
Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Volume 3B:
System Programming Guide, Part 2

NOTE: The Intel® 64 and IA-32 Architectures Software Developer's Manual
consists of five volumes: Basic Architecture, Order Number 253665;
Instruction Set Reference A-M, Order Number 253666; Instruction Set
Reference N-Z, Order Number 253667; System Programming Guide,
Part 1, Order Number 253668; System Programming Guide, Part 2, Order
Number 253669. Refer to all five volumes when evaluating your design
needs.

Order Number: 253669-023US
May 2007

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED
FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Developers must not rely on the absence or characteristics of any features or instructions marked “reserved”
or “undefined.” Improper use of reserved or undefined features or instructions may cause unpredictable be-
havior or failure in developer's software code when running on an Intel processor. Intel reserves these fea-
tures or instructions for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from their unauthorized use.

The Intel® 64 architecture processors may contain design defects or errors known as errata. Current char-
acterized errata are available on request.

Hyper-Threading Technology requires a computer system with an Intel® processor supporting Hyper-
Threading Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will
vary depending on the specific hardware and software you use. For more information, see http://www.in-
tel.com/technology/hyperthread/index.htm; including details on which processors support HT Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will vary depending on hardware and software configurations. Intel® Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, oper-
ating system, device drivers and applications enabled for Intel® 64 architecture. Processors will not operate
(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary depend-
ing on your hardware and software configurations. Consult with your system vendor for more information.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability
and a supporting operating system. Check with your PC manufacturer on whether your system delivers Ex-
ecute Disable Bit functionality.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2
Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, and VTune are trademarks or registered trade-
marks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

or call 1-800-548-4725
or visit Intel’s website at http://www.intel.com

Copyright © 1997-2007 Intel Corporation
ii Vol. 3B

CHAPTER 18
DEBUGGING AND PERFORMANCE MONITORING

Intel 64 and IA-32 architectures provide debug facilities for use in debugging code
and monitoring performance. These facilities are valuable for debugging application
software, system software, and multitasking operating systems. Debug support is
accessed using debug registers (DB0 through DB7) and model-specific registers
(MSRs):

• Debug registers hold the addresses of memory and I/O locations called break-
points. Breakpoints are user-selected locations in a program, a data-storage area
in memory, or specific I/O ports. They are set where a programmer or system
designer wishes to halt execution of a program and examine the state of the
processor by invoking debugger software. A debug exception (#DB) is generated
when a memory or I/O access is made to a breakpoint address.

• MSRs monitor branches, interrupts, and exceptions; they record addresses of the
last branch, interrupt or exception taken and the last branch taken before an
interrupt or exception.

18.1 OVERVIEW OF DEBUG SUPPORT FACILITIES
The following processor facilities support debugging and performance monitoring:

• Debug exception (#DB) — Transfers program control to a debug procedure or
task when a debug event occurs.

• Breakpoint exception (#BP) — Transfers program control to a debug
procedure or task when an INT 3 instruction is executed.

• Breakpoint-address registers (DR0 through DR3) — Specifies the
addresses of up to 4 breakpoints.

• Debug status register (DR6) — Reports the conditions that were in effect
when a debug or breakpoint exception was generated.

• Debug control register (DR7) — Specifies the forms of memory or I/O access
that cause breakpoints to be generated.

• T (trap) flag, TSS — Generates a debug exception (#DB) when an attempt is
made to switch to a task with the T flag set in its TSS.

• RF (resume) flag, EFLAGS register — Suppresses multiple exceptions to the
same instruction.

• TF (trap) flag, EFLAGS register — Generates a debug exception (#DB) after
every execution of an instruction.

• Breakpoint instruction (INT 3) — Generates a breakpoint exception (#BP)
that transfers program control to the debugger procedure or task. This
Vol. 3 18-1

DEBUGGING AND PERFORMANCE MONITORING
instruction is an alternative way to set code breakpoints. It is especially useful
when more than four breakpoints are desired, or when breakpoints are being
placed in the source code.

• Last branch recording facilities — Store branch records in the last branch
record (LBR) stack MSRs for the most recent taken branches, interrupts, and/or
exceptions in MSRs. A branch record consist of a branch-from and a branch-to
instruction address. Send branch records out on the system bus as branch trace
messages (BTMs).

These facilities allow a debugger to be called as a separate task or as a procedure in
the context of the current program or task. The following conditions can be used to
invoke the debugger:

• Task switch to a specific task.

• Execution of the breakpoint instruction.

• Execution of any instruction.

• Execution of an instruction at a specified address.

• Read or write of a byte, word, or doubleword at a specified memory address.

• Write to a byte, word, or doubleword at a specified memory address.

• Input of a byte, word, or doubleword at a specified I/O address.

• Output of a byte, word, or doubleword at a specified I/O address.

• Attempt to change the contents of a debug register.

18.2 DEBUG REGISTERS
Eight debug registers (see Figure 18-1) control the debug operation of the processor.
These registers can be written to and read using the move to/from debug register
form of the MOV instruction. A debug register may be the source or destination
operand for one of these instructions.

Debug registers are privileged resources; a MOV instruction that accesses these
registers can only be executed in real-address mode, in SMM or in protected mode at
a CPL of 0. An attempt to read or write the debug registers from any other privilege
level generates a general-protection exception (#GP).

The primary function of the debug registers is to set up and monitor from 1 to 4
breakpoints, numbered 0 though 3. For each breakpoint, the following information
can be specified:

• The linear address where the breakpoint is to occur.

• The length of the breakpoint location (1, 2, or 4 bytes).

• The operation that must be performed at the address for a debug exception to be
generated.

• Whether the breakpoint is enabled.
18-2 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
• Whether the breakpoint condition was present when the debug exception was
generated.

The following paragraphs describe the functions of flags and fields in the debug
registers.

Figure 18-1. Debug Registers

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

DR7L

Reserved

0

1234569101718252627282930

G
0

L
1

L
2

L
3

G
3

L
E

G
E

G
2

G
1

0 0 G
D

R/W
0

LEN
0

R/W
1

LEN
1

R/W
2

LEN
2

R/W
3

LEN
3

31 16 15 1314 12 11 8 7 0

DR6B
0

123456910

B
1

B
2

B
3

0 1 1 1 1 1 1 1 1 1B
D

B
S

B
T

31 0

DR5

31 0

DR4

31 0

DR3Breakpoint 3 Linear Address

31 0

DR2Breakpoint 2 Linear Address

31 0

DR1Breakpoint 1 Linear Address

31 0

DR0Breakpoint 0 Linear Address

0 0 1

Reserved (set to 1)
Vol. 3 18-3

DEBUGGING AND PERFORMANCE MONITORING
18.2.1 Debug Address Registers (DR0-DR3)
Each of the debug-address registers (DR0 through DR3) holds the 32-bit linear
address of a breakpoint (see Figure 18-1). Breakpoint comparisons are made before
physical address translation occurs. The contents of debug register DR7 further spec-
ifies breakpoint conditions.

18.2.2 Debug Registers DR4 and DR5
Debug registers DR4 and DR5 are reserved when debug extensions are enabled
(when the DE flag in control register CR4 is set) and attempts to reference the DR4
and DR5 registers cause invalid-opcode exceptions (#UD). When debug extensions
are not enabled (when the DE flag is clear), these registers are aliased to debug
registers DR6 and DR7.

18.2.3 Debug Status Register (DR6)
The debug status register (DR6) reports debug conditions that were sampled at the
time the last debug exception was generated (see Figure 18-1). Updates to this
register only occur when an exception is generated. The flags in this register show
the following information:

• B0 through B3 (breakpoint condition detected) flags (bits 0 through 3)
— Indicates (when set) that its associated breakpoint condition was met when a
debug exception was generated. These flags are set if the condition described for
each breakpoint by the LENn, and R/Wn flags in debug control register DR7 is
true. They are set even if the breakpoint is not enabled by the Ln and Gn flags in
register DR7.

• BD (debug register access detected) flag (bit 13) — Indicates that the next
instruction in the instruction stream accesses one of the debug registers (DR0
through DR7). This flag is enabled when the GD (general detect) flag in debug
control register DR7 is set. See Section 18.2.4, “Debug Control Register (DR7),”
for further explanation of the purpose of this flag.

• BS (single step) flag (bit 14) — Indicates (when set) that the debug exception
was triggered by the single-step execution mode (enabled with the TF flag in the
EFLAGS register). The single-step mode is the highest-priority debug exception.
When the BS flag is set, any of the other debug status bits also may be set.

• BT (task switch) flag (bit 15) — Indicates (when set) that the debug
exception resulted from a task switch where the T flag (debug trap flag) in the
TSS of the target task was set. See Section 6.2.1, “Task-State Segment (TSS),”
for the format of a TSS. There is no flag in debug control register DR7 to enable
or disable this exception; the T flag of the TSS is the only enabling flag.

Certain debug exceptions may clear bits 0-3. The remaining contents of the DR6
register are never cleared by the processor. To avoid confusion in identifying debug
18-4 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
exceptions, debug handlers should clear the register before returning to the inter-
rupted task.

18.2.4 Debug Control Register (DR7)
The debug control register (DR7) enables or disables breakpoints and sets break-
point conditions (see Figure 18-1). The flags and fields in this register control the
following things:

• L0 through L3 (local breakpoint enable) flags (bits 0, 2, 4, and 6) —
Enables (when set) the breakpoint condition for the associated breakpoint for the
current task. When a breakpoint condition is detected and its associated Ln flag
is set, a debug exception is generated. The processor automatically clears these
flags on every task switch to avoid unwanted breakpoint conditions in the new
task.

• G0 through G3 (global breakpoint enable) flags (bits 1, 3, 5, and 7) —
Enables (when set) the breakpoint condition for the associated breakpoint for all
tasks. When a breakpoint condition is detected and its associated Gn flag is set,
a debug exception is generated. The processor does not clear these flags on a
task switch, allowing a breakpoint to be enabled for all tasks.

• LE and GE (local and global exact breakpoint enable) flags (bits 8, 9) —
This feature is not supported in the P6 family processors, later IA-32 processors,
and Intel 64 processors. When set, these flags cause the processor to detect the
exact instruction that caused a data breakpoint condition. For backward and
forward compatibility with other Intel processors, we recommend that the LE and
GE flags be set to 1 if exact breakpoints are required.

• GD (general detect enable) flag (bit 13) — Enables (when set) debug-
register protection, which causes a debug exception to be generated prior to any
MOV instruction that accesses a debug register. When such a condition is
detected, the BD flag in debug status register DR6 is set prior to generating the
exception. This condition is provided to support in-circuit emulators.

When the emulator needs to access the debug registers, emulator software can
set the GD flag to prevent interference from the program currently executing on
the processor.

The processor clears the GD flag upon entering to the debug exception handler,
to allow the handler access to the debug registers.

• R/W0 through R/W3 (read/write) fields (bits 16, 17, 20, 21, 24, 25, 28,
and 29) — Specifies the breakpoint condition for the corresponding breakpoint.
The DE (debug extensions) flag in control register CR4 determines how the bits in
the R/Wn fields are interpreted. When the DE flag is set, the processor interprets
bits as follows:

00 — Break on instruction execution only.
01 — Break on data writes only.
Vol. 3 18-5

DEBUGGING AND PERFORMANCE MONITORING
10 — Break on I/O reads or writes.
11 — Break on data reads or writes but not instruction fetches.

When the DE flag is clear, the processor interprets the R/Wn bits the same as for
the Intel386™ and Intel486™ processors, which is as follows:

00 — Break on instruction execution only.
01 — Break on data writes only.
10 — Undefined.
11 — Break on data reads or writes but not instruction fetches.

• LEN0 through LEN3 (Length) fields (bits 18, 19, 22, 23, 26, 27, 30, and
31) — Specify the size of the memory location at the address specified in the
corresponding breakpoint address register (DR0 through DR3). These fields are
interpreted as follows:

00 — 1-byte length.
01 — 2-byte length.
10 — Undefined (or 8 byte length, see note below).
11 — 4-byte length.

If the corresponding RWn field in register DR7 is 00 (instruction execution), then the
LENn field should also be 00. The effect of using other lengths is undefined. See
Section 18.2.5, “Breakpoint Field Recognition,” below.

NOTES
For Pentium® 4 and Intel® Xeon® processors with a CPUID signature
corresponding to family 15 (model 3, 4, and 6), break point
conditions permit specifying 8-byte length on data read/write with an
of encoding 10B in the LENx field.

Encoding 10B is also supported in processors based on Intel Core
microarchitecture, with a CPUID signature corresponding to family 6,
model 15. The encoding 10B is undefined for other processors.

18.2.5 Breakpoint Field Recognition
Breakpoint address registers (debug registers DR0 through DR3) and the LENn fields
for each breakpoint define a range of sequential byte addresses for a data or I/O
breakpoint. The LENn fields permit specification of a 1-, 2-, 4-, or 8-byte range,
beginning at the linear address specified in the corresponding debug register (DRn).
Two-byte ranges must be aligned on word boundaries; 4-byte ranges must be
aligned on doubleword boundaries. I/O breakpoint addresses are zero-extended
(from 16 to 32 bits, for comparison with the breakpoint address in the selected debug
register). These requirements are enforced by the processor; it uses LENn field bits
to mask the lower address bits in the debug registers. Unaligned data or I/O break-
point addresses do not yield valid results.

A data breakpoint for reading or writing data is triggered if any of the bytes partici-
pating in an access is within the range defined by a breakpoint address register and
18-6 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
its LENn field. Table 18-1 provides an example setup of debug registers and data
accesses that would subsequently trap or not trap on the breakpoints.

A data breakpoint for an unaligned operand can be constructed using two break-
points, where each breakpoint is byte-aligned and the two breakpoints together
cover the operand. The breakpoints generate exceptions only for the operand, not for
neighboring bytes.

Instruction breakpoint addresses must have a length specification of 1 byte (the
LENn field is set to 00). Code breakpoints for other operand sizes are undefined. The
processor recognizes an instruction breakpoint address only when it points to the
first byte of an instruction. If the instruction has prefixes, the breakpoint address
must point to the first prefix.

Table 18-1. Breakpoint Examples

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENn

DR0
DR1
DR2
DR3

R/W0 = 11 (Read/Write)
R/W1 = 01 (Write)
R/W2 = 11 (Read/Write)
R/W3 = 01 (Write)

A0001H
A0002H
B0002H
C0000H

LEN0 = 00 (1 byte)
LEN1 = 00 (1 byte)
LEN2 = 01) (2 bytes)
LEN3 = 11 (4 bytes)

Data Accesses

Operation Address Access Length
(In Bytes)

Data operations that trap
- Read or write
- Read or write
- Write
- Write
- Read or write
- Read or write
- Read or write
- Write
- Write
- Write

A0001H
A0001H
A0002H
A0002H
B0001H
B0002H
B0002H
C0000H
C0001H
C0003H

1
2
1
2
4
1
2
4
2
1

Data operations that do not trap
- Read or write
- Read
- Read or write
- Read or write
- Read
- Read or write

A0000H
A0002H
A0003H
B0000H
C0000H
C0004H

1
1
4
2
2
4

Vol. 3 18-7

DEBUGGING AND PERFORMANCE MONITORING
18.2.6 Debug Registers and Intel® 64 Processors
For Intel 64 architecture processors, debug registers DR0–DR7 are 64 bits. In 16-bit
or 32-bit modes (protected mode and compatibility mode), writes to a debug register
fill the upper 32 bits with zeros. Reads from a debug register return the lower 32 bits.
In 64-bit mode, MOV DRn instructions read or write all 64 bits. Operand-size prefixes
are ignored.

In 64-bit mode, the upper 32 bits of DR6 and DR7 are reserved and must be written
with zeros. Writing 1 to any of the upper 32 bits results in a #GP(0) exception (see
Figure 18-2). All 64 bits of DR0–DR3 are writable by software. However, MOV DRn
instructions do not check that addresses written to DR0–DR3 are in the linear-
address limits of the processor implementation (address matching is supported only
on valid addresses generated by the processor implementation). Break point condi-
tions for 8-byte memory read/writes are supported in all modes.

18.3 DEBUG EXCEPTIONS
The Intel 64 and IA-32 architectures dedicate two interrupt vectors to handling
debug exceptions: vector 1 (debug exception, #DB) and vector 3 (breakpoint excep-
tion, #BP). The following sections describe how these exceptions are generated and
typical exception handler operations.

Figure 18-2. DR6/DR7 Layout on Processors Supporting Intel 64 Technology

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

DR7L

Reserved

0

1234569101718252627282930

G
0

L
1

L
2

L
3

G
3

L
E

G
E

G
2

G
1

G
D

R/W
0

LEN
0

R/W
1

LEN
1

R/W
2

LEN
2

R/W
3

LEN
3

31 16 15 1314 12 11 8 7 0

DR6B
0

123456910

B
1

B
2

B
3

0 1 1 1 1 1 1 1 1 1B
D

B
S

B
T

63 32

63 32

DR6

DR7

0 0 0 0 1

Reserved (set to 1)
18-8 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
18.3.1 Debug Exception (#DB)—Interrupt Vector 1
The debug-exception handler is usually a debugger program or part of a larger soft-
ware system. The processor generates a debug exception for any of several condi-
tions. The debugger checks flags in the DR6 and DR7 registers to determine which
condition caused the exception and which other conditions might apply. Table 18-2
shows the states of these flags following the generation of each kind of breakpoint
condition.

Instruction-breakpoint and general-detect condition (see Section 18.3.1.3, “General-
Detect Exception Condition”) result in faults; other debug-exception conditions result
in traps. The debug exception may report one or both at one time. The following
sections describe each class of debug exception.

See also: Chapter 5, “Interrupt 1—Debug Exception (#DB),” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

18.3.1.1 Instruction-Breakpoint Exception Condition
The processor reports an instruction breakpoint when it attempts to execute an
instruction at an address specified in a breakpoint-address register (DB0 through
DR3) that has been set up to detect instruction execution (R/W flag is set to 0). Upon

Table 18-2. Debug Exception Conditions

Debug or Breakpoint Condition DR6 Flags
Tested

DR7 Flags
Tested

Exception Class

Single-step trap BS = 1 Trap

Instruction breakpoint, at addresses
defined by DRn and LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 0 Fault

Data write breakpoint, at addresses
defined by DRn and LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 1 Trap

I/O read or write breakpoint, at
addresses defined by DRn and LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 2 Trap

Data read or write (but not instruction
fetches), at addresses defined by DRn
and LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 3 Trap

General detect fault, resulting from an
attempt to modify debug registers
(usually in conjunction with in-circuit
emulation)

BD = 1 Fault

Task switch BT = 1 Trap
Vol. 3 18-9

DEBUGGING AND PERFORMANCE MONITORING
reporting the instruction breakpoint, the processor generates a fault-class, debug
exception (#DB) before it executes the target instruction for the breakpoint.

Instruction breakpoints are the highest priority debug exceptions. They are serviced
before any other exceptions detected during the decoding or execution of an instruc-
tion. However, if a code instruction breakpoint is placed on an instruction located
immediately after a POP SS/MOV SS instruction, the breakpoint may not be trig-
gered. In most situations, POP SS/MOV SS will inhibit such interrupts (see
“MOV—Move” and “POP—Pop a Value from the Stack” in Chapters 3 and 4 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes
2A & 2B).

Because the debug exception for an instruction breakpoint is generated before the
instruction is executed, if the instruction breakpoint is not removed by the exception
handler; the processor will detect the instruction breakpoint again when the instruc-
tion is restarted and generate another debug exception. To prevent looping on an
instruction breakpoint, the Intel 64 and IA-32 architectures provide the RF flag
(resume flag) in the EFLAGS register (see Section 2.3, “System Flags and Fields in
the EFLAGS Register,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A). When the RF flag is set, the processor ignores instruction
breakpoints.

All Intel 64 and IA-32 processors manage the RF flag as follows. The RF Flag is
cleared at the start of the instruction after the check for code breakpoint, CS limit
violation and FP exceptions. Task Switches and IRETD/IRETQ instructions transfer
the RF image from the TSS/stack to the EFLAGS register.

When calling an event handler, Intel 64 and IA-32 processors establish the value of
the RF flag in the EFLAGS image pushed on the stack:

• For any fault-class exception except a debug exception generated in response to
an instruction breakpoint, the value pushed for RF is 1.

• For any interrupt arriving after any iteration of a repeated string instruction but
the last iteration, the value pushed for RF is 1.

• For any trap-class exception generated by any iteration of a repeated string
instruction but the last iteration, the value pushed for RF is 1.

• For other cases, the value pushed for RF is the value that was in EFLAG.RF at the
time the event handler was called. This includes:

— Debug exceptions generated in response to instruction breakpoints

— Hardware-generated interrupts arriving between instructions (including
those arriving after the last iteration of a repeated string instruction)

— Trap-class exceptions generated after an instruction completes (including
those generated after the last iteration of a repeated string instruction)

— Software-generated interrupts (RF is pushed as 0, since it was cleared at the
start of the software interrupt)
18-10 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
As noted above, the processor does not set the RF flag prior to calling the debug
exception handler for debug exceptions resulting from instruction breakpoints. The
debug exception handler can prevent recurrence of the instruction breakpoint by
setting the RF flag in the EFLAGS image on the stack. If the RF flag in the EFLAGS
image is set when the processor returns from the exception handler, it is copied into
the RF flag in the EFLAGS register by IRETD/IRETQ or a task switch that causes the
return. The processor then ignores instruction breakpoints for the duration of the
next instruction. (Note that the POPF, POPFD, and IRET instructions do not transfer
the RF image into the EFLAGS register.) Setting the RF flag does not prevent other
types of debug-exception conditions (such as, I/O or data breakpoints) from being
detected, nor does it prevent non-debug exceptions from being generated.

For the Pentium processor, when an instruction breakpoint coincides with another
fault-type exception (such as a page fault), the processor may generate one spurious
debug exception after the second exception has been handled, even though the
debug exception handler set the RF flag in the EFLAGS image. To prevent a spurious
exception with Pentium processors, all fault-class exception handlers should set the
RF flag in the EFLAGS image.

18.3.1.2 Data Memory and I/O Breakpoint Exception Conditions
Data memory and I/O breakpoints are reported when the processor attempts to
access a memory or I/O address specified in a breakpoint-address register (DB0
through DR3) that has been set up to detect data or I/O accesses (R/W flag is set to
1, 2, or 3). The processor generates the exception after it executes the instruction
that made the access, so these breakpoint condition causes a trap-class exception to
be generated.

Because data breakpoints are traps, the original data is overwritten before the trap
exception is generated. If a debugger needs to save the contents of a write break-
point location, it should save the original contents before setting the breakpoint. The
handler can report the saved value after the breakpoint is triggered. The address in
the debug registers can be used to locate the new value stored by the instruction that
triggered the breakpoint.

Intel486 and later processors ignore the GE and LE flags in DR7. In Intel386 proces-
sors, exact data breakpoint matching does not occur unless it is enabled by setting
the LE and/or the GE flags.

