link
Narrow link The link with the smallest capacity along a path
Available bandwidth A link’s unused capacity
Tight link The link with minimum available bandwidth along a path

Figure 1: The definitions for the terms: capacity, available bandwidth, narrow link and tight link. The tight
link may be different from the narrow link along the path. For example, consider a two-link path that traverses
a T1 link with 1.5 Mb/s and a 10 Mb/s Ethernet. The narrow link along this path is the T1. But, it is quite
possible that the Ethernet is more congested and has less unused bandwidth than the T1, in which case, the
tight link is the 10 Mb/s Ethernet.

gle bottleneck. However, our experiments show that Spruce
works well in realistic environments and is robust against
deviations from this assumption.

The results of the measurements on the PlanetLab and
RON testsbeds can be summarized as follows:

• Almost 70% of Spruce’s measurements had a relative
error smaller than 30%. Pathload and IGI experienced
larger errors.

• Pathload consistently over- or under-estimated the avail-
able bandwidth, whereas IGI did not respond properly
to injected cross traffic and overestimated available
bandwidth on some paths.

• Pathload generated between 2.5 and 10 MB of probe
traffic per measurement. In contrast, the average per-
measurement probe traffic generated by IGI is 130 KB
and that generated by Spruce is 300 KB.

2. DESIGN SPACE & RELATED WORK
Keshav’s work on packet pair [14] is the earliest attempt to

estimate the available bandwidth using measurements con-
ducted at the end hosts. Packet pair assumes Fair Queuing
in the routers and as a result cannot estimate the available
bandwidth in the current Internet.

Cprobe [6] is a pioneering tool for estimating the available
bandwidth using end-to-end measurements. Cprobe doesn’t
assume fair queueing. Instead of using a pair of packets,
cprobe sends a short train of ICMP packets and computes
the available bandwidth as the probe traffic divided by the
interval between the arrival of the last ICMP ECHO and the
first ICMP ECHO in the train. A similar approach is used by
pipechar [13]. Dovrolis et al [7] show that these techniques
measure a metric called the Asymptotic Dispersion Rate
(ADR), which is related to the available bandwidth but not
the same.

The recent set of tools can be distinguished according to
the two main approaches underlying the estimation tech-
niques.

• The probe gap model (PGM) exploits the infor-
mation in the time gap between the arrivals of two
successive probes at the receiver. A probe pair is sent
with a time gap ∆in, and reaches the receiver with a
time gap ∆out. Assuming a single bottleneck and that
the queue does not become empty between the depar-
ture of the first probe in the pair and the arrival of
the second probe, then ∆out is the time taken by the
bottleneck to transmit the second probe in the pair
and the cross traffic that arrived during ∆in, as shown

Figure 2: The Probe Gap Model (PGM) for estimat-
ing available bandwidth.

in Figure 2. Thus, the time to transmit the cross traf-
fic is ∆out − ∆in, and the rate of the cross-traffic is
∆out−∆in

∆in

× C, where C is the capacity of the bottle-

neck. The available bandwidth is:

A = C × � 1 −
∆out − ∆in

∆in � . (2)

Spruce, IGI [9], and Delphi [21] are example tools that
use the gap model.

• The probe rate model (PRM) is based on the
concept of self-induced congestion; informally, if one
sends probe traffic at a rate lower than the available
bandwidth along the path, then the arrival rate of
probe traffic at the receiver will match their rate at
the sender. In contrast, if the probe traffic is sent at a
rate higher than the available bandwidth, then queues
will build up inside the network and the probe traffic
will be delayed. As a result, the probes’ rate at the
receiver will be less than their sending rate. Thus, one
can measure the available bandwidth by searching for
the turning point at which the probe sending and re-
ceiving rates start matching. Tools such as Pathload
[12], Pathchirp [22], PTR [9], and TOPP [18] use the
probe rate model.

To cope with the burstiness of cross traffic, both the PGM
and PRM tools use a train of probe packets to generate a
single measurement.

Both the PGM and PRM approaches assume: 1) FIFO
queuing at all routers along the path; 2) cross traffic follows
a fluid model (i.e., non-probe packets have an infinitely small
packet size); 3) average rates of cross traffic change slowly
and is constant for the duration of a single measurement.
Further, the probe gap model assumes a single bottleneck
which is both the narrow and tight link for that path. These
assumptions are necessary for the model analysis but the

tools might still work even when some of the assumptions
do not hold [9].

The literature is rich in related work that does not di-
rectly estimate the available bandwidth. Paxson defines the
relative available bandwidth metric β, which indicates the
degree of congestion along the path but does not directly
provide an estimate of the available bandwidth. Pathchar
[10], bprobe [6], pchar [5], tailgating [15], nettimer [16], clink
[8], pathrate [7] are tools for estimating capacity. Treno [17],
and cap [3] estimate the TCP fair rate along a path.

Finally, Zhang et al. [23] examined stationarity of TCP
throughput measurements over many Internet paths. They
found that in many cases, TCP rates varied by less than
a factor of three over the course of an hour or more. Pax-
son [20] found that routes between Internet hosts are often
stable on scales ranging from hours to days. These two re-
sults are important because they indicate that we can repeat
experiments back to back and expect similar results.

3. SPRUCE
Spruce is based on the probe gap model (PGM) described

in §2. Like other PGM tools [21, 9], Spruce assumes a single
bottleneck that is both the narrow and tight link along the
path (see definitions in Figure 1). The results from Inter-
net measurements reported in §4 and §5 show that Spruce
is fairly accurate in realistic Internet settings, where this
assumption might not hold.

3.1 Design
Spruce computes the available bandwidth according to

Equation 2 (see §2), which requires 3 parameters: C, ∆in,
and ∆out. Spruce assumes C is known, sets ∆in at the
sender, and measures ∆out at the receiver.

At the sender, Spruce sets the intra-pair time gap, ∆in,
to the transmission time of a 1500B data packet on the bot-
tleneck link. This choice ensures that the queue does not
empty between the departures of the two probe packets in
a pair, which is a requirement for Equation 2.

At the receiver, Spruce measures ∆out, the transmission
time of both cross traffic and a 1500B probe. With this infor-
mation and a known capacity for the bottleneck link, Spruce
then calculates the number of bytes that arrived at the queue
between the two probes in a pair from the inter-probe spac-
ing as ∆out−∆in

∆in

×C, where C is the capacity of the bottle-

neck. Plugging these numbers into Eq. 2, gives Spruce one
sample measurement of the available bandwidth.

To improve accuracy of the estimate, Spruce performs a
sequence of probe-pair measurements and reports the av-
erage. Spruce sets the inter-gap time between two probe
pairs to the output of an exponentially distributed func-
tion, whose average τ is much larger than ∆in, resulting
in a Poisson sampling process. This decision is appealing for
two reasons. First, for a simple model which assumes a single
bottleneck and non-fluid cross-traffic (i.e., no cross traffic or
close to capacity cross traffic), a sequence of measurements
according to a Poisson sampling process sees the average
cross traffic rate.

Second, Poisson sampling ensures that Spruce is non-intru-
sive. In particular, sending a sequence of packet pairs instead
of a packet train allows us to control the inter-pair gap in-
dependently from the intra-pair gap. We use a large inter-
pair gap τ to make Spruce non-intrusive. Other tools which
send packet trains at high peak rates may disturb concur-

rent TCP flows even though each train is of short duration.
Spruce computes the available bandwidth at time t as the
average of the last K sample measurements. The default
value for K is 100.

3.2 Implementation
Spruce consists of separate user-level sender and receiver

programs. The sender takes as arguments the DNS name of
the receiver, and the known capacity of the path. We have
tested Spruce on Linux 2.4.19 and FreeBSD 4.7 systems.

The Spruce sender sends a series of pairs of 1500B UDP
packets. Spruce sets the intra-pair gap to the transmission
time of a 1500B packet on the path’s narrow link. The sender
adjusts the average inter-pair gap to ensure that the probe
rate is the minimum of 240Kb/s and 5% of the path capacity.
For example, on a 1.5 Mb/s path, the average inter-pair gap
is set to 320 ms, resulting in a probe rate of 75 Kb/s.

Since the gaps between two packets in a pair can be small,
the sender program reads the system clock in a polling loop,
not releasing the processor voluntarily until the pair has
been transmitted. If the operating system reschedules the
sender program between two packets of a pair, the program,
when it receives the processor again, gives up sending the
second packet, and restarts.

The receiving kernel timestamps each received packet us-
ing the SO TIMESTAMP socket option. The spruce receiver
calculates ∆out using the timestamps, and computes an es-
timate of the available bandwidth on that path using Eq. 2.
The receiver averages individual samples using a sliding win-
dow over 100 packets.

3.3 Spruce Characteristics
The following properties distinguish Spruce from other

available bandwidth tools.