P6 family processors are unable to report data breakpoints exactly for the REP MOVS
and REP STOS instructions until the completion of the iteration after the iteration in
which the breakpoint occurred.

For repeated INS and OUTS instructions that generate an I/O-breakpoint debug
exception, the processor generates the exception after the completion of the first
iteration. Repeated INS and OUTS instructions generate an I/O-breakpoint debug
exception after the iteration in which the memory address breakpoint location is
accessed.
Vol. 3 18-11

DEBUGGING AND PERFORMANCE MONITORING
18.3.1.3 General-Detect Exception Condition
When the GD flag in DR7 is set, the general-detect debug exception occurs when a
program attempts to access any of the debug registers (DR0 through DR7) at the
same time they are being used by another application, such as an emulator or
debugger. This protection feature guarantees full control over the debug registers
when required. The debug exception handler can detect this condition by checking
the state of the BD flag in the DR6 register. The processor generates the exception
before it executes the MOV instruction that accesses a debug register, which causes
a fault-class exception to be generated.

18.3.1.4 Single-Step Exception Condition
The processor generates a single-step debug exception if (while an instruction is
being executed) it detects that the TF flag in the EFLAGS register is set. The excep-
tion is a trap-class exception, because the exception is generated after the instruc-
tion is executed. The processor will not generate this exception after the instruction
that sets the TF flag. For example, if the POPF instruction is used to set the TF flag, a
single-step trap does not occur until after the instruction that follows the POPF
instruction.

The processor clears the TF flag before calling the exception handler. If the TF flag
was set in a TSS at the time of a task switch, the exception occurs after the first
instruction is executed in the new task.

The TF flag normally is not cleared by privilege changes inside a task. The INT n and
INTO instructions, however, do clear this flag. Therefore, software debuggers that
single-step code must recognize and emulate INT n or INTO instructions rather than
executing them directly. To maintain protection, the operating system should check
the CPL after any single-step trap to see if single stepping should continue at the
current privilege level.

The interrupt priorities guarantee that, if an external interrupt occurs, single step-
ping stops. When both an external interrupt and a single-step interrupt occur
together, the single-step interrupt is processed first. This operation clears the TF flag.
After saving the return address or switching tasks, the external interrupt input is
examined before the first instruction of the single-step handler executes. If the
external interrupt is still pending, then it is serviced. The external interrupt handler
does not run in single-step mode. To single step an interrupt handler, single step an
INT n instruction that calls the interrupt handler.

18.3.1.5 Task-Switch Exception Condition
The processor generates a debug exception after a task switch if the T flag of the new
task's TSS is set. This exception is generated after program control has passed to the
new task, and prior to the execution of the first instruction of that task. The exception
handler can detect this condition by examining the BT flag of the DR6 register.
18-12 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
If the debug exception handler is a task, the T bit of its TSS should not be set. Failure
to observe this rule will put the processor in a loop.

18.3.2 Breakpoint Exception (#BP)—Interrupt Vector 3
The breakpoint exception (interrupt 3) is caused by execution of an INT 3 instruction.
See Chapter 5, “Interrupt 3—Breakpoint Exception (#BP).” Debuggers use break
exceptions in the same way that they use the breakpoint registers; that is, as a
mechanism for suspending program execution to examine registers and memory
locations. With earlier IA-32 processors, breakpoint exceptions are used extensively
for setting instruction breakpoints.

With the Intel386 and later IA-32 processors, it is more convenient to set break-
points with the breakpoint-address registers (DR0 through DR3). However, the
breakpoint exception still is useful for breakpointing debuggers, because a break-
point exception can call a separate exception handler. The breakpoint exception is
also useful when it is necessary to set more breakpoints than there are debug regis-
ters or when breakpoints are being placed in the source code of a program under
development.

18.4 LAST BRANCH RECORDING OVERVIEW
P6 family processors introduced the ability to set breakpoints on taken branches,
interrupts, and exceptions, and to single-step from one branch to the next. This
capability has been modified and extended in the Pentium 4, Intel Xeon, Pentium M,
Intel® Core™ Solo, and Intel® Core™ Duo processors to allow logging of branch trace
messages in a branch trace store (BTS) buffer in memory.

See the following sections:

— Section 18.5, “Last Branch, Interrupt, and Exception Recording (Intel®
Core™2 Duo Processor Family)”

— Section 18.6, “Last Branch, Interrupt, and Exception Recording (Processors
based on Intel NetBurst® Microarchitecture)”

— Section 18.7, “Last Branch, Interrupt, and Exception Recording (Intel® Core™
Solo and Intel® Core™ Duo Processors)”

— Section 18.8, “Last Branch, Interrupt, and Exception Recording (Pentium M
Processors)”

— Section 18.9, “Last Branch, Interrupt, and Exception Recording (P6 Family
Processors)”

Branch instructions that are tracked with the last branch recording mechanism are
the JMP, Jcc, LOOP, and CALL instructions.
Vol. 3 18-13

DEBUGGING AND PERFORMANCE MONITORING
18.5 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (INTEL® CORE™2 DUO PROCESSOR
FAMILY)

The Intel Core 2 Duo processor family and Intel Xeon processors based on Intel Core
microarchitecture provide last branch interrupt and exception recording. These capa-
bilities are similar to those found in Pentium 4 processors, including support for the
following:

• Last branch record (LBR) stack — There are four pairs of MSRs that store the
source and destination addresses related to recently executed branches. See
Section 18.5.1.

• CPL-qualified last branch recording mechanism — This is the same
mechanism described in Section 18.6.1, but using the LBR stack described in
Section 18.5.1.

• Monitoring and single-stepping of branches, exceptions, and interrupts
— See Section 18.6.4 and Section 18.6.5. In addition, the ability to freeze the
LBR stack on a PMI request is available.

• Branch trace messages and last exception records — See Section 18.6.6
and Section 18.6.7.

• Branch trace store and CPL-qualified BTS — See Section 18.6.8.

18.5.1 IA32_DEBUGCTL MSR
The IA32_DEBUGCTL MSR provides bit field controls to enable debug trace inter-
rupts, debug trace stores, trace messages enable, single stepping on branches, last
branch record recording, and to control freezing of LBR stack or performance
counters on a PMI request. IA32_DEBUGCTL MSR is located at register address
01D9H.

See Figure 18-3 for the MSR layout and the bullets below for a description of the
flags:

• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the
processor records a running trace of the most recent branches, interrupts, and/or
exceptions taken by the processor (prior to a debug exception being generated)
in the last branch record (LBR) stack. For more information, see the “Last Branch
Record (LBR) Stack” bullet below.

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats
the TF flag in the EFLAGS register as a “single-step on branches” flag rather than
a “single-step on instructions” flag. This mechanism allows single-stepping the
processor on taken branches, interrupts, and exceptions. See Section 18.6.5,
“Single-Stepping on Branches, Exceptions, and Interrupts,” for more information
about the BTF flag.
18-14 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
• TR (trace message enable) flag (bit 6) — When set, branch trace messages
are enabled. When the processor detects a taken branch, interrupt, or exception;
it sends the branch record out on the system bus as a branch trace message
(BTM). See Section 18.6.6, “Branch Trace Messages,” for more information about
the TR flag.

• BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS
facilities to log BTMs to a memory-resident BTS buffer that is part of the DS save
area. See Section 18.15.5, “DS Save Area.”

• BTINT (branch trace interrupt) flag (bit 8) — When set, the BTS facilities
generate an interrupt when the BTS buffer is full. When clear, BTMs are logged to
the BTS buffer in a circular fashion. See Section 18.6.8, “Branch Trace Store (BTS),”
for a description of this mechanism.

• BTS_OFF_OS (branch trace off in privileged code) flag (bit 9) — When set,
BTS or BTM is skipped if CPL is 0. See Section 18.6.1.

• BTS_OFF_USR (branch trace off in user code) flag (bit 10) — When set,
BTS or BTM is skipped if CPL is greater than 0. See Section 18.6.1.

• FREEZE_LBRS_ON_PMI flag (bits 11) — When set, the LBR stack is frozen on
a hardware PMI request (e.g. when a counter overflows and is configured to trigger
PMI).

• FREEZE_PERFMON_ON_PMI flag (bits 12) — When set, a PMI request clears
each of the “ENABLE” field of MSR_PERF_GLOBAL_CTRL MSR (see Figure 18-18) to
disable all the counters.

• Last Branch Record (LBR) Stack — The LBR consists of 4 pairs of MSRs that
store source and destination address of recent branches (see Figure 18-4):

Figure 18-3. IA32_DEBUGCTL MSR for Processors based
on Intel Core microarchitecture

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1 0

BTS — Branch trace store

Reserved

910

BTS_OFF_OS — BTS off in OS
BTS_OFF_USR — BTS off in user code
FREEZE_LBRS_ON_PMI
FREEZE_PERFMON_ON_PMI

1112
Vol. 3 18-15

DEBUGGING AND PERFORMANCE MONITORING
— MSR_LASTBRANCH_0_FROM_IP (address 40H) through
MSR_LASTBRANCH_3_FROM_IP (address 43H) stores source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through
MSR_LASTBRANCH_3_To_IP (address 63H) stores destination addresses.

Software should query an architectural MSR IA32_PERF_CAPABILITIES[5:0]
about the format of the address that is stored in the LBR stack. Three formats are
defined by following encoding:

— 000000B (32-bit record format) — Stores 32-bit offset in current CS of
respective source/destination,

— 000001B (64-bit LIP record format) — Stores 64-bit linear address of
respective source/destination,

— 000010B (64-bit EIP record format) — Stores 64-bit offset (effective
address) of respective source/destination.

Processor’s support for the architectural MSR IA32_PERF_CAPABILITIES is
provided by CPUID.01H:ECX[PERF_CAPAB_MSR] (bit 15).

• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR
(MSR_LASTBRANCH_TOS, address 1C9H) contains a 2-bit pointer (bits 1-0) to
the MSR in the LBR stack that contains the most recent branch, interrupt, or
exception recorded.

For compatibility, the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) dupli-
cate functions of the LastExceptionToIP and LastExceptionFromIP MSRs found in P6
family processors.

18.5.2 BTS and Related Facilities
The Debug store (DS) feature flag (bit 21), returned by CPUID.1:EDX[21] Indicates
that the processor provides the debug store (DS) mechanism. This mechanism
allows BTMs to be stored in a memory-resident BTS buffer. See Section 18.6.8,

Figure 18-4. LBR MSR Layout for Processors Based on Intel Core Microarchitecture

63

Source Address

0

063

Destination Address

MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_3_FROM_IP

MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_3_TO_IP
18-16 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
“Branch Trace Store (BTS).” Precise event-based sampling (PEBS) also uses the DS
save area provided by debug store mechanism.

18.5.2.1 Freezing LBR and Performance Counters on PMI
Many issues may generate a performance monitoring interrupt (PMI); a PMI service
handler will need to determine cause to handle the situation. Two capabilities that
allow a PMI service routine to improve branch tracing and performance monitoring
are:

• Freezing LBRs on PMI — The processor freezes LBRs on a PMI request by
clearing the LBR bit (bit 0) in IA32_DEBUGCTL. Software must then re-enable
IA32_DEBUGCTL.[0] to continue monitoring branches.

• Freezing PMCs on PMI — The processor freezes the performance counters on a
PMI request by clearing the MSR_PERF_GLOBAL_CTRL MSR (see Figure 18-18).
The PMCs affected include both general-purpose counters and fixed-function
counters (see Section 18.14.1, “Fixed-function Performance Counters”).
Software must re-enable counts by writing 1s to the corresponding enable bits in
MSR_PERF_GLOBAL_CTRL before leaving a PMI service routine to continue
counter operation.

Freezing LBRs and PMCs on PMIs occur when:

• A performance counter had an overflow and was programmed to signal a PMI in
case of an overflow.

— For the general-purpose counters; this is done by setting bit 20 of the
IA32_PERFEVTSELx register.

— For the fixed-function counters; this is done by setting the 3rd bit in the
corresponding 4-bit control field of the MSR_PERF_FIXED_CTR_CTRL register
(see Figure 18-17) or IA32_FIXED_CTR_CTRL MSR (see Figure 18-13).

• The PEBS buffer is almost full and reaches the interrupt threshold.

• The BTS buffer is almost full and reaches the interrupt threshold.

18.5.2.2 Debug Store (DS) Mechanism
The debug store mechanism provides the DS save area for software to collect branch
records or precise-event-based-sampling (PEBS) records. Fields in the buffer
management area of a DS save area are described in Section 18.15.5.

The format of a branch trace record and a PEBS record are the same as the 64-bit
record formats shown in Figures 18-28 and Figures 18-29, with the exception that
the branch predicted bit is not supported by Intel Core microarchitecture. The 64-bit
record formats for BTS and PEBS apply to DS save area for all operating modes.

The procedures used to program IA32_DEBUG_CTRL MSR to set up a BTS buffer or a
CPL-qualified BTS are described in Section 18.6.8.3 and Section 18.6.8.4.
Vol. 3 18-17

DEBUGGING AND PERFORMANCE MONITORING
Required elements for writing a DS interrupt service routine are largely the same as
those described in Section 18.6.8.5. However, instead of re-enabling counting using
CCCRs like on processors based on Intel NetBurst® microarchitecture, a DS interrupt
service routine on processors based on Intel Core microarchitecture should:

• Re-enable the enable bits in MSR_PERF_GLOBAL_CTRL MSR if it is servicing an
overflow PMI due to PEBS.

• Clear overflow indications by writing to MSR_PERF_GLOBAL_OVF_CTRL when a
counting configuration is changed. This includes bit 62 (ClrOvfBuffer) and the
overflow indication of counters used in either PEBS or general-purpose counting
(specifically: bits 0 or 1; see Figures 18-20).

18.6 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (PROCESSORS BASED ON INTEL
NETBURST® MICROARCHITECTURE)

Pentium 4 and Intel Xeon processors based on Intel NetBurst microarchitecture
provide the following methods for recording taken branches, interrupts and excep-
tions:

• Store branch records in the last branch record (LBR) stack MSRs for the most
recent taken branches, interrupts, and/or exceptions in MSRs. A branch record
consist of a branch-from and a branch-to instruction address.

• Send the branch records out on the system bus as branch trace messages
(BTMs).

• Log BTMs in a memory-resident branch trace store (BTS) buffer.

To support these functions, the processor provides the following MSRs:

• MSR_DEBUGCTLA MSR — Enables last branch, interrupt, and exception
recording; single-stepping on taken branches; branch trace messages (BTMs);
and branch trace store (BTS). This register is named DebugCtlMSR in the P6
family processors.

• Debug store (DS) feature flag (CPUID.1:EDX.DS[bit 21]) — Indicates that
the processor provides the debug store (DS) mechanism, which allows BTMs to
be stored in a memory-resident BTS buffer.

• CPL-qualified debug store (DS) feature flag (CPUID.1:ECX.DS-CPL[bit
4]) — Indicates that the processor provides a CPL-qualified debug store (DS)
mechanism, which allows software to selectively skip storing BTMs, according to
specified current privilege level settings, into a memory-resident BTS buffer.

• IA32_MISC_ENABLE MSR — Indicates that the processor provides the BTS
facilities.

• Last branch record (LBR) stack — The LBR stack is a circular stack that
consists of four MSRs (MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3) for
the Pentium 4 and Intel Xeon processor family [CPUID family 0FH, models 0H-
18-18 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
02H]. The LBR stack consists of 16 MSR pairs (MSR_LASTBRANCH_0_FROM_LIP
through MSR_LASTBRANCH_15_FROM_LIP and MSR_LASTBRANCH_0_TO_LIP
through MSR_LASTBRANCH_15_TO_LIP) for the Pentium 4 and Intel Xeon
processor family [CPUID family 0FH, model 03H].

• Last branch record top-of-stack (TOS) pointer — The TOS Pointer MSR
contains a 2-bit pointer (0-3) to the MSR in the LBR stack that contains the most
recent branch, interrupt, or exception recorded for the Pentium 4 and Intel Xeon
processor family [CPUID family 0FH, models 0H-02H]. This pointer becomes a
4-bit pointer (0-15) for the Pentium 4 and Intel Xeon processor family [CPUID
family 0FH, model 03H]. See also: Table 18-3, Figure 18-5, and Section 18.6.3,
“LBR Stack.”

• Last exception record — See Section 18.6.7, “Last Exception Records.”

18.6.1 CPL-Qualified Last Branch Recording Mechanism
CPL-qualified last branch recording mechanism is available to a subset of Intel 64 and
IA-32 processors that support the last branch recording mechanism. Software
supports the CPL-qualified last branch recording mechanism if
CPUID.01H:ECX[bit 4] = 1.

The CPL-qualified last branch recording mechanism is similar to that described in
Sections 18.6, 18.6.2, and 18.6.8. It also sends branch records out on the system
bus as branch trace messages (BTMs). But system software can selectively specify
CPL qualification to not store BTMs associated with a specified privilege level. Two bit
fields, BTS_OFF_USR and BTS_OFF_OS, are provided in the debug control register to
specify the CPL of BTMs that will not be logged in the BTS buffer.

Table 18-3. LBR MSR Stack Structure for the Pentium® 4 and
the Intel® Xeon® Processor Family

LBR MSRs for Family 0FH, Models 0H-02H;
MSRs at locations 1DBH-1DEH.

Decimal Value of TOS Pointer in
MSR_LASTBRANCH_TOS (bits 0-1)

MSR_LASTBRANCH_0

MSR_LASTBRANCH_1

MSR_LASTBRANCH_2

MSR_LASTBRANCH_3

0

1

2

3

LBR MSRs for Family 0FH, Models; MSRs at
locations 680H-68FH.

Decimal Value of TOS Pointer in
MSR_LASTBRANCH_TOS (bits 0-3

MSR_LASTBRANCH_0_FROM_LIP

MSR_LASTBRANCH_1_FROM_LIP

MSR_LASTBRANCH_2_FROM_LIP

0

1

2

Vol. 3 18-19

DEBUGGING AND PERFORMANCE MONITORING
LBR MSRs for Family 0FH, Models; MSRs at
locations 680H-68FH.

Decimal Value of TOS Pointer in
MSR_LASTBRANCH_TOS (bits 0-3)

MSR_LASTBRANCH_3_FROM_LIP

MSR_LASTBRANCH_4_FROM_LIP

MSR_LASTBRANCH_5_FROM_LIP

MSR_LASTBRANCH_6_FROM_LIP

MSR_LASTBRANCH_7_FROM_LIP

MSR_LASTBRANCH_8_FROM_LIP

MSR_LASTBRANCH_9_FROM_LIP

MSR_LASTBRANCH_10_FROM_LIP

MSR_LASTBRANCH_11_FROM_LIP

MSR_LASTBRANCH_12_FROM_LIP

MSR_LASTBRANCH_13_FROM_LIP

MSR_LASTBRANCH_14_FROM_LIP

MSR_LASTBRANCH_15_FROM_LIP

3

4

5

6

7

8

9

10

11

12

13

14

15

LBR MSRs for Family 0FH, Model 03H; MSRs
at locations 6C0H-6CFH.

MSR_LASTBRANCH_0_TO_LIP

MSR_LASTBRANCH_1_TO_LIP

MSR_LASTBRANCH_2_TO_LIP

MSR_LASTBRANCH_3_TO_LIP

MSR_LASTBRANCH_4_TO_LIP

MSR_LASTBRANCH_5_TO_LIP

MSR_LASTBRANCH_6_TO_LIP

MSR_LASTBRANCH_7_TO_LIP

MSR_LASTBRANCH_8_TO_LIP

MSR_LASTBRANCH_9_TO_LIP

MSR_LASTBRANCH_10_TO_LIP

MSR_LASTBRANCH_11_TO_LIP

MSR_LASTBRANCH_12_TO_LIP

MSR_LASTBRANCH_13_TO_LIP

MSR_LASTBRANCH_14_TO_LIP

MSR_LASTBRANCH_15_TO_LIP

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Table 18-3. LBR MSR Stack Structure for the Pentium® 4 and
the Intel® Xeon® Processor Family (Contd.)
18-20 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
NOTE
The initial implementation of BTS_OFF_USR and BTS_OFF_OS in
MSR_DEBUGCTLA is shown in Figure 18-5. The BTS_OFF_USR and
BTS_OFF_OS fields may be implemented on other model-specific
debug control register at different locations.

The following sections describe the MSR_DEBUGCTLA MSR and the various last
branch recording mechanisms. See Appendix B, “Model-Specific Registers (MSRs),”
for a detailed description of each of the last branch recording MSRs.

18.6.2 MSR_DEBUGCTLA MSR
The MSR_DEBUGCTLA MSR enables and disables the various last branch recording
mechanisms described in the previous section. This register can be written to using
the WRMSR instruction, when operating at privilege level 0 or when in real-address
mode. A protected-mode operating system procedure is required to provide user
access to this register. Figure 18-5 shows the flags in the MSR_DEBUGCTLA MSR.
The functions of these flags are as follows:

• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the
processor records a running trace of the most recent branches, interrupts, and/or
exceptions taken by the processor (prior to a debug exception being generated)
in the last branch record (LBR) stack. Each branch, interrupt, or exception is
recorded as a 64-bit branch record. The processor clears this flag whenever a
debug exception is generated (for example, when an instruction or data
breakpoint or a single-step trap occurs). See Section 18.6.3, “LBR Stack.”

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats
the TF flag in the EFLAGS register as a “single-step on branches” flag rather than
a “single-step on instructions” flag. This mechanism allows single-stepping the
processor on taken branches, interrupts, and exceptions. See Section 18.6.5,
“Single-Stepping on Branches, Exceptions, and Interrupts.”

• TR (trace message enable) flag (bit 2) — When set, branch trace messages
are enabled. Thereafter, when the processor detects a taken branch, interrupt, or
exception, it sends the branch record out on the system bus as a branch trace
message (BTM). See Section 18.6.6, “Branch Trace Messages.”
Vol. 3 18-21

DEBUGGING AND PERFORMANCE MONITORING
• BTS (branch trace store) flag (bit 3) — When set, enables the BTS facilities to
log BTMs to a memory-resident BTS buffer that is part of the DS save area. See
Section 18.15.5, “DS Save Area.”

• BTINT (branch trace interrupt) flag (bits 4) — When set, the BTS facilities
generate an interrupt when the BTS buffer is full. When clear, BTMs are logged to
the BTS buffer in a circular fashion. See Section 18.6.8, “Branch Trace Store (BTS).”

• BTS_OFF_OS (disable ring 0 branch trace store) flag (bit 5) — When set,
enables the BTS facilities to skip logging CPL_0 BTMs to the memory-resident
BTS buffer. See Section 18.6.1, “CPL-Qualified Last Branch Recording
Mechanism.”

• BTS_OFF_USR (disable ring 0 branch trace store) flag (bit 6) — When set,
enables the BTS facilities to skip logging non-CPL_0 BTMs to the memory-
resident BTS buffer. See Section 18.6.1, “CPL-Qualified Last Branch Recording
Mechanism.”