1. Spruce uses a Poisson process of packet pairs rather
than packet trains (or chirps). This form of sampling
allows Spruce to be both non-intrusive and robust, as
explained in §3.1.

2. By carefully choosing the value of ∆in, Spruce ensures
that the bottleneck queue does not empty between the
two probes in a pair, which is a requirement for the
correctness of the gap model.

3. Spruce separates capacity measurement from available-
bandwidth measurement. It assumes that capacity can
be measured easily with one of the capacity measure-
ment tools and that capacity stays stable when mea-
suring available bandwidth. For the environments for
which Spruce is designed, selecting paths in overlay
networks, this assumption holds.

4. Spruce doesn’t overwhelm the narrow link on a path,
because its probe rate is no more traffic than the mini-
mum of 240 Kb/s and 5% of the capacity of the narrow
link.

5. Apart from the number of pairs K over which to aver-
age the measurements, Spruce does not have any tun-
able parameters.

4. ABSOLUTE ACCURACY
We evaluate the ability of Pathload, IGI, and Spruce to

compute the available bandwidth in real network settings.

We focus on these three tools because they cover the spec-
trum of underlying models in this area; Pathload is a pure
PRM tool; Spruce is a pure PGM tool; whereas IGI borrows
from both models. IGI first finds the turning point at which
the probes’ sending rate starts matching their receiving rate.
Then it sends a train of packets at that rate and computes
the available bandwidth using the probe gap information.

4.1 Methodology: The MRTG Test
The Multi-Router Traffic Grapher (MRTG) [19] reports

the amount of traffic forwarded by a router interface. It col-
lects its measurements from the router’s Management Infor-
mation Base (MIB) using SNMP, generating a reading every
5 minutes. Given the capacity of the link, the MRTG data
allows us to compute the average available bandwidth ev-
ery 5 minutes. Despite its low resolution, the MRTG data
is the most accurate way to verify the output of available
bandwidth estimation tools.

This method requires access to MRTG logs from all links
along the path and the knowledge of the capacity of all
traversed links. Because of these difficulties, we apply the
MRTG test only to a pair of paths for which we have such
data. One path, which traverses MIT’s campus network,
consists of 5 hops, has an RTT of 4 ms, and its tight and
narrow link is a 100 Mb/s Ethernet connecting the Lab of
Computer Science (LCS) to the rest of the MIT network.
The other path is from UC Berkeley to MIT over the Abi-
lene network, with 17 hops and an RTT of 76 ms. This path
also has a tight and narrow link of 100 Mb/s, though the
remainder of the path is 1 Gb/s or faster. While we do not
claim that these paths are representative of most Internet
paths, they may be typical of many university networks.

We monitor these paths over a period of one week and
for a total monitoring time of 130 hours. We repeatedly run
Pathload followed by IGI then Spruce. All three tools use
the same sender and receiver machines. Since MRTG data
provides an average over a period of 5 minutes, we smooth
the measurements by taking the average output of each tool
over similar 5 minute periods.

Occasionally, we actively increase the cross traffic travers-
ing the monitored path. The objective of this induced load
is to discover the responsiveness of the measurement tools to
changing network conditions. The sender of the cross traffic
is different from the machine running the tools. The cross
traffic uses UDP (though similar results were obtained with
TCP cross traffic). We generate cross traffic by taking a few
NLANR [1] traces and playing them at an adjustable rate,
while maintaining the same packet size. This choice ensures
that the packet size distribution of our cross traffic follows
the size distribution in the Internet.

4.2 MRTG Test Results
Figures 3 and 4 illustrate typical segments of our results.

They plot the available bandwidth over a period of a day as
measured by MRTG, Pathload, IGI, and Spruce. In figure 3,
during the interval from hour 5 to 10, we inject cross traffic
at a rate of 20 Mb/s. From hour 10 to 12, we increase the
generated cross traffic rate to 40 Mb/s. The rest of the time,
we only monitored the path using the various tools. In figure
4 we inject cross traffic at 20 Mb/s from hour 10 to 14.

The main observation from Figures 3 and 4 is that Path-
load was consistently inaccurate, over- or under-estimating
the available bandwidth, whereas IGI did not respond prop-

0

20

40

60

80

100

0 5 10 15 20

A
va

ila
bl

e
B

an
dw

id
th

 (
M

bp
s)

time (hours)

Pathload high
Pathload low

MRTG

(a)Pathload

0

20

40

60

80

100

0 5 10 15 20

A
va

ila
bl

e
B

an
dw

id
th

 (
M

bp
s)

time (hours)

IGI
MRTG

(b)IGI

0

20

40

60

80

100

0 5 10 15 20

A
va

ila
bl

e
B

an
dw

id
th

 (
M

bp
s)

time (hours)

spruce
MRTG

(c)Spruce

Figure 3: MRTG available bandwidth estimate vs.
Pathload, IGI, and Spruce. Data is for a 100 Mb/s
path connecting LCS to the MIT network.

0

20

40

60

80

100

0 5 10 15 20

A
va

ila
bl

e
B

an
dw

id
th

 (
M

bp
s)

time (hours)

Pathload high
Pathload low

MRTG

(a)Pathload

0

20

40

60

80

100

0 5 10 15 20

A
va

ila
bl

e
B

an
dw

id
th

 (
M

bp
s)

time (hours)

IGI
MRTG

(b)IGI

0

20

40

60

80

100

0 5 10 15 20

A
va

ila
bl

e
B

an
dw

id
th

 (
M

bp
s)

time (hours)

spruce
MRTG

(c)Spruce

Figure 4: MRTG available bandwidth estimate vs.
Pathload, IGI, and Spruce. Data is for the 100 Mb/s
path connecting UC Berkeley to MIT LCS.

erly to injected cross traffic and overestimated available band-
width on some paths. In contrast, Spruce tracked the avail-
able bandwidth reasonably well in all cases. This behavior
was repeatedly observed in the MRTG tests.

Figure 3(a) shows that Pathload’s upper and lower bounds
on the available bandwidth are both too high. Indeed, some-
times the lower bound is 20 Mb/s higher than the actual
available bandwidth as measured by MRTG. Despite its
overestimation of the available bandwidth, Pathload reacts
properly to the cross traffic injected in the interval [5, 12].
To ensure that these inaccurate bounds on available band-
width were not caused by a bug in the new Pathload release
(version 1.1.0), we ran the same experiment with the older
version of Pathload which was used in [11], but the behavior
persisted. A close examination of the logs show that, on the
shorter path, Pathload repeatedly overestimates the turning
point at which the probe train/stream starts showing an in-
creasing delay trend, indicating that the probe rate has ex-
ceeded the available bandwidth. A preliminary investigation
shows that the default values for the Pathload parameters
SPCT and SPDT are too high for this path. This reason could
be why our results are different from those reported in the
Pathload paper [12]. In Figure 4(a) we observed the oppo-
site error, with Pathload detecting a turning point below the
true available bandwidth.

Figure 3(b) shows that IGI successfully estimates the avail-
able bandwidth when the link utilization is low. However,
IGI reacts little to the cross traffic injected during the in-
terval [5, 12]. In Figure 4(b), IGI consistently overestimates
available bandwidth. We hypothesize that IGI performs poor-
ly when utilization is high, which is consistent with the data
reported in Figure 12 of the IGI paper [9]. To some extent,
this inaccuracy can be explained based on the IGI algorithm.
IGI starts with an initial phase to determine the turning
point at which ∆in = ∆out. Unfortunately, when the uti-
lization is high, this turning point becomes unpronounced,
immersed in measurement noise [18].

Finally, Figures 3(c) and 4(c) show that Spruce closely
tracks the average available bandwidth and correctly re-
sponds to the injected cross traffic. We believe that Spruce’s
good performance is due to its simplicity and the lack of tun-
able parameters. Neither of these two paths contain distinct
tight and narrow links, nor does either consist of multiple
bottlenecks of equal capacity. We expect that Spruce would
not perform as well under such conditions.

The explanations of the observed behavior of Pathload
and IGI are preliminary. More experiments are needed to
better understand the behavior of these tools.

5. RELATIVE ACCURACY
We evaluate Pathload, IGI, and Spruce over a variety

of Internet paths using PlanetLab nodes [2] and the RON
testbed [4]. We explore over 400 different paths with a vari-
ety of capacity, hop count, latency, load, and link technology.
In the absence of MRTG data, there is no way to discover
the true available bandwidth along a path during the exper-
iment. To overcome this limitation, we use a differential test
(D-test) that measures changes in the available bandwidth
rather than absolute values.