18.6.3 LBR Stack
The LBR stack is made up of LBR MSRs that are treated by the processor as a circular
stack. The TOS pointer (MSR_LASTBRANCH_TOS MSR) points to the LBR MSR (or
LBR MSR pair) that contains the most recent (last) branch record placed on the stack.
Prior to placing a new branch record on the stack, the TOS is incremented by 1. When
the TOS pointer reaches it maximum value, it wraps around to 0. See Table 18-3 and
Figure 18-5.

The registers in the LBR MSR stack and the MSR_LASTBRANCH_TOS MSR are read-
only and can be read using the RDMSR instruction.

Figure 18-6 shows the layout of a branch record in an LBR MSR (or MSR pair). Each
branch record consists of two linear addresses, which represent the “from” and “to”

Figure 18-5. MSR_DEBUGCTLA MSR for Pentium 4 and Intel Xeon Processors

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

5 4 3 2 1 0

BTS — Branch trace store

Reserved

67

BTS_OFF_OS — Disable storing CPL_0 BTS
BTS_OFF_USR — Disable storing non-CPL_0 BTS
18-22 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
instruction pointers for a branch, interrupt, or exception. The contents of the from
and to addresses differ, depending on the source of the branch:

• Taken branch — If the record is for a taken branch, the “from” address is the
address of the branch instruction and the “to” address is the target instruction of
the branch.

• Interrupt — If the record is for an interrupt, the “from” address the return
instruction pointer (RIP) saved for the interrupt and the “to” address is the
address of the first instruction in the interrupt handler routine. The RIP is the
linear address of the next instruction to be executed upon returning from the
interrupt handler.

• Exception — If the record is for an exception, the “from” address is the linear
address of the instruction that caused the exception to be generated and the “to”
address is the address of the first instruction in the exception handler routine.

Additional information is saved if an exception or interrupt occurs in conjunction with
a branch instruction. If a branch instruction generates a trap type exception, two
branch records are stored in the LBR stack: a branch record for the branch instruction
followed by a branch record for the exception.

If a branch instruction generates a fault type exception, a branch record is stored in
the LBR stack for the exception, but not for the branch instruction itself. Here, the
location of the branch instruction can be determined from the CS and EIP registers in
the exception stack frame that is written by the processor onto the stack.

Figure 18-6. LBR MSR Branch Record Layout for the Pentium 4
and Intel Xeon Processor Family

63

From Linear Address

0

To Linear Address

63

From Linear Address

0

063

To Linear Address

32 - 31
MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3
CPUID Family 0FH, Models 0H-02H

Reserved

CPUID Family 0FH, Model 03H-04H

Reserved

MSR_LASTBRANCH_0_FROM_LIP through MSR_LASTBRANCH_15_FROM_LIP

32 - 31

32 - 31

MSR_LASTBRANCH_0_TO_LIP through MSR_LASTBRANCH_15_TO_LIP
Vol. 3 18-23

DEBUGGING AND PERFORMANCE MONITORING
If a branch instruction is immediately followed by an interrupt, a branch record is
stored in the LBR stack for the branch instruction followed by a record for the
interrupt.

18.6.3.1 LBR Stack and Intel® 64 Processors
In Intel 64 architecture, LBR MSRs are 64-bits. If IA-32e mode is disabled, only the
lower 32-bits are accessible. If IA-32e mode is enabled, the processor writes 64-bit
values into the MSR.

In 64-bit mode, last branch records store 64-bit addresses; in compatibility mode,
the upper 32-bits of last branch records are cleared.

18.6.4 Monitoring Branches, Exceptions, and Interrupts
When the LBR flag in the MSR_DEBUGCTLA MSR is set, the processor automatically
begins recording branch records for taken branches, interrupts, and exceptions
(except for debug exceptions) in the LBR stack MSRs.

When the processor generates a a debug exception (#DB), it automatically clears the
LBR flag before executing the exception handler. This action does not clear previously
stored LBR stack MSRs. The branch record for the last four taken branches, interrupts
and/or exceptions are retained for analysis.

A debugger can use the linear addresses in the LBR stack to reset breakpoints in the
break-point address registers (DR0 through DR3). This allows a backward trace from
the manifestation of a articular bug toward its source.

If the LBR flag is cleared and TR flag in the MSR_DEBUGCTLA MSR remains set, the
processor will continue to update LBR stack MSRs. This is because BTM information
must be generated from entries in the LBR stack (see 14.5.5). A #DB does not auto-
matically clear the TR flag.

18.6.5 Single-Stepping on Branches, Exceptions, and Interrupts
When software sets both the BTF flag in the MSR_DEBUGCTLA MSR and the TF flag in
the EFLAGS register, the processor generates a single-step debug exception the next
time it takes a branch, services an interrupt, or generates an exception. This mecha-
nism allows the debugger to single-step on control transfers caused by branches,
interrupts, and exceptions. This “control-flow single stepping” helps isolate a bug to
a particular block of code before instruction single-stepping further narrows the
search. If the BTF flag is set when the processor generates a debug exception, the
processor clears the BTF flag along with the TF flag. The debugger must reset the BTF
and TF flags before resuming program execution to continue control-flow single step-
ping.
18-24 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
18.6.6 Branch Trace Messages
Setting The TR flag in the MSR_DEBUGCTLA (see Figure 18-5), IA32_DEBUG (see
Figure 18-7), or MSR_DEBUGB (see Figure 18-9) MSR enables branch trace
messages (BTMs). Thereafter, when the processor detects a branch, exception, or
interrupt, it sends a branch record out on the system bus as a BTM. A debugging
device that is monitoring the system bus can read these messages and synchronize
operations with taken branch, interrupt, and exception events.

When interrupts or exceptions occur in conjunction with a taken branch, additional
BTMs are sent out on the bus, as described in Section 18.6.4, “Monitoring Branches,
Exceptions, and Interrupts.”

Setting this flag (BTS) alone will greatly reduces the performance of the processor.
CPL-qualified last branch recording mechanism can help mitigate the performance
impact of logging branch trace messages. See Section 18.6.1, “CPL-Qualified Last
Branch Recording Mechanism.”

Unlike the P6 family processors, the Pentium 4 and Intel Xeon processors can collect
branch records in the LBR stack MSRs while at the same time sending BTMs out on
the system bus when both the TR and LBR flags are set in the MSR_DEBUGCTLA
MSR.

18.6.7 Last Exception Records
The Pentium 4 and Intel Xeon processors provide two 32 bit MSRs (the
MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate the functions
of the LastExceptionToIP and LastExceptionFromIP MSRs found in the P6 family
processors. The MSR_LER_TO_LIP and MSR_LER_FROM_LIP MSRs contain a branch
record for the last branch that the processor took prior to an exception or interrupt
being generated.

18.6.7.1 Last Exception Records and Intel 64 Architecture
In Intel 64 architecture, the MSRs that store last exception records are 64-bits. If
IA-32e mode is disabled, only the lower 32-bits are accessible. If IA-32e mode is
enabled, the processor writes 64-bit values into the MSR. In 64-bit mode, last excep-
tion records stores 64-bit addresses; in compatibility mode, the upper 32-bits of last
exception records are cleared.

18.6.8 Branch Trace Store (BTS)
A trace of taken branches, interrupts, and exceptions is useful for debugging code by
providing a method of determining the decision path taken to reach a particular code
location. The Pentium 4 and Intel Xeon processors provide a mechanism for
capturing records of taken branches, interrupts, and exceptions and saving them in
the last branch record (LBR) stack MSRs and/or sending them out onto the system
Vol. 3 18-25

DEBUGGING AND PERFORMANCE MONITORING
bus as BTMs. The branch trace store (BTS) mechanism provides the additional capa-
bility of saving the branch records in a memory-resident BTS buffer, which is part of
the DS save area. The BTS buffer can be configured to be circular so that the most
recent branch records are always available or it can be configured to generate an
interrupt when the buffer is nearly full so that all the branch records can be saved.
See Section 18.15.5, “DS Save Area.”

18.6.8.1 Detection of the BTS Facilities
The DS feature flag (bit 21) returned by the CPUID instruction indicates (when set)
the availability of the DS mechanism in the processor, which supports the BTS (and
PEBS) facilities. When this bit is set, the following BTS facilities are available:

• The BTS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates (when
clear) the availability of the BTS facilities, including the ability to set the BTS and
BTINT bits in the MSR_DEBUGCTLA MSR.

• The IA32_DS_AREA MSR can be programmed to point to the DS save area.

18.6.8.2 Setting Up the DS Save Area
To save branch records with the BTS buffer, the DS save area must first be set up in
memory as described in the following procedure. See Section 18.6.8.3, “Setting Up
the BTS Buffer,” and Section 18.15.8.3, “Setting Up the PEBS Buffer,” for instructions
for setting up a BTS buffer and/or a PEBS buffer, respectively, in the DS save area:

1. Create the DS buffer management information area in memory (see Section
18.15.5, “DS Save Area,” and Section 18.15.5.1, “DS Save Area and IA-32e Mode
Operation”). Also see the additional notes in this section.

2. Write the base linear address of the DS buffer management area into the
IA32_DS_AREA MSR.

3. Set up the performance counter entry in the xAPIC LVT for fixed delivery and
edge sensitive. See Section 8.5.1, “Local Vector Table.”

4. Establish an interrupt handler in the IDT for the vector associated with the
performance counter entry in the xAPIC LVT.

5. Write an interrupt service routine to handle the interrupt. See Section 18.6.8.5,
“Writing the DS Interrupt Service Routine.”

The following restrictions should be applied to the DS save area.

• The three DS save area sections should be allocated from a non-paged pool, and
marked accessed and dirty. It is the responsibility of the operating system to
keep the pages that contain the buffer present and to mark them accessed and
dirty. The implication is that the operating system cannot do “lazy” page-table
entry propagation for these pages.

• The DS save area can be larger than a page, but the pages must be mapped to
contiguous linear addresses. The buffer may share a page, so it need not be
18-26 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
aligned on a 4-KByte boundary. For performance reasons, the base of the buffer
must be aligned on a doubleword boundary and should be aligned on a cache line
boundary.

• It is recommended that the buffer size for the BTS buffer and the PEBS buffer be
an integer multiple of the corresponding record sizes.

• The precise event records buffer should be large enough to hold the number of
precise event records that can occur while waiting for the interrupt to be
serviced.

• The DS save area should be in kernel space. It must not be on the same page as
code, to avoid triggering self-modifying code actions.

• There are no memory type restrictions on the buffers, although it is
recommended that the buffers be designated as WB memory type for
performance considerations.

• Either the system must be prevented from entering A20M mode while DS save
area is active, or bit 20 of all addresses within buffer bounds must be 0.

• Pages that contain buffers must be mapped to the same physical addresses for all
processes, such that any change to control register CR3 will not change the DS
addresses.

• The DS save area is expected to used only on systems with an enabled APIC. The
LVT Performance Counter entry in the APCI must be initialized to use an interrupt
gate instead of the trap gate.

18.6.8.3 Setting Up the BTS Buffer
Three flags in the MSR_DEBUGCTLA MSR (see Table 18-4), IA32_DEBUGCTL (see
Figure 18-7), or MSR_DEBUGCTLB (see Figure 18-9) control the generation of
branch records and storing of them in the BTS buffer; these are TR, BTS, and BTINT.
The TR flag enables the generation of BTMs. The BTS flag determines whether the
BTMs are sent out on the system bus (clear) or stored in the BTS buffer (set). BTMs
cannot be simultaneously sent to the system bus and logged in the BTS buffer. The
BTINT flag enables the generation of an interrupt when the BTS buffer is full. When
this flag is clear, the BTS buffer is a circular buffer.
Vol. 3 18-27

DEBUGGING AND PERFORMANCE MONITORING
The following procedure describes how to set up a Pentium 4 or Intel Xeon processor
to collect branch records in the BTS buffer in the DS save area:

1. Place values in the BTS buffer base, BTS index, BTS absolute maximum, and BTS
interrupt threshold fields of the DS buffer management area to set up the BTS
buffer in memory.

2. Set the TR and BTS flags in the MSR_DEBUGCTLA MSR (or IA32_DEBUGCTL for
Intel Core Solo and Intel Core Duo processors; or MSR_DEBUGCTLB for Pentium
M processors).

3. Either clear the BTINT flag in the MSR_DEBUGCTLA MSR (to set up a circular BTS
buffer) or set the BTINT flag (to generate an interrupt when the BTS buffer is
nearly full). For Intel Core Solo and Intel Core Duo processors, do the same in
IA32_DEBUGCTL; in MSR_DEBUGCTLB for Pentium M processors.

NOTES
If the buffer size is set to less than the minimum allowable value (i.e.
BTS absolute maximum < 1 + size of BTS record), the results of BTS
is undefined.

In order to prevent generating an interrupt, when working with
circular BTS buffer, SW need to set BTS interrupt threshold to a value
greater than BTS absolute maximum (fields of the DS buffer
management area). It's not enough to clear the BTINT flag itself only.

18.6.8.4 Setting Up CPL-Qualified BTS
If the processor supports CPL-qualified last branch recording mechanism, the gener-
ation of branch records and storing of them in the BTS buffer are determined by: TR,
BTS, BTS_OFF_OS, BTS_OFF_USR, and BTINT. The encoding of these five bits are
shown in Table 18-5.

Table 18-4. MSR_DEBUGCTLA, IA32_DEBUGCTL, MSR_DEBUGCLTB
Flag Encodings

TR BTS BTINT Description

0 X X Branch trace messages (BTMs) off

1 0 X Generate BTMs

1 1 0 Store BTMs in the BTS buffer, used here as a circular buffer

1 1 1 Store BTMs in the BTS buffer, and generate an interrupt when
the buffer is nearly full
18-28 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
18.6.8.5 Writing the DS Interrupt Service Routine
The BTS, non-precise event-based sampling, and PEBS facilities share the same
interrupt vector and interrupt service routine (called the debug store interrupt
service routine or DS ISR). To handle BTS, non-precise event-based sampling, and
PEBS interrupts: separate handler routines must be included in the DS ISR. Use the
following guidelines when writing a DS ISR to handle BTS, non-precise event-based
sampling, and/or PEBS interrupts.

• The DS interrupt service routine (ISR) must be part of a kernel driver and operate
at a current privilege level of 0 to secure the buffer storage area.

• Because the BTS, non-precise event-based sampling, and PEBS facilities share
the same interrupt vector, the DS ISR must check for all the possible causes of
interrupts from these facilities and pass control on to the appropriate handler.

BTS and PEBS buffer overflow would be the sources of the interrupt if the buffer

Table 18-5. CPL-Qualified Branch Trace Store Encodings
TR BTS BTS_OFF_OS BTS_OFF_USR BTINT Description

0 X X X X Branch trace messages (BTMs)
off

1 0 X X X Generates BTMs but do not
store BTMs

1 1 0 0 0 Store all BTMs in the BTS buffer,
used here as a circular buffer

1 1 1 0 0 Store BTMs with CPL > 0 in the
BTS buffer

1 1 0 1 0 Store BTMs with CPL = 0 in the
BTS buffer

1 1 1 1 X Generate BTMs but do not store
BTMs

1 1 0 0 1 Store all BTMs in the BTS buffer;
generate an interrupt when the
buffer is nearly full

1 1 1 0 1 Store BTMs with CPL > 0 in the
BTS buffer; generate an
interrupt when the buffer is
nearly full

1 1 0 1 1 Store BTMs with CPL = 0 in the
BTS buffer; generate an
interrupt when the buffer is
nearly full
Vol. 3 18-29

DEBUGGING AND PERFORMANCE MONITORING
index matches/exceeds the interrupt threshold specified. Detection of non-
precise event-based sampling as the source of the interrupt is accomplished by
checking for counter overflow.

• There must be separate save areas, buffers, and state for each processor in an
MP system.

• Upon entering the ISR, branch trace messages and PEBS should be disabled to
prevent race conditions during access to the DS save area. This is done by
clearing TR flag in the MSR_DEBUGCTLA MSR and by clearing the precise event
enable flag in the MSR_PEBS_ENABLE MSR. These settings should be restored to
their original values when exiting the ISR.

• The processor will not disable the DS save area when the buffer is full and the
circular mode has not been selected. The current DS setting must be retained
and restored by the ISR on exit.

• After reading the data in the appropriate buffer, up to but not including the
current index into the buffer, the ISR must reset the buffer index to the beginning
of the buffer. Otherwise, everything up to the index will look like new entries upon
the next invocation of the ISR.

• The ISR must clear the mask bit in the performance counter LVT entry.

• The ISR must re-enable the CCCR's ENABLE bit if it is servicing an overflow PMI
due to PEBS.

• The Pentium 4 Processor and Intel Xeon Processor mask PMIs upon receiving an
interrupt. Clear this condition before leaving the interrupt handler.

18.7 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (INTEL® CORE™ SOLO AND INTEL®
CORE™ DUO PROCESSORS)

Intel Core Solo and Intel Core Duo processors provide last branch interrupt and
exception recording. This capability is almost identical to that found in Pentium 4 and
Intel Xeon processors. There are differences in the stack and in some MSR names
and locations.

Note the following:

• IA32_DEBUGCTL MSR — Enables debug trace interrupt, debug trace store,
trace messages enable, performance monitoring breakpoint flags, single
stepping on branches, and last branch. IA32_DEBUGCTL MSR is located at
register address 01D9H.

See Figure 18-7 the layout and the entries below for a description of the flags:

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the
processor records a running trace of the most recent branches, interrupts,
and/or exceptions taken by the processor (prior to a debug exception being
18-30 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
generated) in the last branch record (LBR) stack. For more information, see
the “Last Branch Record (LBR) Stack” below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor
treats the TF flag in the EFLAGS register as a “single-step on branches” flag
rather than a “single-step on instructions” flag. This mechanism allows
single-stepping the processor on taken branches, interrupts, and exceptions.
See Section 18.6.5, “Single-Stepping on Branches, Exceptions, and Inter-
rupts,” for more information about the BTF flag.

— TR (trace message enable) flag (bit 6) — When set, branch trace
messages are enabled. When the processor detects a taken branch,
interrupt, or exception; it sends the branch record out on the system bus as
a branch trace message (BTM). See Section 18.6.6, “Branch Trace Messages,”
for more information about the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS
facilities to log BTMs to a memory-resident BTS buffer that is part of the DS
save area. See Section 18.15.5, “DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS
facilities generate an interrupt when the BTS buffer is full. When clear, BTMs are
logged to the BTS buffer in a circular fashion. See Section 18.6.8, “Branch Trace
Store (BTS),” for a description of this mechanism.

• Debug store (DS) feature flag (bit 21), returned by the CPUID
instruction — Indicates that the processor provides the debug store (DS)
mechanism, which allows BTMs to be stored in a memory-resident BTS buffer.
See Section 18.6.8, “Branch Trace Store (BTS).”

• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs
(MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’
address, bits 63-32 hold the ‘to’ address (MSR addresses start at 40H). See
Figure 18-8.

Figure 18-7. IA32_DEBUGCTL MSR for Intel Core Solo
and Intel Core Duo Processors

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1 0

BTS — Branch trace store

Reserved
Vol. 3 18-31

DEBUGGING AND PERFORMANCE MONITORING
• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR
contains a 3-bit pointer (bits 2-0) to the MSR in the LBR stack that contains the
most recent branch, interrupt, or exception recorded. For Intel Core Solo and
Intel Core Duo processors, this MSR is located at register address 01C9H.

For compatibility, the Intel Core Solo and Intel Core Duo processors provide two 32-
bit MSRs (the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate
functions of the LastExceptionToIP and LastExceptionFromIP MSRs found in P6 family
processors.

For details, see Section 18.6, “Last Branch, Interrupt, and Exception Recording
(Processors based on Intel NetBurst® Microarchitecture),” and Appendix B.3, “MSRs
In Intel® Core™ Solo and Intel® Core™ Duo Processors.”

18.8 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (PENTIUM M PROCESSORS)

Like the Pentium 4 and Intel Xeon processor family, Pentium M processors provide
last branch interrupt and exception recording. The capability operates almost identi-
cally to that found in Pentium 4 and Intel Xeon processors. There are differences in
the shape of the stack and in some MSR names and locations. Note the following:

• MSR_DEBUGCTLB MSR — Enables debug trace interrupt, debug trace store,
trace messages enable, performance monitoring breakpoint flags, single
stepping on branches, and last branch. For Pentium M processors, this MSR is
located at register address 01D9H. See Figure 18-9 and the entries below for a
description of the flags.

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the
processor records a running trace of the most recent branches, interrupts,
and/or exceptions taken by the processor (prior to a debug exception being
generated) in the last branch record (LBR) stack. For more information, see
the “Last Branch Record (LBR) Stack” bullet below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor
treats the TF flag in the EFLAGS register as a “single-step on branches” flag
rather than a “single-step on instructions” flag. This mechanism allows

Figure 18-8. LBR Branch Record Layout for the Intel Core Solo
and Intel Core Duo Processor

063

From Linear AddressTo Linear Address
32 - 31

MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7
18-32 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
single-stepping the processor on taken branches, interrupts, and exceptions.
See Section 18.6.5, “Single-Stepping on Branches, Exceptions, and Inter-
rupts,” for more information about the BTF flag.

— PBi (performance monitoring/breakpoint pins) flags (bits 5-2) —
When these flags are set, the performance monitoring/breakpoint pins on the
processor (BP0#, BP1#, BP2#, and BP3#) report breakpoint matches in the
corresponding breakpoint-address registers (DR0 through DR3). The
processor asserts then deasserts the corresponding BPi# pin when a
breakpoint match occurs. When a PBi flag is clear, the performance
monitoring/breakpoint pins report performance events. Processor execution
is not affected by reporting performance events.

— TR (trace message enable) flag (bit 6) — When set, branch trace
messages are enabled. When the processor detects a taken branch,
interrupt, or exception, it sends the branch record out on the system bus as a
branch trace message (BTM). See Section 18.6.6, “Branch Trace Messages,”
for more information about the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, enables the BTS
facilities to log BTMs to a memory-resident BTS buffer that is part of the DS
save area. See Section 18.15.5, “DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS
facilities generate an interrupt when the BTS buffer is full. When clear, BTMs are
logged to the BTS buffer in a circular fashion. See Section 18.6.8, “Branch Trace
Store (BTS),” for a description of this mechanism.

• Debug store (DS) feature flag (bit 21), returned by the CPUID
instruction — Indicates that the processor provides the debug store (DS)
mechanism, which allows BTMs to be stored in a memory-resident BTS buffer.
See Section 18.6.8, “Branch Trace Store (BTS).”

• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs
(MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’

Figure 18-9. MSR_DEBUGCTLB MSR for Pentium M Processors

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1 0

BTS — Branch trace store

PB3/2/1/0 — Performance monitoring breakpoint flags
Vol. 3 18-33

DEBUGGING AND PERFORMANCE MONITORING
address, bits 63-32 hold the ‘to’ address. For Pentium M Processors, these pairs
are located at register addresses 040H-047H. See Figure 18-10.

• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR
contains a 3-bit pointer (bits 2-0) to the MSR in the LBR stack that contains the
most recent branch, interrupt, or exception recorded. For Pentium M Processors,
this MSR is located at register address 01C9H.

For compatibility, the Pentium M processor provides two 32-bit MSRs (the
MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate the functions
of the LastExceptionToIP and LastExceptionFromIP MSRs found in P6 family proces-
sors.

For more detail on these capabilities, see Section 18.6, “Last Branch, Interrupt, and
Exception Recording (Processors based on Intel NetBurst® Microarchitecture),” and
Appendix B.4, “MSRs In the Pentium M Processor.”

18.9 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (P6 FAMILY PROCESSORS)

The P6 family processors provide five MSRs for recording the last branch, interrupt,
or exception taken by the processor: DEBUGCTLMSR, LastBranchToIP, LastBranch-
FromIP, LastExceptionToIP, and LastExceptionFromIP. These registers can be used to
collect last branch records, to set breakpoints on branches, interrupts, and excep-
tions, and to single-step from one branch to the next.

See Appendix B, “Model-Specific Registers (MSRs),” for a detailed description of each
of the last branch recording MSRs.

18.9.1 DEBUGCTLMSR Register
The version of the DEBUGCTLMSR register found in the P6 family processors enables
last branch, interrupt, and exception recording; taken branch breakpoints; the
breakpoint reporting pins; and trace messages. This register can be written to using
the WRMSR instruction, when operating at privilege level 0 or when in real-address

Figure 18-10. LBR Branch Record Layout for the Pentium M Processor

063

From Linear AddressTo Linear Address
32 - 31

MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7
18-34 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
mode. A protected-mode operating system procedure is required to provide user
access to this register. Figure 18-11 shows the flags in the DEBUGCTLMSR register
for the P6 family processors. The functions of these flags are as follows:

• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the
processor records the source and target addresses (in the LastBranchToIP,
LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP MSRs) for the
last branch and the last exception or interrupt taken by the processor prior to a
debug exception being generated. The processor clears this flag whenever a
debug exception, such as an instruction or data breakpoint or single-step trap
occurs.

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats
the TF flag in the EFLAGS register as a “single-step on branches” flag. See
Section 18.6.5, “Single-Stepping on Branches, Exceptions, and Interrupts.”

• PBi (performance monitoring/breakpoint pins) flags (bits 2 through 5)
— When these flags are set, the performance monitoring/breakpoint pins on the
processor (BP0#, BP1#, BP2#, and BP3#) report breakpoint matches in the
corresponding breakpoint-address registers (DR0 through DR3). The processor
asserts then deasserts the corresponding BPi# pin when a breakpoint match
occurs. When a PBi flag is clear, the performance monitoring/breakpoint pins
report performance events. Processor execution is not affected by reporting
performance events.

• TR (trace message enable) flag (bit 6) — When set, trace messages are
enabled as described in Section 18.6.6, “Branch Trace Messages.” Setting this
flag greatly reduces the performance of the processor. When trace messages are
enabled, the values stored in the LastBranchToIP, LastBranchFromIP, LastExcep-
tionToIP, and LastExceptionFromIP MSRs are undefined.

Figure 18-11. DEBUGCTLMSR Register (P6 Family Processors)

31

TR — Trace messages enable
PBi — Performance monitoring/breakpoint pins
BTF — Single-step on branches
LBR — Last branch/interrupt/exception

7 6 5 4 3 2 1 0

P
B
2

P
B
1

P
B
0

B
T
F

T
R

L
B
R

P
B
3

Reserved
Vol. 3 18-35

DEBUGGING AND PERFORMANCE MONITORING
18.9.2 Last Branch and Last Exception MSRs
The LastBranchToIP and LastBranchFromIP MSRs are 32-bit registers for recording
the instruction pointers for the last branch, interrupt, or exception that the processor
took prior to a debug exception being generated. When a branch occurs, the
processor loads the address of the branch instruction into the LastBranchFromIP MSR
and loads the target address for the branch into the LastBranchToIP MSR.

When an interrupt or exception occurs (other than a debug exception), the address
of the instruction that was interrupted by the exception or interrupt is loaded into the
LastBranchFromIP MSR and the address of the exception or interrupt handler that is
called is loaded into the LastBranchToIP MSR.

The LastExceptionToIP and LastExceptionFromIP MSRs (also 32-bit registers) record
the instruction pointers for the last branch that the processor took prior to an excep-
tion or interrupt being generated. When an exception or interrupt occurs, the
contents of the LastBranchToIP and LastBranchFromIP MSRs are copied into these
registers before the to and from addresses of the exception or interrupt are recorded
in the LastBranchToIP and LastBranchFromIP MSRs.

These registers can be read using the RDMSR instruction.

Note that the values stored in the LastBranchToIP, LastBranchFromIP, LastException-
ToIP, and LastExceptionFromIP MSRs are offsets into the current code segment, as
opposed to linear addresses, which are saved in last branch records for the Pentium
4 and Intel Xeon processors.

18.9.3 Monitoring Branches, Exceptions, and Interrupts
When the LBR flag in the DEBUGCTLMSR register is set, the processor automatically
begins recording branches that it takes, exceptions that are generated (except for
debug exceptions), and interrupts that are serviced. Each time a branch, exception,
or interrupt occurs, the processor records the to and from instruction pointers in the
LastBranchToIP and LastBranchFromIP MSRs. In addition, for interrupts and excep-
tions, the processor copies the contents of the LastBranchToIP and LastBranch-
FromIP MSRs into the LastExceptionToIP and LastExceptionFromIP MSRs prior to
recording the to and from addresses of the interrupt or exception.

When the processor generates a debug exception (#DB), it automatically clears the
LBR flag before executing the exception handler, but does not touch the last branch
and last exception MSRs. The addresses for the last branch, interrupt, or exception
taken are thus retained in the LastBranchToIP and LastBranchFromIP MSRs and the
addresses of the last branch prior to an interrupt or exception are retained in the
LastExceptionToIP, and LastExceptionFromIP MSRs.

The debugger can use the last branch, interrupt, and/or exception addresses in
combination with code-segment selectors retrieved from the stack to reset break-
points in the breakpoint-address registers (DR0 through DR3), allowing a backward
trace from the manifestation of a particular bug toward its source. Because the
instruction pointers recorded in the LastBranchToIP, LastBranchFromIP, LastExcepti-
18-36 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
onToIP, and LastExceptionFromIP MSRs are offsets into a code segment, software
must determine the segment base address of the code segment associated with the
control transfer to calculate the linear address to be placed in the breakpoint-address
registers. The segment base address can be determined by reading the segment
selector for the code segment from the stack and using it to locate the segment
descriptor for the segment in the GDT or LDT. The segment base address can then be
read from the segment descriptor.

Before resuming program execution from a debug-exception handler, the handler
must set the LBR flag again to re-enable last branch and last exception/interrupt
recording.

18.10 TIME-STAMP COUNTER
The Intel 64 and IA-32 architectures (beginning with the Pentium processor) define a
time-stamp counter mechanism that can be used to monitor and identify the relative
time occurrence of processor events. The counter’s architecture includes the
following components:

• TSC flag — A feature bit that indicates the availability of the time-stamp counter.
The counter is available in an if the function CPUID.1:EDX.TSC[bit 4] = 1.

• IA32_TIME_STAMP_COUNTER MSR (called TSC MSR in P6 family and
Pentium processors) — The MSR used as the counter.

• RDTSC instruction — An instruction used to read the time-stamp counter.

• TSD flag — A control register flag is used to enable or disable the time-stamp
counter (enabled if CR4.TSD[bit 2] = 1).

The time-stamp counter (as implemented in the P6 family, Pentium, Pentium M,
Pentium 4, Intel Xeon, Intel Core Solo and Intel Core Duo processors) is a 64-bit
counter that is set to 0 following a RESET of the processor. Following a RESET, the
counter increments even when the processor is halted by the HLT instruction or the
external STPCLK# pin. Note that the assertion of the external DPSLP# pin may cause
the time-stamp counter to stop.

Processor families increment the time-stamp counter differently:

• For Pentium M processors (family [06H], models [09H, 0DH]); for Pentium 4
processors, Intel Xeon processors (family [0FH], models [00H, 01H, or 02H]);
and for P6 family processors: the time-stamp counter increments with every
internal processor clock cycle.

The internal processor clock cycle is determined by the current core-clock to bus-
clock ratio. Intel® SpeedStep® technology transitions may also impact the
processor clock.

• For Pentium 4 processors, Intel Xeon processors (family [0FH], models [03H and
higher]); for Intel Core Solo and Intel Core Duo processors (family [06H], model
[0EH]); for the Intel Xeon processor 5100 series and Intel Core 2 Duo processors
(family [06H], model [0FH]): the time-stamp counter increments at a constant
Vol. 3 18-37

DEBUGGING AND PERFORMANCE MONITORING
rate. That rate may be set by the maximum core-clock to bus-clock ratio of the
processor or may be set by the maximum resolved frequency at which the
processor is booted. The maximum resolved frequency may differ from the
maximum qualified frequency of the processor, see Section 18.17.5 for more
detail.

The specific processor configuration determines the behavior. Constant TSC
behavior ensures that the duration of each clock tick is uniform and supports the
use of the TSC as a wall clock timer even if the processor core changes frequency.
This is the architectural behavior moving forward.

NOTE
To determine average processor clock frequency, Intel recommends
the use of EMON logic to count processor core clocks over the period
of time for which the average is required. See Section 18.17,
“Counting Clocks,” and Appendix A, “Performance-
Monitoring Events,” for more information.

The RDTSC instruction reads the time-stamp counter and is guaranteed to return a
monotonically increasing unique value whenever executed, except for a 64-bit
counter wraparound. Intel guarantees that the time-stamp counter will not wrap-
around within 10 years after being reset. The period for counter wrap is longer for
Pentium 4, Intel Xeon, P6 family, and Pentium processors.

Normally, the RDTSC instruction can be executed by programs and procedures
running at any privilege level and in virtual-8086 mode. The TSD flag allows use of
this instruction to be restricted to programs and procedures running at privilege level
0. A secure operating system would set the TSD flag during system initialization to
disable user access to the time-stamp counter. An operating system that disables
user access to the time-stamp counter should emulate the instruction through a
user-accessible programming interface.

The RDTSC instruction is not serializing or ordered with other instructions. It does not
necessarily wait until all previous instructions have been executed before reading the
counter. Similarly, subsequent instructions may begin execution before the RDTSC
instruction operation is performed.

The RDMSR and WRMSR instructions read and write the time-stamp counter, treating
the time-stamp counter as an ordinary MSR (address 10H). In the Pentium 4, Intel
Xeon, and P6 family processors, all 64-bits of the time-stamp counter are read using
RDMSR (just as with RDTSC). When WRMSR is used to write the time-stamp counter
on processors before family [0FH], models [03H, 04H]: only the low-order 32-bits of
the time-stamp counter can be written (the high-order 32 bits are cleared to 0). For
family [0FH], models [03H, 04H, 06H]; for family [06H]], model [0EH, 0FH]: all 64
bits are writable.
18-38 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
18.11 PERFORMANCE MONITORING OVERVIEW
Performance monitoring was introduced in the Pentium processor with a set of
model-specific performance-monitoring counter MSRs. These counters permit selec-
tion of processor performance parameters to be monitored and measured. The infor-
mation obtained from these counters can be used for tuning system and compiler
performance.

In Intel P6 family of processors, the performance monitoring mechanism was
enhanced to permit a wider selection of events to be monitored and to allow greater
control events to be monitored. Next, Pentium 4 and Intel Xeon processors intro-
duced a new performance monitoring mechanism and new set of performance
events.

The performance monitoring mechanisms and performance events defined for the
Pentium, P6 family, Pentium 4, and Intel Xeon processors are not architectural. They
are all model specific (not compatible among processor families). Intel Core Solo and
Intel Core Duo processors support a set of architectural performance events and a
set of non-architectural performance events. Processors based Intel Core microarchi-
tecture support enhanced architectural performance events and non-architectural
performance events.

Starting with Intel Core Solo and Intel Core Duo processors, there are two classes of
performance monitoring capabilities. The first class supports events for monitoring
performance using counting or sampling usage. These events are non-architectural
and vary from one processor model to another. They are similar to those available in
Pentium M processors. These non-architectural performance monitoring events are
specific to the microarchitecture and may change with enhancements. They are
discussed in Section 18.13, “Performance Monitoring (Intel® Core™ Solo and Intel®

Core™ Duo Processors).” Non-architectural events for a given microarchitecture can
not be enumerated using CPUID; and they are listed in Appendix A, “Performance-
Monitoring Events.”

The second class of performance monitoring capabilities is referred to as architec-
tural performance monitoring. This class supports the same counting and sampling
usages, with a smaller set of available events. The visible behavior of architectural
performance events is consistent across processor implementations. Availability of
architectural performance monitoring capabilities is enumerated using the
CPUID.0AH. These events are discussed in Section 18.12.

See also:

— Section 18.12, “Architectural Performance Monitoring”

— Section 18.13, “Performance Monitoring (Intel® Core™ Solo and Intel® Core™

Duo Processors)”

— Section 18.14, “Performance Monitoring (Processors based on Intel® Core™
Microarchitecture)”

— Section 18.15, “Performance Monitoring (Processors Based on Intel NetBurst
microarchitecture)”
Vol. 3 18-39

DEBUGGING AND PERFORMANCE MONITORING
— Section 18.16, “Performance Monitoring and Hyper-Threading Technology”

— Section 18.18, “Performance Monitoring and Dual-Core Technology”

— Section 18.19, “Performance Monitoring on 64-bit Intel Xeon Processor MP
with Up to 8-MByte L3 Cache”

— Section 18.21, “Performance Monitoring (P6 Family Processor)”

— Section 18.22, “Performance Monitoring (Pentium Processors)”

18.12 ARCHITECTURAL PERFORMANCE MONITORING
Performance monitoring events are architectural when they behave consistently
across microarchitectures. Intel Core Solo and Intel Core Duo processors introduced
architectural performance monitoring. The feature provides a mechanism for soft-
ware to enumerate performance events and provides configuration and counting
facilities for events.

Architectural performance monitoring does allow for enhancement across processor
implementations. The CPUID.0AH leaf provides version ID for each enhancement.
Intel Core Solo and Intel Core Duo processors support base level functionality identi-
fied by version ID of 1. Processors based on Intel Core microarchitecture support, at
a minimum, the base level functionality of architectural performance monitoring.
Intel Core 2 Duo processor T 7700 and newer processors based on Intel Core
microarchitecture support both the base level functionality and enhanced architec-
tural performance monitoring identified by version ID of 2.

18.12.1 Architectural Performance Monitoring Version 1
Configuring an architectural performance monitoring event involves programming
performance event select registers. There are a finite number of performance event
select MSRs (IA32_PERFEVTSELx MSRs). The result of a performance monitoring
event is reported in a performance monitoring counter (IA32_PMCx MSR). Perfor-
mance monitoring counters are paired with performance monitoring select registers.

Performance monitoring select registers and counters are architectural in the
following respects:

• Bit field layout of IA32_PERFEVTSELx is consistent across microarchitectures.

• Addresses of IA32_PERFEVTSELx MSRs remain the same across microarchitec-
tures.

• Addresses of IA32_PMC MSRs remain the same across microarchitectures.

• Each logical processor has its own set of IA32_PERFEVTSELx and IA32_PMCx
MSRs. Configuration facilities and counters are not shared between logical
processors sharing a processor core.
18-40 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
Architectural performance monitoring provides a CPUID mechanism for enumerating
the following information:

• Number of performance monitoring counters available in a logical processor
(each IA32_PERFEVTSELx MSR is paired to the corresponding IA32_PMCx MSR)

• Number of bits supported in each IA32_PMCx

• Number of architectural performance monitoring events supported in a logical
processor

Software can use CPUID to discover architectural performance monitoring availability
(CPUID.0AH). The architectural performance monitoring leaf provides an identifier
corresponding to the version number of architectural performance monitoring avail-
able in the processor.

The version identifier is retrieved by querying CPUID.0AH:EAX[bits 7:0] (see
Chapter 3, “Instruction Set Reference, A-M,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A). If the version identifier is greater than
zero, architectural performance monitoring capability is supported. Software queries
the CPUID.0AH for the version identifier first; it then analyzes the value returned in
CPUID.0AH.EAX, CPUID.0AH.EBX to determine the facilities available.

In the initial implementation of architectural performance monitoring; software can
determine how many IA32_PERFEVTSELx/ IA32_PMCx MSR pairs are supported per
core, the bit-width of PMC, and the number of architectural performance monitoring
events available.

18.12.1.1 Architectural Performance Monitoring Version 1 Facilities
Architectural performance monitoring facilities include a set of performance moni-
toring counters and performance event select registers. These MSRs have the
following properties:

• IA32_PMCx MSRs start at address 0C1H and occupy a contiguous block of MSR
address space; the number of MSRs per logical processor is reported using
CPUID.0AH.

• IA32_PERFEVTSELx MSRs start at address 186H and occupy a contiguous block
of MSR address space. Each performance event select register is paired with a
corresponding performance counter in the 0C1H address block.

• The bit width of an IA32_PMCx MSR is reported using the CPUID.0AH leaf. Bits
beyond the width of the programmable counter are undefined, and are ignored
when written to. In the initial implementation, the bit width for read operations is
reported using CPUID; write operations are limited to the low 32 bits of registers.

• Bit field layout of IA32_PERFEVTSELx MSRs is defined architecturally.

See Figure 18-12 for the bit field layout of IA32_PERFEVTSELx MSRs. The bit fields
are:

• Event select field (bits 0 through 7) — Selects the event logic unit used to
detect microarchitectural conditions (see Table 18-6, for a list of architectural
Vol. 3 18-41

DEBUGGING AND PERFORMANCE MONITORING
events and their 8-bit codes). The set of values for this field is defined architec-
turally; each value corresponds to an event logic unit for use with an architectural
performance event. The number of architectural events is queried using
CPUID.0AH:EAX. A processor may support only a subset of pre-defined values.

• Unit mask (UMASK) field (bits 8 through 15) — These bits qualify the
condition that the selected event logic unit detects. Valid UMASK values for each
event logic unit are specific to the unit. For each architectural performance event,
its corresponding UMASK value defines a specific microarchitectural condition.

A pre-defined microarchitectural condition associated with an architectural event
may not be applicable to a given processor. The processor then reports only a
subset of pre-defined architectural events. Pre-defined architectural events are
listed in Table 18-6; support for pre-defined architectural events is enumerated
using CPUID.0AH:EBX. Architectural performance events available in the initial
implementation are listed in Table A-1.

• USR (user mode) flag (bit 16) — Specifies that the selected microarchitectural
condition is counted only when the logical processor is operating at privilege
levels 1, 2 or 3. This flag can be used with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that the selected
microarchitectural condition is counted only when the logical processor is
operating at privilege level 0. This flag can be used with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of the
selected microarchitectural condition. The logical processor counts the number of
deasserted to asserted transitions for any condition that can be expressed by the
other fields. The mechanism does not permit back-to-back assertions to be
distinguished.

Figure 18-12. Layout of IA32_PERFEVTSELx MSRs

31

INV—Invert counter mask
EN—Enable counters
INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

Counter Mask
EE

N

I
N
T

19 1618 15172021222324

Reserved

I
N
V

P
C

U
S
R

O
S Unit Mask (UMASK)(CMASK)

63
18-42 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
This mechanism allows software to measure not only the fraction of time spent in
a particular state, but also the average length of time spent in such a state (for
example, the time spent waiting for an interrupt to be serviced).

• PC (pin control) flag (bit 19) — When set, the logical processor toggles the
PMi pins and increments the counter when performance-monitoring events
occur; when clear, the processor toggles the PMi pins when the counter
overflows. The toggling of a pin is defined as assertion of the pin for a single bus
clock followed by deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the logical processor
generates an exception through its local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — When set, performance counting is
enabled in the corresponding performance-monitoring counter; when clear, the
corresponding counter is disabled. The event logic unit for a UMASK must be
disabled by setting IA32_PERFEVTSELx[bit 22] = 0, before writing to
IA32_PMCx.

• INV (invert) flag (bit 23) — Inverts the result of the counter-mask comparison
when set, so that both greater than and less than comparisons can be made.

• Counter mask (CMASK) field (bits 24 through 31) — When this field is not
zero, a logical processor compares this mask to the events count of the detected
microarchitectural condition during a single cycle. If the event count is greater
than or equal to this mask, the counter is incremented by one. Otherwise the
counter is not incremented.

This mask is intended for software to characterize microarchitectural conditions
that can count multiple occurrences per cycle (for example, two or more instruc-
tions retired per clock; or bus queue occupations). If the counter-mask field is 0,
then the counter is incremented each cycle by the event count associated with
multiple occurrences.

18.12.2 Architectural Performance Monitoring Version 2
The enhanced features provided by architectural performance monitoring version 2
include the following:

• Fixed-function performance counter register and associated control
register — Three of the architectural performance events are counted using
three fixed-function MSRs (IA32_FIXED_CTR0 through IA32_FIXED_CTR2). Each
of the fixed-function PMC can count only one architectural performance event.

Configuring the fixed-function PMCs is done by writing to bit fields in the MSR
(IA32_FIXED_CTR_CTRL) located at address 38DH. Unlike configuring
performance events for general-purpose PMCs (IA32_PMCx) via UMASK field in
(IA32_PERFEVTSELx), configuring, programming IA32_FIXED_CTR_CTRL for
fixed-function PMCs do not require any UMASK.

• Simplified event programming — Most frequent operation in programming
performance events are enabling/disabling event counting and checking the
Vol. 3 18-43

DEBUGGING AND PERFORMANCE MONITORING
status of counter overflows. Architectural performance event version 2 provides
three architectural MSRs:

— IA32_PERF_GLOBAL_CTRL allows software to enable/disable event counting
of all or any combination of fixed-function PMCs (IA32_FIXED_CTRx) or any
general-purpose PMCs via WRMSR once.

— IA32_PERF_GLOBAL_STATUS allows software to query counter overflow
conditions on any combination of fixed-function PMCs or general-purpose
PMCs via RDMSR once.

— IA32_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow
conditions on any combination of fixed-function PMCs or general-purpose
PMCs via WRMSR once.

18.12.2.1 Architectural Performance Monitoring Version 2 Facilities
The facilities provided by architectural performance monitoring version 2 can be
queried from CPUID leaf 0AH by examining the content of register EDX:

• Bits 0 through 5 of CPUID.0AH.EDX indicates the number of fixed-function
performance counters available per core,

• Bits 5 through 12 of CPUID.0AH.EDX indicates the bit-width of fixed-function
performance counters. Bits beyond the width of the fixed-function counter are
reserved and must be written as zeros.