5.1 Methodology: The D-Test
The D-test has two phases. First, we run the tool and read

its estimate of the available bandwidth, M1. Second, we in-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-2 -1 0 1 2

C
D

F

Relative Error

Pathload
IGI

spruce

Figure 5: Cumulative distribution of relative error
measured by Pathload, IGI, and Spruce across all
tested paths in the RON and PlanetLab testbeds.

ject a stream of cross traffic whose rate is Γ = 0.5 × M1,
and run the tool again. The induced cross traffic is gener-
ated as described in §4.1. Assuming the traffic of other users
does not change much between the two phases, the correct
change in the available bandwidth is Γ, which is what we ex-
pect the tool to estimate in the second phase. Admittedly,
the test relies on the assumption that apart from our gener-
ated cross traffic, the network conditions do not change be-
tween the two phases. We believe this limitation is intrinsic
to any evaluation technique that does not have direct access
to the routers. To mitigate the impact of changing network
conditions on our results, we conduct the two phases very
close to each other (both finish within a minute). Further,
we repeat the same experiment multiple times over the same
path, check for consistency, and ignore outliers.

Each single experiment consists of 3 D-tests over the same
path, one with Pathload, second with IGI, and third with
Spruce. The tests run one after the other and complete
within 2 to 3 minutes.

To measure accuracy we use the relative error defined as:

Relative Error =
Γ − (M1 − M2)

Γ
, (3)

where Γ is the induced change in cross traffic, and M1 and
M2 are the available bandwidth measured by the same tool
in the first and second phases of the same D-test.

5.2 D-Test Results
Figure 5 shows the cumulative distribution function (CDF)

of the relative error of Pathload, IGI, and Spruce. The Path-
load available bandwidth estimate is computed as the aver-
age of the high and low estimates (i.e., Rmax+Rmin

2
).

Ideally, the CDF should be a step function at “0”, which
means that all experiments resulted in zero errors. In prac-
tice, all three tools show some errors and their CDFs are
far from ideal. A negative relative error means that the tool
has underestimated the available bandwidth whereas a posi-
tive relative error means that the tool has overestimated the
available bandwidth. The region between “-1” and “1” refers
to experiments in which the tool has correctly detected a de-
crease in available bandwidth between phase 1 and phase 2

of the D-test, but has potentially underestimated or overes-
timated the change in ABW.

The results in Figure 5 agree with the results of the MRTG
test illustrated in Figures 3 and 4. First, the Spruce CDF has
a closer shape to a step at “0” than the CDFs of the other
tools, indicating that Spruce is more accurate than IGI and
Pathload. In particular, almost 70% of Spruce’s measure-
ments have a relative error smaller than 30% (the region in
which −0.3 < relative error < 0.3). Second, Pathload is less
accurate when compared to Spruce because its CDF is fur-
ther away from a step function at “0”. In comparison with
IGI, Pathload is more responsive because its CDF ramps up
at lower relative error rates. Third, the IGI CDF is almost
a step function at “1”, which means that IGI reacted very
little to charges in the available bandwidth between phase
1 and phase 2 of the D-test. This behavior agrees with the
results of the MRTG test which show that IGI is insensitive
to induced cross traffic.

Many of the paths in this study have multiple narrow links
with equal capacity. Although Spruce is based on the PGM
approach which assumes a single bottleneck, it does perform
reasonably well in this environment.

Finally, we have computed the average per-measurement
probe traffic generated by the various tools. We found that
Pathload generates between 2.5 and 10 MB of probe traffic
per measurement. In contrast, the average per-measurement
probe traffic generated by IGI is 130 KB and that generated
by Spruce is 300 KB.

6. IMPLEMENTATION ISSUES
All of the studied tools (i.e., IGI, Pathload, and Spruce)

require careful scheduling of probe traffic. More precisely,
the input gap between a pair of probes must be accurate and,
sometimes, as small as a few hundred microseconds. Because
processes cannot sleep for intervals shorter than one kernel
tick (10ms or 1ms are common values), each tool uses a delay
loop that holds the processor until either preempted or done
sending a train of packets. Because this delay loop effectively
blocks all other programs from sending traffic for the dura-
tion of an entire train, the tools cannot properly measure
cross traffic sent from the machine on which it runs. Low
bandwidth paths (T1, DSL) are an exception to this rule
since the input gap, in this case, is large enough for the tool
to release the CPU between packets. Any application that
uses one of these measurement tools must therefore use some
other mechanism to account for the effect of traffic sent from
the same machine on available bandwidth estimates. Appli-
cations could either account for their own traffic explicitly,
or operating systems could provide scheduling methods to
send packets at precise intervals without holding the proces-
sor for the duration of a packet train.