NOTE

Early generation of processors based on Intel Core microarchitecture
may report in CPUID.0AH:EDX of support for version 2 but indicating
incorrect information of version 2 facilities.

The IA32_FIXED_CTR_CTRL MSR include multiple sets of 4-bit field, each 4 bit
field controls the operation of a fixed-function performance counter. Figure 18-13
shows the layout of 4-bit controls for each fixed-function PMC. Two sub-fields are
currently defined within each control. The definitions of the bit fields are:
18-44 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
• Enable field (lowest 2 bits within each 4-bit control) — When bit 0 is set,
performance counting is enabled in the corresponding fixed-function
performance counter to increment while the target condition associated with the
architecture performance event occurred at ring 0. When bit 1 is set,
performance counting is enabled in the corresponding fixed-function
performance counter to increment while the target condition associated with the
architecture performance event occurred at ring greater than 0. Writing 0 to both
bits stops the performance counter. Writing a value of 11B enables the counter to
increment irrespective of privilege levels.

• PMI field (the fourth bit within each 4-bit control) — When set, the logical
processor generates an exception through its local APIC on overflow condition of
the respective fixed-function counter.

IA32_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting of
each performance counter. Figure 18-14 shows the layout of
IA32_PERF_GLOBAL_CTRL. Writing 1 to each enable bit in
IA32_PERF_GLOBAL_CTRL is equivalent to writing 1s to the enable bits for all privi-
lege level in the respective IA32_PERFEVTSELx or IA32_FIXED_CTR_CTRL.

Figure 18-13. Layout of IA32_FIXED_CTR_CTRL MSR

Cntr2 — Controls for IA32_FIXED_CTR2
Cntr1 — Controls for IA32_FIXED_CTR1
PMI — Enable PMI on overflow
Cntr0 — Controls for IA32_FIXED_CTR0

8 7 0

ENABLE — 0: disable; 1: OS; 2: User; 3: All ring levels

E
N

P
M
I

11 312 1

Reserved

63 2

E
N

E
N

49 5

PP
MM
II
Vol. 3 18-45

DEBUGGING AND PERFORMANCE MONITORING
The fixed-function performance counters supported by architectural performance
version 2 is listed in Table 18-13, the pairing between each fixed-function perfor-
mance counter to an architectural performance event is also shown.

IA32_PERF_GLOBAL_STATUS MSR provides single-bit status for software to query
the overflow condition of each performance counter. The MSR also provides addi-
tional status bit to indicate overflow conditions when counters are programmed for
precise-event-based sampling (PEBS). IA32_PERF_GLOBAL_STATUS MSR also
provides a sticky bit to indicate changes to the state of performance monitoring hard-
ware. Figure 18-15 shows the layout of IA32_PERF_GLOBAL_STATUS. A value of 1 in
bits 0, 1, 32 through 34 indicates a counter overflow condition has occurred in the
associated counter.

When a performance counter is configured for PEBS, overflow condition in the
counter generates a performance-monitoring interrupt signaling a PEBS event. On a
PEBS event, the processor stores data records into the buffer area (see Section
18.15.5), clears the counter overflow status., and sets the “OvfBuffer“bit in
IA32_PERF_GLOBAL_STATUS.

Figure 18-14. Layout of IA32_PERF_GLOBAL_CTRL MSR

IA32_FIXED_CTR2 enable
IA32_FIXED_CTR1 enable
IA32_FIXED_CTR0 enable
IA32_PMC1 enable

2 1 0

IA32_PMC0 enable

3132333435

Reserved

63
18-46 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow indicator(s) of
any general-purpose or fixed-function counters using WRMSR once. Software should
clear overflow indications when

• Setting up new values in the event select and/or UMASK field for counting or
sampling

• Reloading counter values to continue sampling

• Disabling event counting or sampling.

The layout of IA32_PERF_GLOBAL_OVF_CTL is shown in Figures 18-17.

Figure 18-15. Layout of IA32_PERF_GLOBAL_STATUS MSR

Figure 18-16. Layout of IA32_PERF_GLOBAL_OVF_CTRL MSR

62

IA32_FIXED_CTR2 Overflow
IA32_FIXED_CTR1 Overflow
IA32_FIXED_CTR0 Overflow
IA32_PMC1 Overflow

2 1 0

IA32_PMC0 Overflow

3132333435

Reserved

63

CondChgd
OvfBuffer

62

IA32_FIXED_CTR2 ClrOverflow
IA32_FIXED_CTR1 ClrOverflow
IA32_FIXED_CTR0 ClrOverflow
IA32_PMC1 ClrOverflow

2 1 0

IA32_PMC0 ClrOverflow

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer
Vol. 3 18-47

DEBUGGING AND PERFORMANCE MONITORING
18.12.3 Pre-defined Architectural Performance Events
Table 18-6 listings architecturally defined events.

A processor that supports architectural performance monitoring may not support all
the predefined architectural performance events (Table 18-6).
CPUID.0AH:EAX[31:24] indicates events not available.

The behavior of each architectural performance event is expected to be consistent on
all processors that support that event. Minor variations between microarchitectures
are noted below:

• UnHalted Core Cycles — Event select 3CH, Umask 00H

This event counts core clock cycles when the clock signal on a specific core is
running (not halted). The counter does not advance in the following conditions:

— an ACPI C-state other than C0 for normal operation

— HLT

— STPCLK# pin asserted

— being throttled by TM1

— during the frequency switching phase of a performance state transition (see
Chapter 13, “Power and Thermal Management”)

The performance counter for this event counts across performance state
transitions using different core clock frequencies

• Instructions Retired — Event select C0H, Umask 00H

This event counts the number of instructions at retirement. For instructions that
consist of multiple micro-ops, this event counts the retirement of the last micro-
op of the instruction. An instruction with a REP prefix counts as one instruction
(not per iteration). Faults before the retirement of the last micro-op of a multi-
ops instruction are not counted.

Table 18-6. UMask and Event Select Encodings for Pre-Defined
Architectural Performance Events

Bit Position
CPUID.AH.EBX

Event Name UMask Event Select

0 UnHalted Core Cycles 00H 3CH

1 Instruction Retired 00H C0H

2 UnHalted Reference Cycles 01H 3CH

3 LLC Reference 4FH 2EH

4 LLC Misses 41H 2EH

5 Branch Instruction Retired 00H C4H

6 Branch Misses Retired 00H C5H
18-48 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
This event does not increment under VM-exit conditions. Counters continue
counting during hardware interrupts, traps, and inside interrupt handlers.

• UnHalted Reference Cycles — Event select 3CH, Umask 01H

This event counts reference clock cycles while the clock signal on the core is
running. The reference clock operates at a fixed frequency, irrespective of core
frequency changes due to performance state transitions. Processors may
implement this behavior differently. See Table A-3 and Table A-4 in Appendix A,
“Performance-Monitoring Events.”

• Last Level Cache References — Event select 2EH, Umask 4FH

This event counts requests originating from the core that reference a cache line
in the last level cache. The event count may include speculation, but excludes
cache line fills due to a hardware-prefetch.

Because cache hierarchy, cache sizes and other implementation-specific charac-
teristics; value comparison to estimate performance differences is not recom-
mended.

• Last Level Cache Misses — Event select 2EH, Umask 41H

This event counts each cache miss condition for references to the last level cache.
The event count may include speculation, but excludes cache line fills due to
hardware-prefetch.

Because cache hierarchy, cache sizes and other implementation-specific charac-
teristics; value comparison to estimate performance differences is not recom-
mended.

• Branch Instructions Retired — Event select C4H, Umask 00H

This event counts branch instructions at retirement. It counts the retirement of
the last micro-op of a branch instruction.

• All Branch Mispredict Retired — Event select C5H, Umask 00H

This event counts mispredicted branch instructions at retirement. It counts the
retirement of the last micro-op of a branch instruction in the architectural path of
execution and experienced misprediction in the branch prediction hardware.

Branch prediction hardware is implementation-specific across microarchitec-
tures; value comparison to estimate performance differences is not recom-
mended.

NOTE
Programming decisions or software precisians on functionality should
not be based on the event values or dependent on the existence of
performance monitoring events.
Vol. 3 18-49

DEBUGGING AND PERFORMANCE MONITORING
18.13 PERFORMANCE MONITORING (INTEL® CORE™ SOLO
AND INTEL® CORE™ DUO PROCESSORS)

In Intel Core Solo and Intel Core Duo processors, non-architectural performance
monitoring events are programmed using the same facilities (see Figure 18-12) used
for architectural performance events.

Non-architectural performance events use event select values that are model-
specific. Event mask (Umask) values are also specific to event logic units. Some
microarchitectural conditions detectable by a Umask value may have specificity
related to processor topology (see Section 7.7, “Detecting Hardware Multi-Threading
Support and Topology,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A). As a result, the unit mask field (for example,
IA32_PERFEVTSELx[bits 15:8]) may contain sub-fields that specify topology infor-
mation of processor cores.

The sub-field layout within the Umask field may support two-bit encoding that quali-
fies the relationship between a microarchitectural condition and the originating core.
This data is shown in Table 18-7. The two-bit encoding for core-specificity is only
supported for a subset of Umask values (see Appendix A, “Performance Monitoring
Events”) and for Intel Core Duo processors. Such events are referred to as core-
specific events.

Some microarchitectural conditions allow detection specificity only at the boundary
of physical processors. Some bus events belong to this category, providing specificity
between the originating physical processor (a bus agent) versus other agents on the
bus. Sub-field encoding for agent specificity is shown in Table 18-8.

Table 18-7. Core Specificity Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 15:14 Encoding Description

11B All cores

10B Reserved

01B This core

00B Reserved

Table 18-8. Agent Specificity Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 13 Encoding Description

0 This agent

1 Include all agents
18-50 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
Some microarchitectural conditions are detectable only from the originating core. In
such cases, unit mask does not support core-specificity or agent-specificity encod-
ings. These are referred to as core-only conditions.

Some microarchitectural conditions allow detection specificity that includes or
excludes the action of hardware prefetches. A two-bit encoding may be supported to
qualify hardware prefetch actions. Typically, this applies only to some L2 or bus
events. The sub-field encoding for hardware prefetch qualification is shown in
Table 18-9.

Some performance events may (a) support none of the three event-specific qualifica-
tion encodings (b) may support core-specificity and agent specificity simultaneously
(c) or may support core-specificity and hardware prefetch qualification simulta-
neously. Agent-specificity and hardware prefetch qualification are mutually exclu-
sive.

In addition, some L2 events permit qualifications that distinguish cache coherent
states. The sub-field definition for cache coherency state qualification is shown in
Table 18-10. If no bits in the MESI qualification sub-field are set for an event that
requires setting MESI qualification bits, the event count will not increment.

Table 18-9. HW Prefetch Qualification Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 13:12 Encoding Description

11B All inclusive

10B Reserved

01B Hardware prefetch only

00B Exclude hardware prefetch

Table 18-10. MESI Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description

Bit 11 Counts modified state

Bit 10 Counts exclusive state

Bit 9 Counts shared state

Bit 8 Counts Invalid state
Vol. 3 18-51

DEBUGGING AND PERFORMANCE MONITORING
18.14 PERFORMANCE MONITORING (PROCESSORS BASED
ON INTEL® CORE™ MICROARCHITECTURE)

In addition to architectural performance monitoring, processors based on the Intel
Core microarchitecture support non-architectural performance monitoring events.

Architectural performance events can be collected using general-purpose perfor-
mance counters. Non-architectural performance events can be collected using
general-purpose performance counters (coupled with two IA32_PERFEVTSELx MSRs
for detailed event configurations), or fixed-function performance counters (see
Section 18.14.1). IA32_PERFEVTSELx MSRs are architectural; their layout is shown
in Figure 18-12. Starting with Intel Core 2 processor T 7700, fixed-function perfor-
mance counters and associated counter control and status MSR becomes part of
architectural performance monitoring version 2 facilities (see also Section 18.12.2).

Non-architectural performance events in processors based on Intel Core microarchi-
tecture use event select values that are model-specific. Valid event mask (Umask)
bits are listed in Appendix A. The UMASK field may contain sub-fields identical to
those listed in Table 18-7, Table 18-8, Table 18-9, and Table 18-10. One or more of
these sub-fields may apply to specific events on an event-by-event basis. Details are
listed in Table A-3 in Appendix A, “Performance-Monitoring Events.”

In addition, the UMASK filed may also contain a sub-field that allows detection spec-
ificity related to snoop responses. Bits of the snoop response qualification sub-field
are defined in Table 18-11.

There are also non-architectural events that support qualification of different types of
snoop operation. The corresponding bit field for snoop type qualification are listed in
Table 18-12.

Table 18-11. Bus Snoop Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description

Bit 11 HITM response

Bit 10 Reserved

Bit 9 HIT response

Bit 8 CLEAN response

Table 18-12. Snoop Type Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 9:8 Description

Bit 9 CMP2I snoops

Bit 8 CMP2S snoops
18-52 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
No more than one sub-field of MESI, snoop response, and snoop type qualification
sub-fields can be supported in a performance event.

NOTE
Software must write known values to the performance counters prior
to enabling the counters. The content of general-purpose counters
and fixed-function counters are undefined after INIT or RESET.

18.14.1 Fixed-function Performance Counters
Processors based on Intel Core microarchitecture provide three fixed-function perfor-
mance counters. Bits beyond the width of the fixed counter are reserved and must be
written as zeros. Model-specific fixed-function performance counters on processors
that support Architectural Perfmon version 1 are 40 bits wide.

Each of the fixed-function counter is dedicated to count a pre-defined performance
monitoring events. The performance monitoring events associated with fixed-func-
tion counters and the addresses of these counters are listed in Table 18-13.

Programming the fixed-function performance counters does not involve any of the
IA32_PERFEVTSELx MSRs, and does not require specifying any event masks.
Instead, the MSR MSR_PERF_FIXED_CTR_CTRL provides multiple sets of 4-bit fields;
each 4-bit field controls the operation of a fixed-function performance counter (PMC).
See Figures 18-17. Two sub-fields are defined for each control. See Figure 18-17; bit
fields are:

• Enable field (low 2 bits in each 4-bit control) — When bit 0 is set,
performance counting is enabled in the corresponding fixed-function
performance counter to increment when the target condition associated with the
architecture performance event occurs at ring 0.

When bit 1 is set, performance counting is enabled in the corresponding fixed-
function performance counter to increment when the target condition associated
with the architecture performance event occurs at ring greater than 0.

Table 18-13. Association of Fixed-Function Performance Counters with
Architectural Performance Events

Event Name Fixed-Function PMC PMC Address

INSTR_RETIRED.ANY MSR_PERF_FIXED_CTR0/I
A32_FIXED_CTR0

309H

CPU_CLK_UNHALTED.CORE MSR_PERF_FIXED_CTR1//
IA32_FIXED_CTR1

30AH

CPU_CLK_UNHALTED.REF MSR_PERF_FIXED_CTR2//
IA32_FIXED_CTR2

30BH
Vol. 3 18-53

DEBUGGING AND PERFORMANCE MONITORING
Writing 0 to both bits stops the performance counter. Writing 11B causes the
counter to increment irrespective of privilege levels.

• PMI field (fourth bit in each 4-bit control) — When set, the logical processor
generates an exception through its local APIC on overflow condition of the
respective fixed-function counter.

18.14.2 Global Counter Control Facilities
Processors based on Intel Core microarchitecture provides simplified performance
counter control that simplifies the most frequent operations in programming perfor-
mance events, i.e. enabling/disabling event counting and checking the status of
counter overflows. This is done by the following three MSRs:

• MSR_PERF_GLOBAL_CTRL allows software to enable/disable event counting for
all or any combination of fixed-function PMCs (MSR_PERF_FIXED_CTRx) or
general-purpose PMCs via WRMSR once.

• MSR_PERF_GLOBAL_STATUS allows software to query counter overflow
conditions on any combination of fixed-function PMCs (MSR_PERF_FIXED_CTRx)
or general-purpose PMCs via RDMSR once.

• MSR_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow
conditions on any combination of fixed-function PMCs (MSR_PERF_FIXED_CTRx)
or general-purpose PMCs via WRMSR once.

MSR_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting in
each performance counter (see Figure 18-18). Writing 1 to enable bits in
MSR_PERF_GLOBAL_CTRL is equivalent to writing 1s to enable bits for all privilege
levels in the respective IA32_PERFEVTSELx or MSR_PERF_FIXED_CTR_CTRL MSRs.

Figure 18-17. Layout of MSR_PERF_FIXED_CTR_CTRL MSR

Cntr2 — Controls for MSR_PERF_FIXED_CTR2
Cntr1 — Controls for MSR_PERF_FIXED_CTR1
PMI — Enable PMI on overflow
Cntr0 — Controls for MSR_PERF_FIXED_CTR0

8 7 0

ENABLE — 0: disable; 1: OS; 2: User; 3: All ring levels

E
N

P
M
I

11 312 1

Reserved

63 2

E
N

E
N

49 5

PP
MM
II
18-54 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
MSR_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to
query the overflow condition of each performance counter. The MSR also provides
additional status bit to indicate overflow conditions when counters are programmed
for precise-event-based sampling (PEBS). The MSR_PERF_GLOBAL_STATUS MSR
also provides a ‘sticky bit’ to indicate changes to the state of performance monitoring
hardware (see Figure 18-19). A value of 1 in bits 34:32, 1, 0 indicates an overflow
condition has occurred in the associated counter.

When a performance counter is configured for PEBS, an overflow condition in the
counter generates a performance-monitoring interrupt this signals a PEBS event. On
a PEBS event, the processor stores data records in the buffer area (see Section
18.15.5), clears the counter overflow status, and sets the OvfBuffer bit in
MSR_PERF_GLOBAL_STATUS.

Figure 18-18. Layout of MSR_PERF_GLOBAL_CTRL MSR

Figure 18-19. Layout of MSR_PERF_GLOBAL_STATUS MSR

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable
PMC1 enable

2 1 0

PMC0 enable

3132333435

Reserved

63

62

FIXED_CTR2 Overflow
FIXED_CTR1 Overflow
FIXED_CTR0 Overflow
PMC1 Overflow

2 1 0

PMC0 Overflow

3132333435

Reserved

63

CondChgd
OvfBuffer
Vol. 3 18-55

DEBUGGING AND PERFORMANCE MONITORING
MSR_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators
for general-purpose or fixed-function counters using WRMSR once (see
Figure 18-20). Clear overflow indications when:

• Setting up new values in the event select and/or UMASK field for counting or
sampling

• Reloading counter values to continue sampling

• Disabling event counting or sampling

18.14.3 At-Retirement Events
Many non-architectural performance events are impacted by the speculative nature
of out-of-order execution. A subset of non-architectural performance events on
processors based on Intel Core microarchitecture are enhanced with a tagging mech-
anism (similar to that found in Intel NetBurst microarchitecture) that exclude contri-
butions that arise from speculative execution. The at-retirement events available in
processors based on Intel Core microarchitecture does not require special MSR
programming control (see Section 18.15.7, “At-Retirement Counting”), but is limited
to IA32_PMC0. See Table 18-14 for a list of events available to processors based on
Intel Core microarchitecture.

Figure 18-20. Layout of MSR_PERF_GLOBAL_OVF_CTRL MSR

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC1 ClrOverflow

2 1 0

PMC0 ClrOverflow

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer
18-56 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
18.14.4 Precise Even Based Sampling (PEBS)
Processors based on Intel Core microarchitecture also support precise event based
sampling (PEBS). This feature was introduced by processors based on Intel NetBurst
microarchitecture.

PEBS uses a debug store mechanism and a performance monitoring interrupt to
store a set of architectural state information for the processor (See Section 18.15.8).
The information provides architectural state of the instruction executed immediately
after the instruction that caused the event.

In cases where the same instruction causes BTS and PEBS to be activated, PEBS is
processed before BTS are processed. The PMI request is held until the processor
completes processing of PEBS and BTS.

For processors based on Intel Core microarchitecture, events that support precise
sampling are listed in Table 18-15. The procedure for detecting availability of PEBS is
the same as described in Section 18.15.8.1.

Table 18-14. At-Retirement Performance Events for Intel Core Microarchitecture

Event Name UMask Event Select

ITLB_MISS_RETIRED 00H C9H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH

Table 18-15. PEBS Performance Events for Intel Core Microarchitecture
Event Name UMask Event Select

INSTR_RETIRED.ANY_P 00H C0H

X87_OPS_RETIRED.ANY FEH C1H

BR_INST_RETIRED.MISPRED 00H C5H

SIMD_INST_RETIRED.ANY 1FH C7H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH
Vol. 3 18-57

DEBUGGING AND PERFORMANCE MONITORING
18.14.4.1 Setting up the PEBS Buffer
For processors based on Intel Core microarchitecture, PEBS is available using
IA32_PMC0 only. Use the following procedure to set up the processor and
IA32_PMC0 counter for PEBS:

1. Set up the precise event buffering facilities. Place values in the precise event
buffer base, precise event index, precise event absolute maximum, precise event
interrupt threshold, and precise event counter reset fields of the DS buffer
management area. In processors based on Intel Core microarchitecture, PEBS
records consist of 64-bit address entries. See Figure 18-27 to set up the precise
event records buffer in memory.

2. Enable PEBS. Set the Enable PEBS on PMC0 flag (bit 0) in IA32_PEBS_ENABLE
MSR.

3. Set up the IA32_PMC0 performance counter and IA32_PERFEVTSEL0 for an
event listed in Table 18-15.

18.14.4.2 Writing a PEBS Interrupt Service Routine
The PEBS facilities share the same interrupt vector and interrupt service routine
(called the DS ISR) with the non-precise event-based sampling and BTS facilities. To
handle PEBS interrupts, PEBS handler code must be included in the DS ISR. See
Section 18.5.2.2, “Debug Store (DS) Mechanism,” for guidelines when writing the DS
ISR.

The service routine can query MSR_PERF_GLOBAL_STATUS to determine which
counter(s) caused of overflow condition. The service routine should clear overflow
indicator by writing to MSR_PERF_GLOBAL_OVF_CTL.

A comparison of the sequence of requirements to program PEBS for processors based
on Intel Core and Intel NetBurst microarchitectures is listed in Table 18-16.

Table 18-16. Requirements to Program PEBS

For Processors based on Intel
Core microarchitecture

For Processors based on Intel
NetBurst microarchitecture

Verify PEBS support of
processor/OS

• IA32_MISC_ENABLES.EMON_AVAILABE (bit 7) is set.
• IA32_MISC_ENABLES.PEBS_UNAVAILABE (bit 12) is clear.
18-58 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
Ensure counters are in
disabled

On initial set up or changing event
configurations, write
MSR_PERF_GLOBAL_CTRL MSR
(0x38F) with 0.

On subsequent entries:

• Clear all counters if “Counter
Freeze on PMI“ is not enabled.

• If IA32_DebugCTL.Freeze is
enabled, counters are
automatically disabled.

Counters MUST be stopped before
writing.1

Optional

Disable PEBS. Clear ENABLE PMC0 bit in
IA32_PEBS_ENABLE MSR
(0x3F1).

Optional

Check overflow
conditions.

Check
MSR_PERF_GLOBAL_STATUS MSR
(0x 38E) handle any overflow
conditions.

Check OVF flag of each CCCR for
overflow condition

Clear overflow status. Clear
MSR_PERF_GLOBAL_STATUS MSR
(0x 38E) using
IA32_PERF_GLOBAL_OVF_CTRL
MSR (0x390).

Clear OVF flag of each CCCR.

Write “sample-after“
values.

Configure the counter(s) with the sample after value.

Configure specific counter
configuration MSR.

• Set local enable bit 22 - 1.
• Do NOT set local counter

PMI/INT bit, bit 20 - 0.
• Event programmed must be

PEBS capable.

• Set appropriate OVF_PMI bits -
1.

• Only CCCR for
MSR_IQ_COUNTER4 support
PEBS.

Allocate buffer for PEBS
states.

Allocate a buffer in memory for the precise information.

Program the
IA32_DS_AREA MSR.

Program the IA32_DS_AREA MSR.

Configure the PEBS buffer
management records.

Configure the PEBS buffer management records in the DS buffer
management area.

Table 18-16. Requirements to Program PEBS (Contd.)

For Processors based on Intel
Core microarchitecture

For Processors based on Intel
NetBurst microarchitecture
Vol. 3 18-59

DEBUGGING AND PERFORMANCE MONITORING
18.15 PERFORMANCE MONITORING (PROCESSORS
BASED ON INTEL NETBURST MICROARCHITECTURE)

The performance monitoring mechanism provided in Pentium 4 and Intel Xeon
processors is different from that provided in the P6 family and Pentium processors.
While the general concept of selecting, filtering, counting, and reading performance
events through the WRMSR, RDMSR, and RDPMC instructions is unchanged, the
setup mechanism and MSR layouts are incompatible with the P6 family and Pentium
processor mechanisms. Also, the RDPMC instruction has been enhanced to read the
the additional performance counters provided in the Pentium 4 and Intel Xeon
processors and to allow faster reading of counters.

The event monitoring mechanism provided with the Pentium 4 and Intel Xeon
processors (based on Intel NetBurst microarchitecture) consists of the following facil-
ities:

• The IA32_MISC_ENABLE MSR, which indicates the availability in an Intel 64 or
IA-32 processor of the performance monitoring and precise event-based
sampling (PEBS) facilities.

• Event selection control (ESCR) MSRs for selecting events to be monitored with
specific performance counters. The number available differs by family and model
(43 to 45).

• 18 performance counter MSRs for counting events.

• 18 counter configuration control (CCCR) MSRs, with one CCCR associated with
each performance counter. CCCRs sets up an associated performance counter for
a specific method of counting.

• A debug store (DS) save area in memory for storing PEBS records.

• The IA32_DS_AREA MSR, which establishes the location of the DS save area.

Configure/Enable PEBS. Set Enable PMC0 bit in
IA32_PEBS_ENABLE MSR
(0x3F1).

Configure MSR_PEBS_ENABLE,
MSR_PEBS_MATRIX_VERT and
MSR_PEBS_MATRIX_HORZ as
needed.

Enable counters. Set Enable bits in
MSR_PERF_GLOBAL_CTRL MSR
(0x38F).

Set each CCCR enable bit 12 - 1.

NOTES:
1. Counters read while enabled are not guaranteed to be precise with event counts that occur in tim-

ing proximity to the RDMSR.

Table 18-16. Requirements to Program PEBS (Contd.)

For Processors based on Intel
Core microarchitecture

For Processors based on Intel
NetBurst microarchitecture
18-60 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
• The debug store (DS) feature flag (bit 21) returned by the CPUID instruction,
which indicates the availability of the DS mechanism.

• The MSR_PEBS_ENABLE MSR, which enables the PEBS facilities and replay
tagging used in at-retirement event counting.

• A set of predefined events and event metrics that simplify the setting up of the
performance counters to count specific events.

Table 18-17 lists the performance counters and their associated CCCRs, along with
the ESCRs that select events to be counted for each performance counter. Predefined
event metrics and events are listed in Appendix A, “Performance-Monitoring Events.”

Table 18-17. Performance Counter MSRs and Associated CCCR and
ESCR MSRs (Pentium 4 and Intel Xeon Processors)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr

MSR_BPU_COUNTER0 0 300H MSR_BPU_CCCR0 360H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H

MSR_BPU_COUNTER1 1 301H MSR_BPU_CCCR1 361H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H

MSR_BPU_COUNTER2 2 302H MSR_BPU_CCCR2 362H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H

MSR_BPU_COUNTER3 3 303H MSR_BPU_CCCR3 363H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H
Vol. 3 18-61

DEBUGGING AND PERFORMANCE MONITORING
MSR_MS_COUNTER0 4 304H MSR_MS_CCCR0 364H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H

MSR_MS_COUNTER1 5 305H MSR_MS_CCCR1 365H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H

MSR_MS_COUNTER2 6 306H MSR_MS_CCCR2 366H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H

MSR_MS_COUNTER3 7 307H MSR_MS_CCCR3 367H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H

MSR_FLAME_
COUNTER0

8 308H MSR_FLAME_CCCR0 368H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

MSR_FLAME_
COUNTER1

9 309H MSR_FLAME_CCCR1 369H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

MSR_FLAME_
COUNTER2

10 30AH MSR_FLAME_CCCR2 36AH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

MSR_FLAME_
COUNTER3

11 30BH MSR_FLAME_CCCR3 36BH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

MSR_IQ_COUNTER0 12 30CH MSR_IQ_CCCR0 36CH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER1 13 30DH MSR_IQ_CCCR1 36DH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

Table 18-17. Performance Counter MSRs and Associated CCCR and
ESCR MSRs (Pentium 4 and Intel Xeon Processors) (Contd.)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr
18-62 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
The types of events that can be counted with these performance monitoring facilities
are divided into two classes: non-retirement events and at-retirement events.

• Non-retirement events (see Table A-5) are events that occur any time during
instruction execution (such as bus transactions or cache transactions).

• At-retirement events (see Table A-6) are events that are counted at the
retirement stage of instruction execution, which allows finer granularity in
counting events and capturing machine state.

The at-retirement counting mechanism includes facilities for tagging μops that
have encountered a particular performance event during instruction execution.
Tagging allows events to be sorted between those that occurred on an execution
path that resulted in architectural state being committed at retirement as well as
events that occurred on an execution path where the results were eventually
cancelled and never committed to architectural state (such as, the execution of a
mispredicted branch).

MSR_IQ_COUNTER2 14 30EH MSR_IQ_CCCR2 36EH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

MSR_IQ_COUNTER3 15 30FH MSR_IQ_CCCR3 36FH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6

 0
2
1

3B9H
3CDH
3E1H

3BBH
3BDH
3CBH

MSR_IQ_COUNTER4 16 310H MSR_IQ_CCCR4 370H MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER5 17 311H MSR_IQ_CCCR5 371H MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

NOTES:
1. MSR_IQ_ESCR0 and MSR_IQ_ESCR1 are available only on early processor builds (family 0FH, mod-

els 01H-02H). These MSRs are not available on later versions.

Table 18-17. Performance Counter MSRs and Associated CCCR and
ESCR MSRs (Pentium 4 and Intel Xeon Processors) (Contd.)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr
Vol. 3 18-63

DEBUGGING AND PERFORMANCE MONITORING
The Pentium 4 and Intel Xeon processor performance monitoring facilities support
the three usage models described below. The first two models can be used to count
both non-retirement and at-retirement events; the third model is used to count a
subset of at-retirement events:

• Event counting — A performance counter is configured to count one or more
types of events. While the counter is counting, software reads the counter at
selected intervals to determine the number of events that have been counted
between the intervals.

• Non-precise event-based sampling — A performance counter is configured to
count one or more types of events and to generate an interrupt when it
overflows. To trigger an overflow, the counter is preset to a modulus value that
will cause the counter to overflow after a specific number of events have been
counted.

When the counter overflows, the processor generates a performance monitoring
interrupt (PMI). The interrupt service routine for the PMI then records the return
instruction pointer (RIP), resets the modulus, and restarts the counter. Code
performance can be analyzed by examining the distribution of RIPs with a tool
like the VTune™ Performance Analyzer.

• Precise event-based sampling (PEBS) — This type of performance
monitoring is similar to non-precise event-based sampling, except that a
memory buffer is used to save a record of the architectural state of the processor
whenever the counter overflows. The records of architectural state provide
additional information for use in performance tuning. Precise event-based
sampling can be used to count only a subset of at-retirement events.

The following sections describe the MSRs and data structures used for performance
monitoring in the Pentium 4 and Intel Xeon processors.

18.15.1 ESCR MSRs
The 45 ESCR MSRs (see Table 18-17) allow software to select specific events to be
countered. Each ESCR is usually associated with a pair of performance counters (see
Table 18-17) and each performance counter has several ESCRs associated with it
(allowing the events counted to be selected from a variety of events).

Figure 18-21 shows the layout of an ESCR MSR. The functions of the flags and fields
are:

• USR flag, bit 2 — When set, events are counted when the processor is operating
at a current privilege level (CPL) of 1, 2, or 3. These privilege levels are generally
used by application code and unprotected operating system code.

• OS flag, bit 3 — When set, events are counted when the processor is operating
at CPL of 0. This privilege level is generally reserved for protected operating
system code. (When both the OS and USR flags are set, events are counted at all
privilege levels.)
18-64 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
• Tag enable, bit 4 — When set, enables tagging of μops to assist in at-retirement
event counting; when clear, disables tagging. See Section 18.15.7, “At-
Retirement Counting.”

• Tag value field, bits 5 through 8 — Selects a tag value to associate with a μop
to assist in at-retirement event counting.

• Event mask field, bits 9 through 24 — Selects events to be counted from the
event class selected with the event select field.

• Event select field, bits 25 through 30) — Selects a class of events to be
counted. The events within this class that are counted are selected with the event
mask field.

When setting up an ESCR, the event select field is used to select a specific class of
events to count, such as retired branches. The event mask field is then used to select
one or more of the specific events within the class to be counted. For example, when
counting retired branches, four different events can be counted: branch not taken
predicted, branch not taken mispredicted, branch taken predicted, and branch taken
mispredicted. The OS and USR flags allow counts to be enabled for events that occur
when operating system code and/or application code are being executed. If neither
the OS nor USR flag is set, no events will be counted.

The ESCRs are initialized to all 0s on reset. The flags and fields of an ESCR are config-
ured by writing to the ESCR using the WRMSR instruction. Table 18-17 gives the
addresses of the ESCR MSRs.

Writing to an ESCR MSR does not enable counting with its associated performance
counter; it only selects the event or events to be counted. The CCCR for the selected
performance counter must also be configured. Configuration of the CCCR includes
selecting the ESCR and enabling the counter.

Figure 18-21. Event Selection Control Register (ESCR) for Pentium 4
and Intel Xeon Processors without HT Technology Support

31 24 8 0123492530

63 32

Reserved

Event Mask
Event
Select

USR
OS

5

Tag Enable

Tag
Value

Reserved
Vol. 3 18-65

DEBUGGING AND PERFORMANCE MONITORING
18.15.2 Performance Counters
The performance counters in conjunction with the counter configuration control
registers (CCCRs) are used for filtering and counting the events selected by the
ESCRs. The Pentium 4 and Intel Xeon processors provide 18 performance counters
organized into 9 pairs. A pair of performance counters is associated with a particular
subset of events and ESCR’s (see Table 18-17). The counter pairs are partitioned into
four groups:

• The BPU group, includes two performance counter pairs:

— MSR_BPU_COUNTER0 and MSR_BPU_COUNTER1.

— MSR_BPU_COUNTER2 and MSR_BPU_COUNTER3.

• The MS group, includes two performance counter pairs:

— MSR_MS_COUNTER0 and MSR_MS_COUNTER1.

— MSR_MS_COUNTER2 and MSR_MS_COUNTER3.

• The FLAME group, includes two performance counter pairs:

— MSR_FLAME_COUNTER0 and MSR_FLAME_COUNTER1.

— MSR_FLAME_COUNTER2 and MSR_FLAME_COUNTER3.

• The IQ group, includes three performance counter pairs:

— MSR_IQ_COUNTER0 and MSR_IQ_COUNTER1.

— MSR_IQ_COUNTER2 and MSR_IQ_COUNTER3.

— MSR_IQ_COUNTER4 and MSR_IQ_COUNTER5.

The MSR_IQ_COUNTER4 counter in the IQ group provides support for the PEBS.

Alternate counters in each group can be cascaded: the first counter in one pair can
start the first counter in the second pair and vice versa. A similar cascading is
possible for the second counters in each pair. For example, within the BPU group of
counters, MSR_BPU_COUNTER0 can start MSR_BPU_COUNTER2 and vice versa, and
MSR_BPU_COUNTER1 can start MSR_BPU_COUNTER3 and vice versa (see Section
18.15.6.6, “Cascading Counters”). The cascade flag in the CCCR register for the
performance counter enables the cascading of counters.

Each performance counter is 40-bits wide (see Figure 18-22). The RDPMC instruction
has been enhanced in the Pentium 4 and Intel Xeon processors to allow reading of
either the full counter-width (40-bits) or the low 32-bits of the counter. Reading the
low 32-bits is faster than reading the full counter width and is appropriate in situa-
tions where the count is small enough to be contained in 32 bits.

The RDPMC instruction can be used by programs or procedures running at any privi-
lege level and in virtual-8086 mode to read these counters. The PCE flag in control
register CR4 (bit 8) allows the use of this instruction to be restricted to only programs
and procedures running at privilege level 0.
18-66 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
The RDPMC instruction is not serializing or ordered with other instructions. Thus, it
does not necessarily wait until all previous instructions have been executed before
reading the counter. Similarly, subsequent instructions may begin execution before
the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the
performance counters, using the RDMSR and WRMSR instructions. A secure oper-
ating system would clear the PCE flag during system initialization to disable direct
user access to the performance-monitoring counters, but provide a user-accessible
programming interface that emulates the RDPMC instruction.

Some uses of the performance counters require the counters to be preset before
counting begins (that is, before the counter is enabled). This can be accomplished by
writing to the counter using the WRMSR instruction. To set a counter to a specified
number of counts before overflow, enter a 2s complement negative integer in the
counter. The counter will then count from the preset value up to -1 and overflow.
Writing to a performance counter in a Pentium 4 or Intel Xeon processor with the
WRMSR instruction causes all 40 bits of the counter to be written.

18.15.3 CCCR MSRs
Each of the 18 performance counters in a Pentium 4 or Intel Xeon processor has one
CCCR MSR associated with it (see Table 18-17). The CCCRs control the filtering and
counting of events as well as interrupt generation. Figure 18-23 shows the layout of
an CCCR MSR. The functions of the flags and fields are as follows:

• Enable flag, bit 12 — When set, enables counting; when clear, the counter is
disabled. This flag is cleared on reset.

• ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to
select events to be counted with the counter associated with the CCCR.

• Compare flag, bit 18 — When set, enables filtering of the event count; when
clear, disables filtering. The filtering method is selected with the threshold,
complement, and edge flags.

• Complement flag, bit 19 — Selects how the incoming event count is compared
with the threshold value. When set, event counts that are less than or equal to
the threshold value result in a single count being delivered to the performance

Figure 18-22. Performance Counter (Pentium 4 and Intel Xeon Processors)

63 32

Reserved

31 0

Counter

39

Counter
Vol. 3 18-67

DEBUGGING AND PERFORMANCE MONITORING
counter; when clear, counts greater than the threshold value result in a count
being delivered to the performance counter (see Section 18.15.6.2, “Filtering
Events”). The complement flag is not active unless the compare flag is set.

• Threshold field, bits 20 through 23 — Selects the threshold value to be used
for comparisons. The processor examines this field only when the compare flag is
set, and uses the complement flag setting to determine the type of threshold
comparison to be made. The useful range of values that can be entered in this
field depend on the type of event being counted (see Section 18.15.6.2, “Filtering
Events”).

• Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge
detection of the threshold comparison output for filtering event counts; when
clear, rising edge detection is disabled. This flag is active only when the compare
flag is set.

• FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every
counter increment; when clear, overflow only occurs when the counter actually
overflows.

• OVF_PMI flag, bit 26 — When set, causes a performance monitor interrupt
(PMI) to be generated when the counter overflows occurs; when clear, disables
PMI generation. Note that the PMI is generated on the next event count after the
counter has overflowed.

Figure 18-23. Counter Configuration Control Register (CCCR)

63 32

Reserved

Reserved

Reserved: Must be set to 11B
Compare

Enable

31 24 23 20 19 16 15 12 11 017182526272930

Edge
FORCE_OVF

OVF_PMI

Threshold

Cascade
OVF

Complement

Reserved

13

ESCR
Select

Reserved
18-68 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
• Cascade flag, bit 30 — When set, enables counting on one counter of a counter
pair when its alternate counter in the other the counter pair in the same counter
group overflows (see Section 18.15.2, “Performance Counters,” for further
details); when clear, disables cascading of counters.

• OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag
is a sticky flag that must be explicitly cleared by software.

The CCCRs are initialized to all 0s on reset.

The events that an enabled performance counter actually counts are selected and
filtered by the following flags and fields in the ESCR and CCCR registers and in the
qualification order given:

1. The event select and event mask fields in the ESCR select a class of events to be
counted and one or more event types within the class, respectively.

2. The OS and USR flags in the ESCR selected the privilege levels at which events
will be counted.

3. The ESCR select field of the CCCR selects the ESCR. Since each counter has
several ESCRs associated with it, one ESCR must be chosen to select the classes
of events that may be counted.

4. The compare and complement flags and the threshold field of the CCCR select an
optional threshold to be used in qualifying an event count.

5. The edge flag in the CCCR allows events to be counted only on rising-edge transi-
tions.

The qualification order in the above list implies that the filtered output of one “stage”
forms the input for the next. For instance, events filtered using the privilege level
flags can be further qualified by the compare and complement flags and the
threshold field, and an event that matched the threshold criteria, can be further qual-
ified by edge detection.

The uses of the flags and fields in the CCCRs are discussed in greater detail in Section
18.15.6, “Programming the Performance Counters for Non-Retirement Events.”

18.15.4 Debug Store (DS) Mechanism
The debug store (DS) mechanism was introduced in the Pentium 4 and Intel Xeon
processors to allow various types of information to be collected in memory-resident
buffers for use in debugging and tuning programs. For the Pentium 4 and Intel Xeon
processors, the DS mechanism is used to collect two types of information: branch
records and precise event-based sampling (PEBS) records. The availability of the DS
mechanism in a processor is indicated with the DS feature flag (bit 21) returned by
the CPUID instruction.

See Section 18.6.8, “Branch Trace Store (BTS),” and Section 18.15.8, “Precise Event-
Based Sampling (PEBS),” for a description of these facilities. Records collected with
the DS mechanism are saved in the DS save area. See Section 18.15.5, “DS Save
Area.”
Vol. 3 18-69

DEBUGGING AND PERFORMANCE MONITORING
18.15.5 DS Save Area
The debug store (DS) save area is a software-designated area of memory that is
used to collect the following two types of information:

• Branch records — When the BTS flag in the MSR_DEBUGCTLA MSR is set, a
branch record is stored in the BTS buffer in the DS save area whenever a taken
branch, interrupt, or exception is detected.

• PEBS records — When a performance counter is configured for PEBS, a PEBS
record is stored in the PEBS buffer in the DS save area after the counter overflow
occurs. This record contains the architectural state of the processor (state of the
8 general purpose registers, EIP register, and EFLAGS register) at the next
occurrence of the PEBS event that caused the counter to overflow. When the
state information has been logged, the counter is automatically reset to a
preselected value, and event counting begins again. This feature is available only
for a subset of the Pentium 4 and Intel Xeon processors’ performance events.

NOTES
DS save area and recording mechanism is not available in the SMM.
The feature is disabled on transition to the SMM mode. Similarly DS
recording is disabled on the generation of a machine check exception
and is cleared on processor RESET and INIT. DS recording is available
in real address mode.

The BTS and PEBS facilities may not be available on all processors.
The availability of these facilities is indicated by the
BTS_UNAVAILABLE and PEBS_UNAVAILABLE flags, respectively, in
the IA32_MISC_ENABLE MSR (see Appendix B).

The DS save area is divided into three parts (see Figure 18-24): buffer management
area, branch trace store (BTS) buffer, and PEBS buffer. The buffer management area
is used to define the location and size of the BTS and PEBS buffers. The processor
then uses the buffer management area to keep track of the branch and/or PEBS
records in their respective buffers and to record the performance counter reset value.
The linear address of the first byte of the DS buffer management area is specified
with the IA32_DS_AREA MSR.

The fields in the buffer management area are as follows:

• BTS buffer base — Linear address of the first byte of the BTS buffer. This
address should point to a natural doubleword boundary.

• BTS index — Linear address of the first byte of the next BTS record to be written
to. Initially, this address should be the same as the address in the BTS buffer
base field.

• BTS absolute maximum — Linear address of the next byte past the end of the
BTS buffer. This address should be a multiple of the BTS record size (12 bytes)
plus 1.
18-70 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
• BTS interrupt threshold — Linear address of the BTS record on which an
interrupt is to be generated. This address must point to an offset from the BTS
buffer base that is a multiple of the BTS record size. Also, it must be several
records short of the BTS absolute maximum address to allow a pending interrupt
to be handled prior to processor writing the BTS absolute maximum record.

• PEBS buffer base — Linear address of the first byte of the PEBS buffer. This
address should point to a natural doubleword boundary.

• PEBS index — Linear address of the first byte of the next PEBS record to be
written to. Initially, this address should be the same as the address in the PEBS
buffer base field.

Figure 18-24. DS Save Area

BTS Buffer Base

BTS Index

BTS Absolute

BTS Interrupt

PEBS Absolute

PEBS Interrupt

PEBS

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter Reset

Reserved

0H

4H

8H

CH

10H

14H

18H

1CH

20H

24H

30H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n

BTS Buffer

PEBS Buffer

DS Buffer Management Area

IA32_DS_AREA MSR
Vol. 3 18-71

DEBUGGING AND PERFORMANCE MONITORING
• PEBS absolute maximum — Linear address of the next byte past the end of the
PEBS buffer. This address should be a multiple of the PEBS record size (40 bytes)
plus 1.

• PEBS interrupt threshold — Linear address of the PEBS record on which an
interrupt is to be generated. This address must point to an offset from the PEBS
buffer base that is a multiple of the PEBS record size. Also, it must be several
records short of the PEBS absolute maximum address to allow a pending
interrupt to be handled prior to processor writing the PEBS absolute maximum
record.

• PEBS counter reset value — A 40-bit value that the counter is to be reset to
after state information has collected following counter overflow. This value allows
state information to be collected after a preset number of events have been
counted.