7. CONCLUSION
This paper introduced Spruce, a tool for estimating avail-

able bandwidth and compared its performance with two ex-
isting tools, IGI and Pathload. Spruce is simple, and gener-
ates a relatively low amount of probe traffic. Experiments
over a large number of Internet paths indicate that Spruce
estimates available bandwidth more accurately than Path-
load and IGI. Our future work will investigate the sources
of observed errors in order to improve the accuracy of avail-
able bandwidth estimation. Source code for Spruce will be
available at http://project-iris.net/.

8. REFERENCES
[1] National Laboratory for Applied Network Research

(NLANR). http://www.nlanr.net/.
[2] Planetlab. http://www.planet-lab.org/.
[3] M. Allman. Measuring End-to-End Bulk Transfer Capacity.

In ACM SIGCOMM Internet Measurement Workshop
2001, San Francisco, CA, Nov. 2001.

[4] D. Andersen, H. Balakrishnan, M. F. Kaashoek, and
R. Morris. Resilient Overlay Networks. In Proceedings of
the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01), Chateau Lake Louise, Banff,
Canada, Oct. 2001.

[5] B.A.Mah. pchar: a Tool for Measuring Internet Path
Characteristics. Feb. 1999.

[6] R. L. Carter and M. E. Crovella. Dynamic Server Selection
Using Bandwidth Probing in Wide-Area Networks.
Technical Report TR-96-007, Boston University Computer
Science Department, 1996.

[7] C. Dovrolis, P. Ramanathanm, and D. Moore. What Do
Packet Dispersion Techniques Measure? In IEEE
INFOCOM’01, 2001.

[8] A. B. Downey. Using Pathchar to Estimate Internet Link
Characteristics. In Measurement and Modeling of
Computer Systems, pages 222–223, 1999.

[9] N. Hu and P. Steenkiste. Evaluation and Characterization
of Available Bandwidth Techniques. IEEE JSAC Special
Issue in Internet and WWW Measurement, Mapping, and
Modeling, 2003.

[10] V. Jacobson. Pathchar. ftp://ftp.ee.lbl.gov/pathchar/.
[11] M. Jain and C. Dovrolis. End-to-End Available Bandwidth:

Measurement Methodology, Dynamics, and Relation with
TCP Throughput. In ACM SIGCOMM, Pittsburg, PA,
2002.

[12] M. Jain and C. Dovrolis. Pathload: A Measurement Tool
for End-to-End Available Bandwidth. In Passive and
Active Measurements, Fort Collins, CO, March 2002.

[13] G. Jin, G. Yang, B. Crowley, and D. Agarwal. Network
Characterization Service (NCS). In the 10th IEEE
Symposium on High Performance Distributed Computing,
Aug 2001.

[14] S. Keshav. A Control-Theoretic Approach to Flow Control.
In ACM SIGCOMM ’91, pages 3–15, September 1991.

[15] K. Lai and M. Baker. Measuring Link Bandwidths Using a
Deterministic Model of Packet Delay. In ACM SIGCOMM,
pages 283–294, 2000.

[16] K. Lai and M. Baker. Nettimer: A tool for Measuring
Bottleneck Link Bandwidth. In USENIX Symposium on
Internet Technologies and Systems, March 2001.

[17] M. Mathis. TReno Bulk Transfer Capacity.
draft-ietf-ippm-treno-btc-03.txt (Internet-Draft Work in
progress).

[18] B. Melander, M. Bjorkman, and P. Gunningberg. A New
End-to-End Probing and Analysis Method for Estimating
Bandwidth Bottlenecks. In Global Internet Symposium,
2000.

[19] T. Oetiker and D. Rand. Multi Router Traffic Grapher.
http://people.ee.ethz.ch/~oetiker/webtools/mrtg/.

[20] V. Paxson. End-to-end Routing Behavior in the Internet.
IEEE/ACM Transactions on Networking, 5(5):601–615,
October 1997.

[21] V. J. Ribeiro, M. Coates, R. H. Riedi, S. Sarvotham, and
R. G. Baraniuk. Multifractal cross traffic estimation. In
Proc. of ITC specialist seminar on IP traffic Measurement,
September 2000.

[22] V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil, and
L. Cottrell. pathChirp: Efficient Available Bandwidth
Estimation for Network Paths. In Passive and Active
Measurement Workshop, 2003.

[23] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker. On the
Constancy of Internet Path Properties. In ACM
SIGCOMM Internet Measurement Workshop, Nov. 2001.