Figures 18-25 shows the structure of a 12-byte branch record in the BTS buffer. The
fields in each record are as follows:

• Last branch from — Linear address of the instruction from which the branch,
interrupt, or exception was taken.

• Last branch to — Linear address of the branch target or the first instruction in
the interrupt or exception service routine.

• Branch predicted — Bit 4 of field indicates whether the branch that was taken
was predicted (set) or not predicted (clear).

Figures 18-26 shows the structure of the 40-byte PEBS records. Nominally the
register values are those at the beginning of the instruction that caused the event.
However, there are cases where the registers may be logged in a partially modified
state. The linear IP field shows the value in the EIP register translated from an offset
into the current code segment to a linear address.

Figure 18-25. 32-bit Branch Trace Record Format

Last Branch From

Last Branch To

Branch Predicted

0H

4H

8H

031 4
18-72 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
18.15.5.1 DS Save Area and IA-32e Mode Operation
When IA-32e mode is active (IA32_EFER.LMA = 1), the structure of the DS save area
is shown in Figure 18-27. The organization of each field in IA-32e mode operation is
similar to that of non-IA-32e mode operation. However, each field now stores a
64-bit address. The IA32_DS_AREA MSR holds the 64-bit linear address of the first
byte of the DS buffer management area.

Figure 18-26. PEBS Record Format

EFLAGS 0H

4H

8H

031

Linear IP

10H

18H

14H

1CH

20H

24H

CH

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP
Vol. 3 18-73

DEBUGGING AND PERFORMANCE MONITORING
When IA-32e mode is active, the structure of a branch trace record is similar to that
shown in Figure 18-25, but each field is 8 bytes in length. This makes each BTS
record 24 bytes (see Figure 18-28). The structure of a PEBS record is similar to that
shown in Figure 18-26, but each field is 8 bytes in length and architectural states
include register R8 through R15. This makes the size of a PEBS record in 64-bit mode
144 bytes (see Figure 18-29).

Figure 18-27. IA-32e Mode DS Save Area

BTS Buffer Base

BTS Index

BTS Absolute

BTS Interrupt

PEBS Absolute

PEBS Interrupt

PEBS

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter Reset

Reserved

0H

8H

10H

18H

20H

28H

30H

38H

40H

48H

50H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n

BTS Buffer

PEBS Buffer

DS Buffer Management Area

IA32_DS_AREA MSR
18-74 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
18.15.6 Programming the Performance Counters
for Non-Retirement Events

The basic steps to program a performance counter and to count events include the
following:

1. Select the event or events to be counted.

2. For each event, select an ESCR that supports the event using the values in the
ESCR restrictions row in Table A-5, Appendix A.

Figure 18-28. 64-bit Branch Trace Record Format

Figure 18-29. 64-bit PEBS Record Format

Last Branch From

Last Branch To

Branch Predicted

0H

8H

10H

063 4

RFLAGS 0H

8H

10H

063

RIP

20H

30H

28H

38H

40H

48H

18H

RAX

RBX

RCX

RDX

RSI

RDI

RBP

RSP

R8

...

R15

50H

...

88H
Vol. 3 18-75

DEBUGGING AND PERFORMANCE MONITORING
3. Match the CCCR Select value and ESCR name in Table A-5 to a value listed in
Table 18-17; select a CCCR and performance counter.

4. Set up an ESCR for the specific event or events to be counted and the privilege
levels at which the are to be counted.

5. Set up the CCCR for the performance counter by selecting the ESCR and the
desired event filters.

6. Set up the CCCR for optional cascading of event counts, so that when the
selected counter overflows its alternate counter starts.

7. Set up the CCCR to generate an optional performance monitor interrupt (PMI)
when the counter overflows. If PMI generation is enabled, the local APIC must be
set up to deliver the interrupt to the processor and a handler for the interrupt
must be in place.

8. Enable the counter to begin counting.

18.15.6.1 Selecting Events to Count
Table A-6 in Appendix A lists a set of at-retirement events for the Pentium 4 and Intel
Xeon processors. For each event listed in Table A-6, setup information is provided.
Table 18-18 gives an example of one of the events.

Table 18-18. Event Example
Event Name Event Parameters Parameter Value Description

branch_retired Counts the retirement of a branch.
Specify one or more mask bits to
select any combination of branch
taken, not-taken, predicted and
mispredicted.

ESCR restrictions MSR_CRU_ESCR2
MSR_CRU_ESCR3

See Table 15-3 for the addresses of
the ESCR MSRs

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

The counter numbers associated
with each ESCR are provided. The
performance counters and
corresponding CCCRs can be obtained
from Table 15-3.

ESCR Event Select 06H ESCR[31:25]

ESCR Event Mask

Bit 0: MMNP

 1: MMNM

 2: MMTP

 3: MMTM

ESCR[24:9],

Branch Not-taken Predicted,

Branch Not-taken Mispredicted,

Branch Taken Predicted,

Branch Taken Mispredicted.

CCCR Select 05H CCCR[15:13]
18-76 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
For Table A-5 and Table A-6, Appendix A, the name of the event is listed in the Event
Name column and parameters that define the event and other information are listed
in the Event Parameters column. The Parameter Value and Description columns give
specific parameters for the event and additional description information. Entries in
the Event Parameters column are described below.

• ESCR restrictions — Lists the ESCRs that can be used to program the event.
Typically only one ESCR is needed to count an event.

• Counter numbers per ESCR — Lists which performance counters are
associated with each ESCR. Table 18-17 gives the name of the counter and CCCR
for each counter number. Typically only one counter is needed to count the event.

• ESCR event select — Gives the value to be placed in the event select field of the
ESCR to select the event.

• ESCR event mask — Gives the value to be placed in the Event Mask field of the
ESCR to select sub-events to be counted. The parameter value column defines
the documented bits with relative bit position offset starting from 0, where the
absolute bit position of relative offset 0 is bit 9 of the ESCR. All undocumented
bits are reserved and should be set to 0.

• CCCR select — Gives the value to be placed in the ESCR select field of the CCCR
associated with the counter to select the ESCR to be used to define the event.
This value is not the address of the ESCR; it is the number of the ESCR from the
Number column in Table 18-17.

• Event specific notes — Gives additional information about the event, such as
the name of the same or a similar event defined for the P6 family processors.

• Can support PEBS — Indicates if PEBS is supported for the event (only supplied
for at-retirement events listed in Table A-6.)

• Requires additional MSR for tagging — Indicates which if any additional
MSRs must be programmed to count the events (only supplied for the at-
retirement events listed in Table A-6.)

NOTE
The performance-monitoring events listed in Appendix A, “Perfor-
mance-Monitoring Events,” are intended to be used as guides for
performance tuning. The counter values reported are not guaranteed

Event Specific
Notes

P6: EMON_BR_INST_RETIRED

Can Support PEBS No

Requires Additional
MSRs for Tagging

No

Table 18-18. Event Example (Contd.)
Event Name Event Parameters Parameter Value Description
Vol. 3 18-77

DEBUGGING AND PERFORMANCE MONITORING
to be absolutely accurate and should be used as a relative guide for
tuning. Known discrepancies are documented where applicable.

The following procedure shows how to set up a performance counter for basic
counting; that is, the counter is set up to count a specified event indefinitely, wrap-
ping around whenever it reaches its maximum count. This procedure is continued
through the following four sections.

Using information in Table A-5, Appendix A, an event to be counted can be selected
as follows:

1. Select the event to be counted.

2. Select the ESCR to be used to select events to be counted from the ESCRs field.

3. Select the number of the counter to be used to count the event from the Counter
Numbers Per ESCR field.

4. Determine the name of the counter and the CCCR associated with the counter,
and determine the MSR addresses of the counter, CCCR, and ESCR from Table
18-17.

5. Use the WRMSR instruction to write the ESCR Event Select and ESCR Event Mask
values into the appropriate fields in the ESCR. At the same time set or clear the
USR and OS flags in the ESCR as desired.

6. Use the WRMSR instruction to write the CCCR Select value into the appropriate
field in the CCCR.

NOTE
Typically all the fields and flags of the CCCR will be written with one
WRMSR instruction; however, in this procedure, several WRMSR
writes are used to more clearly demonstrate the uses of the various
CCCR fields and flags.

This setup procedure is continued in the next section, Section 18.15.6.2, “Filtering
Events.”

18.15.6.2 Filtering Events
Each counter receives up to 4 input lines from the processor hardware from which it
is counting events. The counter treats these inputs as binary inputs (input 0 has a
value of 1, input 1 has a value of 2, input 3 has a value of 4, and input 3 has a value
of 8). When a counter is enabled, it adds this binary input value to the counter value
on each clock cycle. For each clock cycle, the value added to the counter can then
range from 0 (no event) to 15.

For many events, only the 0 input line is active, so the counter is merely counting the
clock cycles during which the 0 input is asserted. However, for some events two or
more input lines are used. Here, the counters threshold setting can be used to filter
18-78 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
events. The compare, complement, threshold, and edge fields control the filtering of
counter increments by input value.

If the compare flag is set, then a “greater than” or a “less than or equal to” compar-
ison of the input value vs. a threshold value can be made. The complement flag
selects “less than or equal to” (flag set) or “greater than” (flag clear). The threshold
field selects a threshold value of from 0 to 15. For example, if the complement flag is
cleared and the threshold field is set to 6, than any input value of 7 or greater on the
4 inputs to the counter will cause the counter to be incremented by 1, and any value
less than 7 will cause an increment of 0 (or no increment) of the counter. Conversely,
if the complement flag is set, any value from 0 to 6 will increment the counter and
any value from 7 to 15 will not increment the counter. Note that when a threshold
condition has been satisfied, the input to the counter is always 1, not the input value
that is presented to the threshold filter.

The edge flag provides further filtering of the counter inputs when a threshold
comparison is being made. The edge flag is only active when the compare flag is set.
When the edge flag is set, the resulting output from the threshold filter (a value of 0
or 1) is used as an input to the edge filter. Each clock cycle, the edge filter examines
the last and current input values and sends a count to the counter only when it
detects a “rising edge” event; that is, a false-to-true transition. Figure 18-30 illus-
trates rising edge filtering.

The following procedure shows how to configure a CCCR to filter events using the
threshold filter and the edge filter. This procedure is a continuation of the setup
procedure introduced in Section 18.15.6.1, “Selecting Events to Count.”

7. (Optional) To set up the counter for threshold filtering, use the WRMSR
instruction to write values in the CCCR compare and complement flags and the
threshold field:

— Set the compare flag.

— Set or clear the complement flag for less than or equal to or greater than
comparisons, respectively.

— Enter a value from 0 to 15 in the threshold field.

8. (Optional) Select rising edge filtering by setting the CCCR edge flag.

This setup procedure is continued in the next section, Section 18.15.6.3, “Starting
Event Counting.”
Vol. 3 18-79

DEBUGGING AND PERFORMANCE MONITORING
18.15.6.3 Starting Event Counting
Event counting by a performance counter can be initiated in either of two ways. The
typical way is to set the enable flag in the counter’s CCCR. Following the instruction
to set the enable flag, event counting begins and continues until it is stopped (see
Section 18.15.6.5, “Halting Event Counting”).

The following procedural step shows how to start event counting. This step is a
continuation of the setup procedure introduced in Section 18.15.6.2, “Filtering
Events.”

9. To start event counting, use the WRMSR instruction to set the CCCR enable flag
for the performance counter.

This setup procedure is continued in the next section, Section 18.15.6.4, “Reading a
Performance Counter’s Count.”

The second way that a counter can be started by using the cascade feature. Here, the
overflow of one counter automatically starts its alternate counter (see Section
18.15.6.6, “Cascading Counters”).

18.15.6.4 Reading a Performance Counter’s Count
The Pentium 4 and Intel Xeon processors’ performance counters can be read using
either the RDPMC or RDMSR instructions. The enhanced functions of the RDPMC
instruction (including fast read) are described in Section 18.15.2, “Performance
Counters.” These instructions can be used to read a performance counter while it is
counting or when it is stopped.

The following procedural step shows how to read the event counter. This step is a
continuation of the setup procedure introduced in Section 18.15.6.3, “Starting Event
Counting.”

10. To read a performance counters current event count, execute the RDPMC
instruction with the counter number obtained from Table 18-17 used as an
operand.

Figure 18-30. Effects of Edge Filtering

Output from
Threshold Filter

Counter Increments
On Rising Edge
(False-to-True)

Processor Clock
18-80 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
This setup procedure is continued in the next section, Section 18.15.6.5, “Halting
Event Counting.”

18.15.6.5 Halting Event Counting
After a performance counter has been started (enabled), it continues counting indef-
initely. If the counter overflows (goes one count past its maximum count), it wraps
around and continues counting. When the counter wraps around, it sets its OVF flag
to indicate that the counter has overflowed. The OVF flag is a sticky flag that indi-
cates that the counter has overflowed at least once since the OVF bit was last
cleared.

To halt counting, the CCCR enable flag for the counter must be cleared.

The following procedural step shows how to stop event counting. This step is a
continuation of the setup procedure introduced in Section 18.15.6.4, “Reading a
Performance Counter’s Count.”

11. To stop event counting, execute a WRMSR instruction to clear the CCCR enable
flag for the performance counter.

To halt a cascaded counter (a counter that was started when its alternate counter
overflowed), either clear the Cascade flag in the cascaded counter’s CCCR MSR or
clear the OVF flag in the alternate counter’s CCCR MSR.

18.15.6.6 Cascading Counters
As described in Section 18.15.2, “Performance Counters,” eighteen performance
counters are implemented in pairs. Nine pairs of counters and associated CCCRs are
further organized as four blocks: BPU, MS, FLAME, and IQ (see Table 18-17). The first
three blocks contain two pairs each. The IQ block contains three pairs of counters (12
through 17) with associated CCCRs (MSR_IQ_CCCR0 through MSR_IQ_CCCR5).

The first 8 counter pairs (0 through 15) can be programmed using ESCRs to detect
performance monitoring events. Pairs of ESCRs in each of the four blocks allow many
different types of events to be counted. The cascade flag in the CCCR MSR allows
nested monitoring of events to be performed by cascading one counter to a second
counter located in another pair in the same block (see Figure 18-23 for the location
of the flag).

Counters 0 and 1 form the first pair in the BPU block. Either counter 0 or 1 can be
programmed to detect an event via MSR_MO B_ESCR0. Counters 0 and 2 can be
cascaded in any order, as can counters 1 and 3. It’s possible to set up 4 counters in
the same block to cascade on two pairs of independent events. The pairing described
also applies to subsequent blocks. Since the IQ PUB has two extra counters,
cascading operates somewhat differently if 16 and 17 are involved. In the IQ block,
counter 16 can only be cascaded from counter 14 (not from 12); counter 14 cannot
be cascaded from counter 16 using the CCCR cascade bit mechanism. Similar restric-
tions apply to counter 17.
Vol. 3 18-81

DEBUGGING AND PERFORMANCE MONITORING
Example 18-1. Counting Events

Assume a scenario where counter X is set up to count 200 occurrences of event A;
then counter Y is set up to count 400 occurrences of event B. Each counter is set up
to count a specific event and overflow to the next counter. In the above example,
counter X is preset for a count of -200 and counter Y for a count of -400; this setup
causes the counters to overflow on the 200th and 400th counts respectively.

Continuing this scenario, counter X is set up to count indefinitely and wraparound on
overflow. This is described in the basic performance counter setup procedure that
begins in Section 18.15.6.1, “Selecting Events to Count.” Counter Y is set up with the
cascade flag in its associated CCCR MSR set to 1 and its enable flag set to 0.

To begin the nested counting, the enable bit for the counter X is set. Once enabled,
counter X counts until it overflows. At this point, counter Y is automatically enabled
and begins counting. Thus counter X overflows after 200 occurrences of event A.
Counter Y then starts, counting 400 occurrences of event B before overflowing. When
performance counters are cascaded, the counter Y would typically be set up to
generate an interrupt on overflow. This is described in Section 18.15.6.8, “Gener-
ating an Interrupt on Overflow.”

The cascading counters mechanism can be used to count a single event. The
counting begins on one counter then continues on the second counter after the first
counter overflows. This technique doubles the number of event counts that can be
recorded, since the contents of the two counters can be added together.

18.15.6.7 EXTENDED CASCADING
Extended cascading is a model-specific feature in the Intel NetBurst microarchitec-
ture. The feature is available to Pentium 4 and Xeon processor family with family
encoding of 15 and model encoding greater than or equal to 2. This feature uses bit
11 in CCCRs associated with the IQ block. See Table 18-19.

Table 18-19. CCR Names and Bit Positions

CCCR Name:Bit Position Bit Name Description

MSR_IQ_CCCR1|2:11 Reserved

MSR_IQ_CCCR0:11 CASCNT4INTO0 Allow counter 4 to cascade into
counter 0

MSR_IQ_CCCR3:11 CASCNT5INTO3 Allow counter 5 to cascade into
counter 3

MSR_IQ_CCCR4:11 CASCNT5INTO4 Allow counter 5 to cascade into
counter 4

MSR_IQ_CCCR5:11 CASCNT4INTO5 Allow counter 4 to cascade into
counter 5
18-82 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
The extended cascading feature can be adapted to the sampling usage model for
performance monitoring. However, it is known that performance counters do not
generate PMI in cascade mode or extended cascade mode due to an erratum. This
erratum applies to Pentium 4 and Intel Xeon processors with model encoding of 2.
For Pentium 4 and Intel Xeon processors with model encoding of 0 and 1, the erratum
applies to processors with stepping encoding greater than 09H.

Counters 16 and 17 in the IQ block are frequently used in precise event-based
sampling or at-retirement counting of events indicating a stalled condition in the
pipeline. Neither counter 16 or 17 can initiate the cascading of counter pairs using
the cascade bit in a CCCR.

Extended cascading permits performance monitoring tools to use counters 16 and 17
to initiate cascading of two counters in the IQ block. Extended cascading from
counter 16 and 17 is conceptually similar to cascading other counters, but instead of
using CASCADE bit of a CCCR, one of the four CASCNTxINTOy bits is used.

Example 18-2. Scenario for Extended Cascading

A usage scenario for extended cascading is to sample instructions retired on logical
processor 1 after the first 4096 instructions retired on logical processor 0. A proce-
dure to program extended cascading in this scenario is outlined below:

1. Write the value 0 to counter 12.

2. Write the value 04000603H to MSR_CRU_ESCR0 (corresponding to selecting the
NBOGNTAG and NBOGTAG event masks with qualification restricted to logical
processor 1).

3. Write the value 04038800H to MSR_IQ_CCCR0. This enables CASCNT4INTO0
and OVF_PMI. An ISR can sample on instruction addresses in this case (do not
set ENABLE, or CASCADE).

4. Write the value FFFFF000H into counter 16.1.

5. Write the value 0400060CH to MSR_CRU_ESCR2 (corresponding to selecting the
NBOGNTAG and NBOGTAG event masks with qualification restricted to logical
processor 0).

6. Write the value 00039000H to MSR_IQ_CCCR4 (set ENABLE bit, but not
OVF_PMI).

Another use for cascading is to locate stalled execution in a multithreaded applica-
tion. Assume MOB replays in thread B cause thread A to stall. Getting a sample of the
stalled execution in this scenario could be accomplished by:

1. Set up counter B to count MOB replays on thread B.

2. Set up counter A to count resource stalls on thread A; set its force overflow bit
and the appropriate CASCNTxINTOy bit.

3. Use the performance monitoring interrupt to capture the program execution data
of the stalled thread.
Vol. 3 18-83

DEBUGGING AND PERFORMANCE MONITORING
18.15.6.8 Generating an Interrupt on Overflow
Any performance counter can be configured to generate a performance monitor
interrupt (PMI) if the counter overflows. The PMI interrupt service routine can then
collect information about the state of the processor or program when overflow
occurred. This information can then be used with a tool like the Intel® VTune™
Performance Analyzer to analyze and tune program performance.

To enable an interrupt on counter overflow, the OVR_PMI flag in the counter’s associ-
ated CCCR MSR must be set. When overflow occurs, a PMI is generated through the
local APIC. (Here, the performance counter entry in the local vector table [LVT] is set
up to deliver the interrupt generated by the PMI to the processor.)

The PMI service routine can use the OVF flag to determine which counter overflowed
when multiple counters have been configured to generate PMIs. Also, note that these
processors mask PMIs upon receiving an interrupt. Clear this condition before leaving
the interrupt handler.

When generating interrupts on overflow, the performance counter being used should
be preset to value that will cause an overflow after a specified number of events are
counted plus 1. The simplest way to select the preset value is to write a negative
number into the counter, as described in Section 18.15.6.6, “Cascading Counters.”
Here, however, if an interrupt is to be generated after 100 event counts, the counter
should be preset to minus 100 plus 1 (-100 + 1), or -99. The counter will then over-
flow after it counts 99 events and generate an interrupt on the next (100th) event
counted. The difference of 1 for this count enables the interrupt to be generated
immediately after the selected event count has been reached, instead of waiting for
the overflow to be propagation through the counter.

Because of latency in the microarchitecture between the generation of events and
the generation of interrupts on overflow, it is sometimes difficult to generate an
interrupt close to an event that caused it. In these situations, the FORCE_OVF flag in
the CCCR can be used to improve reporting. Setting this flag causes the counter to
overflow on every counter increment, which in turn triggers an interrupt after every
counter increment.

18.15.6.9 Counter Usage Guideline
There are some instances where the user must take care to configure counting logic
properly, so that it is not powered down. To use any ESCR, even when it is being used
just for tagging, (any) one of the counters that the particular ESCR (or its paired
ESCR) can be connected to should be enabled. If this is not done, 0 counts may
result. Likewise, to use any counter, there must be some event selected in a corre-
sponding ESCR (other than no_event, which generally has a select value of 0).
18-84 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
18.15.7 At-Retirement Counting
At-retirement counting provides a means counting only events that represent work
committed to architectural state and ignoring work that was performed speculatively
and later discarded.

The Intel NetBurst microarchitecture used in the Pentium 4 and Intel Xeon proces-
sors performs many speculative activities in an attempt to increase effective
processing speeds. One example of this speculative activity is branch prediction. The
Pentium 4 and Intel Xeon processors typically predict the direction of branches and
then decode and execute instructions down the predicted path in anticipation of the
actual branch decision. When a branch misprediction occurs, the results of instruc-
tions that were decoded and executed down the mispredicted path are canceled. If a
performance counter was set up to count all executed instructions, the count would
include instructions whose results were canceled as well as those whose results
committed to architectural state.

To provide finer granularity in event counting in these situations, the performance
monitoring facilities provided in the Pentium 4 and Intel Xeon processors provide a
mechanism for tagging events and then counting only those tagged events that
represent committed results. This mechanism is called “at-retirement counting.”

Tables A-6 through A-10 list predefined at-retirement events and event metrics that
can be used to for tagging events when using at retirement counting. The following
terminology is used in describing at-retirement counting:

• Bogus, non-bogus, retire — In at-retirement event descriptions, the term
“bogus” refers to instructions or μops that must be canceled because they are on
a path taken from a mispredicted branch. The terms “retired” and “non-bogus”
refer to instructions or μops along the path that results in committed architec-
tural state changes as required by the program being executed. Thus instructions
and μops are either bogus or non-bogus, but not both. Several of the Pentium 4
and Intel Xeon processors’ performance monitoring events (such as,
Instruction_Retired and Uops_Retired in Table A-6) can count instructions or
μops that are retired based on the characterization of bogus” versus non-bogus.

• Tagging — Tagging is a means of marking μops that have encountered a
particular performance event so they can be counted at retirement. During the
course of execution, the same event can happen more than once per μop and a
direct count of the event would not provide an indication of how many μops
encountered that event.

The tagging mechanisms allow a μop to be tagged once during its lifetime and
thus counted once at retirement. The retired suffix is used for performance
metrics that increment a count once per μop, rather than once per event. For
example, a μop may encounter a cache miss more than once during its life time,
but a “Miss Retired” metric (that counts the number of retired μops that
encountered a cache miss) will increment only once for that μop. A “Miss Retired”
metric would be useful for characterizing the performance of the cache hierarchy
for a particular instruction sequence. Details of various performance metrics and
how these can be constructed using the Pentium 4 and Intel Xeon processors
Vol. 3 18-85

DEBUGGING AND PERFORMANCE MONITORING
performance events are provided in the Intel Pentium 4 Processor Optimization
Reference Manual (see Section 1.4, “Related Literature”).

• Replay — To maximize performance for the common case, the Intel NetBurst
microarchitecture aggressively schedules μops for execution before all the
conditions for correct execution are guaranteed to be satisfied. In the event that
all of these conditions are not satisfied, μops must be reissued. The mechanism
that the Pentium 4 and Intel Xeon processors use for this reissuing of μops is
called replay. Some examples of replay causes are cache misses, dependence
violations, and unforeseen resource constraints. In normal operation, some
number of replays is common and unavoidable. An excessive number of replays
is an indication of a performance problem.

• Assist — When the hardware needs the assistance of microcode to deal with
some event, the machine takes an assist. One example of this is an underflow
condition in the input operands of a floating-point operation. The hardware must
internally modify the format of the operands in order to perform the computation.
Assists clear the entire machine of μops before they begin and are costly.

18.15.7.1 Using At-Retirement Counting
The Pentium 4 and Intel Xeon processors allow counting both events and μops that
encountered a specified event. For a subset of the at-retirement events listed in Table
A-6, a μop may be tagged when it encounters that event. The tagging mechanisms
can be used in non-precise event-based sampling, and a subset of these mechanisms
can be used in PEBS. There are four independent tagging mechanisms, and each
mechanism uses a different event to count μops tagged with that mechanism:

• Front-end tagging — This mechanism pertains to the tagging of μops that
encountered front-end events (for example, trace cache and instruction counts)
and are counted with the Front_end_event event

• Execution tagging — This mechanism pertains to the tagging of μops that
encountered execution events (for example, instruction types) and are counted
with the Execution_Event event.

• Replay tagging — This mechanism pertains to tagging of μops whose
retirement is replayed (for example, a cache miss) and are counted with the
Replay_event event. Branch mispredictions are also tagged with this mechanism.

• No tags — This mechanism does not use tags. It uses the Instr_retired and the
Uops_ retired events.

Each tagging mechanism is independent from all others; that is, a μop that has been
tagged using one mechanism will not be detected with another mechanism’s tagged-
μop detector. For example, if μops are tagged using the front-end tagging mecha-
nisms, the Replay_event will not count those as tagged μops unless they are also
tagged using the replay tagging mechanism. However, execution tags allow up to
four different types of μops to be counted at retirement through execution tagging.

The independence of tagging mechanisms does not hold when using PEBS. When
using PEBS, only one tagging mechanism should be used at a time.
18-86 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
Certain kinds of μops that cannot be tagged, including I/O, uncacheable and locked
accesses, returns, and far transfers.

Table A-6 lists the performance monitoring events that support at-retirement
counting: specifically the Front_end_event, Execution_event, Replay_event,
Inst_retired and Uops_retired events. The following sections describe the tagging
mechanisms for using these events to tag μop and count tagged μops.

18.15.7.2 Tagging Mechanism for Front_end_event
The Front_end_event counts μops that have been tagged as encountering any of the
following events:

• μop decode events — Tagging μops for μop decode events requires specifying
bits in the ESCR associated with the performance-monitoring event, Uop_type.

• Trace cache events — Tagging μops for trace cache events may require
specifying certain bits in the MSR_TC_PRECISE_EVENT MSR (see Table A-8).

Table A-6 describes the Front_end_event and Table A-8 describes metrics that are
used to set up a Front_end_event count.

The MSRs specified in the Table A-6 that are supported by the front-end tagging
mechanism must be set and one or both of the NBOGUS and BOGUS bits in the
Front_end_event event mask must be set to count events. None of the events
currently supported requires the use of the MSR_TC_PRECISE_EVENT MSR.

18.15.7.3 Tagging Mechanism For Execution_event
Table A-6 describes the Execution_event and Table A-9 describes metrics that are
used to set up an Execution_event count.

The execution tagging mechanism differs from other tagging mechanisms in how it
causes tagging. One upstream ESCR is used to specify an event to detect and to
specify a tag value (bits 5 through 8) to identify that event. A second downstream
ESCR is used to detect μops that have been tagged with that tag value identifier using
Execution_event for the event selection.

The upstream ESCR that counts the event must have its tag enable flag (bit 4) set
and must have an appropriate tag value mask entered in its tag value field. The 4-bit
tag value mask specifies which of tag bits should be set for a particular μop. The
value selected for the tag value should coincide with the event mask selected in the
downstream ESCR. For example, if a tag value of 1 is set, then the event mask of
NBOGUS0 should be enabled, correspondingly in the downstream ESCR. The down-
stream ESCR detects and counts tagged μops. The normal (not tag value) mask bits
in the downstream ESCR specify which tag bits to count. If any one of the tag bits
selected by the mask is set, the related counter is incremented by one. This mecha-
nism is summarized in the Table A-9 metrics that are supported by the execution
tagging mechanism. The tag enable and tag value bits are irrelevant for the down-
stream ESCR used to select the Execution_event.
Vol. 3 18-87

DEBUGGING AND PERFORMANCE MONITORING
The four separate tag bits allow the user to simultaneously but distinctly count up to
four execution events at retirement. (This applies for non-precise event-based
sampling. There are additional restrictions for PEBS as noted in Section 18.15.8.3,
“Setting Up the PEBS Buffer.”) It is also possible to detect or count combinations of
events by setting multiple tag value bits in the upstream ESCR or multiple mask bits
in the downstream ESCR. For example, use a tag value of 3H in the upstream ESCR
and use NBOGUS0/NBOGUS1 in the downstream ESCR event mask.

18.15.7.4 Tagging Mechanism for Replay_event
Table A-6 describes the Replay_event and Table A-10 describes metrics that are used
to set up an Replay_event count.

The replay mechanism enables tagging of μops for a subset of all replays before
retirement. Use of the replay mechanism requires selecting the type of μop that may
experience the replay in the MSR_PEBS_MATRIX_VERT MSR and selecting the type of
event in the MSR_PEBS_ENABLE MSR. Replay tagging must also be enabled with the
UOP_Tag flag (bit 24) in the MSR_PEBS_ENABLE MSR.

The Table A-10 lists the metrics that are support the replay tagging mechanism and
the at-retirement events that use the replay tagging mechanism, and specifies how
the appropriate MSRs need to be configured. The replay tags defined in Table A-5
also enable Precise Event-Based Sampling (PEBS, see Section 15.9.8). Each of these
replay tags can also be used in normal sampling by not setting Bit 24 nor Bit 25 in
IA_32_PEBS_ENABLE_MSR. Each of these metrics requires that the Replay_Event
(see Table A-6) be used to count the tagged μops.

18.15.8 Precise Event-Based Sampling (PEBS)
The debug store (DS) mechanism in processors based on Intel NetBurst microarchi-
tecture allow two types of information to be collected for use in debugging and tuning
programs: PEBS records and BTS records. See Section 18.6.8, “Branch Trace Store
(BTS),” for a description of the BTS mechanism.

PEBS permits the saving of precise architectural information associated with one or
more performance events in the precise event records buffer, which is part of the DS
save area (see Section 18.15.5, “DS Save Area”). To use this mechanism, a counter
is configured to overflow after it has counted a preset number of events. After the
counter overflows, the processor copies the current state of the general-purpose and
EFLAGS registers and instruction pointer into a record in the precise event records
buffer. The processor then resets the count in the performance counter and restarts
the counter. When the precise event records buffer is nearly full, an interrupt is
generated, allowing the precise event records to be saved. A circular buffer is not
supported for precise event records.

PEBS is supported only for a subset of the at-retirement events: Execution_event,
Front_end_event, and Replay_event. Also, PEBS can only be carried out using the
one performance counter, the MSR_IQ_COUNTER4 MSR.
18-88 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
In processors based on Intel Core microarchitecture, a similar PEBS mechanism is
also supported using IA32_PMC0 and IA32_PERFEVTSEL0 MSRs (See Section
18.14.4).

18.15.8.1 Detection of the Availability of the PEBS Facilities
The DS feature flag (bit 21) returned by the CPUID instruction indicates (when set)
the availability of the DS mechanism in the processor, which supports the PEBS (and
BTS) facilities. When this bit is set, the following PEBS facilities are available:

• The PEBS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates (when
clear) the availability of the PEBS facilities, including the MSR_PEBS_ENABLE
MSR.

• The enable PEBS flag (bit 24) in the MSR_PEBS_ENABLE MSR allows PEBS to be
enabled (set) or disabled (clear).

• The IA32_DS_AREA MSR can be programmed to point to the DS save area.

18.15.8.2 Setting Up the DS Save Area
Section 18.6.8.2, “Setting Up the DS Save Area,” describes how to set up and enable
the DS save area. This procedure is common for PEBS and BTS.

18.15.8.3 Setting Up the PEBS Buffer
Only the MSR_IQ_COUNTER4 performance counter can be used for PEBS. Use the
following procedure to set up the processor and this counter for PEBS:

1. Set up the precise event buffering facilities. Place values in the precise event
buffer base, precise event index, precise event absolute maximum, and precise
event interrupt threshold, and precise event counter reset fields of the DS buffer
management area (see Figure 18-24) to set up the precise event records buffer
in memory.

2. Enable PEBS. Set the Enable PEBS flag (bit 24) in MSR_PEBS_ENABLE MSR.

3. Set up the MSR_IQ_COUNTER4 performance counter and its associated CCCR
and one or more ESCRs for PEBS as described in Tables A-6 through A-10.

18.15.8.4 Writing a PEBS Interrupt Service Routine
The PEBS facilities share the same interrupt vector and interrupt service routine
(called the DS ISR) with the non-precise event-based sampling and BTS facilities. To
handle PEBS interrupts, PEBS handler code must be included in the DS ISR. See
Section 18.6.8.5, “Writing the DS Interrupt Service Routine,” for guidelines for
writing the DS ISR.
Vol. 3 18-89

DEBUGGING AND PERFORMANCE MONITORING
18.15.8.5 Other DS Mechanism Implications
The DS mechanism is not available in the SMM. It is disabled on transition to the SMM
mode. Similarly the DS mechanism is disabled on the generation of a machine check
exception and is cleared on processor RESET and INIT.

The DS mechanism is available in real address mode.

18.15.9 Operating System Implications
The DS mechanism can be used by the operating system as a debugging extension to
facilitate failure analysis. When using this facility, a 25 to 30 times slowdown can be
expected due to the effects of the trace store occurring on every taken branch.

Depending upon intended usage, the instruction pointers that are part of the branch
records or the PEBS records need to have an association with the corresponding
process. One solution requires the ability for the DS specific operating system
module to be chained to the context switch. A separate buffer can then be main-
tained for each process of interest and the MSR pointing to the configuration area
saved and setup appropriately on each context switch.

If the BTS facility has been enabled, then it must be disabled and state stored on
transition of the system to a sleep state in which processor context is lost. The state
must be restored on return from the sleep state.

It is required that an interrupt gate be used for the DS interrupt as opposed to a trap
gate to prevent the generation of an endless interrupt loop.

Pages that contain buffers must have mappings to the same physical address for all
processes/logical processors, such that any change to CR3 will not change DS
addresses. If this requirement cannot be satisfied (that is, the feature is enabled on
a per thread/process basis), then the operating system must ensure that the feature
is enabled/disabled appropriately in the context switch code.

18.16 PERFORMANCE MONITORING AND HYPER-
THREADING TECHNOLOGY

The performance monitoring capability of processors supporting Hyper-Threading
Technology is similar to that described in Section 18.15. However, the capability is
extended so that:

• Performance counters can be programmed to select events qualified by logical
processor IDs.

• Performance monitoring interrupts can be directed to a specific logical processor
within the physical processor.
18-90 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
The sections below describe performance counters, event qualification by logical
processor ID, and special purpose bits in ESCRs/CCCRs. They also describe
MSR_PEBS_ENABLE, MSR_PEBS_MATRIX_VERT, and MSR_TC_PRECISE_EVENT.

18.16.1 ESCR MSRs
Figure 18-31 shows the layout of an ESCR MSR in processors supporting Hyper-
Threading Technology.

The functions of the flags and fields are as follows:

• T1_USR flag, bit 0 — When set, events are counted when thread 1 (logical
processor 1) is executing at a current privilege level (CPL) of 1, 2, or 3. These
privilege levels are generally used by application code and unprotected operating
system code.

• T1_OS flag, bit 1 — When set, events are counted when thread 1 (logical
processor 1) is executing at CPL of 0. This privilege level is generally reserved for
protected operating system code. (When both the T1_OS and T1_USR flags are
set, thread 1 events are counted at all privilege levels.)

• T0_USR flag, bit 2 — When set, events are counted when thread 0 (logical
processor 0) is executing at a CPL of 1, 2, or 3.

• T0_OS flag, bit 3 — When set, events are counted when thread 0 (logical
processor 0) is executing at CPL of 0. (When both the T0_OS and T0_USR flags
are set, thread 0 events are counted at all privilege levels.)

Figure 18-31. Event Selection Control Register (ESCR) for the Pentium 4 Processor,
Intel Xeon Processor and Intel Xeon Processor MP Supporting Hyper-Threading

Technology

31 24 8 0123492530

63 32

Reserved

Event Mask
Event
Select

T0_USR
T0_OS

5

Tag Enable

Tag
Value

T1_USR
T1_OS

Reserved
Vol. 3 18-91

DEBUGGING AND PERFORMANCE MONITORING
• Tag enable, bit 4 — When set, enables tagging of μops to assist in at-retirement
event counting; when clear, disables tagging. See Section 18.15.7, “At-
Retirement Counting.”

• Tag value field, bits 5 through 8 — Selects a tag value to associate with a μop
to assist in at-retirement event counting.

• Event mask field, bits 9 through 24 — Selects events to be counted from the
event class selected with the event select field.

• Event select field, bits 25 through 30) — Selects a class of events to be
counted. The events within this class that are counted are selected with the event
mask field.

The T0_OS and T0_USR flags and the T1_OS and T1_USR flags allow event counting
and sampling to be specified for a specific logical processor (0 or 1) within an Intel
Xeon processor MP (See also: Section 7.5.5, “Identifying Logical Processors in an MP
System,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A).

Not all performance monitoring events can be detected within an Intel Xeon
processor MP on a per logical processor basis (see Section 18.16.4, “Performance
Monitoring Events”). Some sub-events (specified by an event mask bits) are counted
or sampled without regard to which logical processor is associated with the detected
event.

18.16.2 CCCR MSRs
Figure 18-32 shows the layout of a CCCR MSR in processors supporting Hyper-
Threading Technology. The functions of the flags and fields are as follows:

• Enable flag, bit 12 — When set, enables counting; when clear, the counter is
disabled. This flag is cleared on reset

• ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to
select events to be counted with the counter associated with the CCCR.

• Active thread field, bits 16 and 17 — Enables counting depending on which
logical processors are active (executing a thread). This field enables filtering of
events based on the state (active or inactive) of the logical processors. The
encodings of this field are as follows:

00 — None. Count only when neither logical processor is active.

01 — Single. Count only when one logical processor is active (either 0 or 1).

10 — Both. Count only when both logical processors are active.

11 — Any. Count when either logical processor is active.

A halted logical processor or a logical processor in the “wait for SIPI” state is
considered inactive.
18-92 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
• Compare flag, bit 18 — When set, enables filtering of the event count; when
clear, disables filtering. The filtering method is selected with the threshold,
complement, and edge flags.

• Complement flag, bit 19 — Selects how the incoming event count is compared
with the threshold value. When set, event counts that are less than or equal to
the threshold value result in a single count being delivered to the performance
counter; when clear, counts greater than the threshold value result in a count
being delivered to the performance counter (see Section 18.15.6.2, “Filtering
Events”). The compare flag is not active unless the compare flag is set.

• Threshold field, bits 20 through 23 — Selects the threshold value to be used
for comparisons. The processor examines this field only when the compare flag is
set, and uses the complement flag setting to determine the type of threshold
comparison to be made. The useful range of values that can be entered in this
field depend on the type of event being counted (see Section 18.15.6.2, “Filtering
Events”).

• Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge
detection of the threshold comparison output for filtering event counts; when
clear, rising edge detection is disabled. This flag is active only when the compare
flag is set.

Figure 18-32. Counter Configuration Control Register (CCCR)

63 32

Reserved

Reserved

Active Thread
Compare

Enable

31 24 23 20 19 16 15 12 11 017182526272930

Edge
FORCE_OVF
OVF_PMI_T0

Threshold

Cascade
OVF

Complement

Reserved

13

ESCR
Select

OVF_PMI_T1

Reserved
Vol. 3 18-93

DEBUGGING AND PERFORMANCE MONITORING
• FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every
counter increment; when clear, overflow only occurs when the counter actually
overflows.

• OVF_PMI_T0 flag, bit 26 — When set, causes a performance monitor interrupt
(PMI) to be sent to logical processor 0 when the counter overflows occurs; when
clear, disables PMI generation for logical processor 0. Note that the PMI is
generate on the next event count after the counter has overflowed.

• OVF_PMI_T1 flag, bit 27 — When set, causes a performance monitor interrupt
(PMI) to be sent to logical processor 1 when the counter overflows occurs; when
clear, disables PMI generation for logical processor 1. Note that the PMI is
generate on the next event count after the counter has overflowed.

• Cascade flag, bit 30 — When set, enables counting on one counter of a counter
pair when its alternate counter in the other the counter pair in the same counter
group overflows (see Section 18.15.2, “Performance Counters,” for further
details); when clear, disables cascading of counters.

• OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag
is a sticky flag that must be explicitly cleared by software.

18.16.3 IA32_PEBS_ENABLE MSR
In a processor supporting Hyper-Threading Technology and based on the Intel
NetBurst microarchitecture, PEBS is enabled and qualified with two bits in the
MSR_PEBS_ENABLE MSR: bit 25 (ENABLE_PEBS_MY_THR) and 26
(ENABLE_PEBS_OTH_THR) respectively. These bits do not explicitly identify a
specific logical processor by logic processor ID(T0 or T1); instead, they allow a soft-
ware agent to enable PEBS for subsequent threads of execution on the same logical
processor on which the agent is running (“my thread”) or for the other logical
processor in the physical package on which the agent is not running (“other thread”).

PEBS is supported for only a subset of the at-retirement events: Execution_event,
Front_end_event, and Replay_event. Also, PEBS can be carried out only with two
performance counters: MSR_IQ_CCCR4 (MSR address 370H) for logical processor 0
and MSR_IQ_CCCR5 (MSR address 371H) for logical processor 1.

Performance monitoring tools should use a processor affinity mask to bind the kernel
mode components that need to modify the ENABLE_PEBS_MY_THR and
ENABLE_PEBS_OTH_THR bits in the MSR_PEBS_ENABLE MSR to a specific logical
processor. This is to prevent these kernel mode components from migrating between
different logical processors due to OS scheduling.

18.16.4 Performance Monitoring Events
All of the events listed in Table A-5 and A-6 are available in an Intel Xeon processor
MP. When Hyper-Threading Technology is active, many performance monitoring
events can be can be qualified by the logical processor ID, which corresponds to bit 0
18-94 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
of the initial APIC ID. This allows for counting an event in any or all of the logical
processors. However, not all the events have this logic processor specificity, or thread
specificity.

Here, each event falls into one of two categories:

• Thread specific (TS) — The event can be qualified as occurring on a specific
logical processor.

• Thread independent (TI) — The event cannot be qualified as being associated
with a specific logical processor.

Table A-11 gives logical processor specific information (TS or TI) for each of the
events described in Tables A-5 and A-6. If for example, a TS event occurred in logical
processor T0, the counting of the event (as shown in Table 18-20) depends only on
the setting of the T0_USR and T0_OS flags in the ESCR being used to set up the
event counter. The T1_USR and T1_OS flags have no effect on the count.

When a bit in the event mask field is TI, the effect of specifying bit-0-3 of the associ-
ated ESCR are described in Table 15-6. For events that are marked as TI in Appendix
A, the effect of selectively specifying T0_USR, T0_OS, T1_USR, T1_OS bits is shown
in Table 18-21.

Table 18-20. Effect of Logical Processor and CPL Qualification
for Logical-Processor-Specific (TS) Events

T1_OS/T1_USR =
00

T1_OS/T1_USR =
01

T1_OS/T1_USR =
11

T1_OS/T1_USR =
10

T0_OS/T0_USR
= 00

Zero count Counts while T1
in USR

Counts while T1
in OS or USR

Counts while T1
in OS

T0_OS/T0_USR
= 01

Counts while T0
in USR

Counts while T0
in USR or T1 in
USR

Counts while (a)
T0 in USR or (b)
T1 in OS or (c) T1
in USR

Counts while (a)
T0 in OS or (b) T1
in OS

T0_OS/T0_USR
= 11

Counts while T0
in OS or USR

Counts while (a)
T0 in OS or (b) T0
in USR or (c) T1 in
USR

Counts
irrespective of
CPL, T0, T1

Counts while (a)
T0 in OS or (b) or
T0 in USR or (c)
T1 in OS

T0_OS/T0_USR
= 10

Counts T0 in OS Counts T0 in OS
or T1 in USR

Counts while
(a)T0 in Os or (b)
T1 in OS or (c) T1
in USR

Counts while (a)
T0 in OS or (b) T1
in OS
Vol. 3 18-95

DEBUGGING AND PERFORMANCE MONITORING
18.17 COUNTING CLOCKS
The count of cycles, also known as clockticks, forms a the basis for measuring how
long a program takes to execute. Clockticks are also used as part of efficiency ratios
like cycles per instruction (CPI). Processor clocks may stop ticking under circum-
stances like the following:

• The processor is halted when there is nothing for the CPU to do. For example, the
processor may halt to save power while the computer is servicing an I/O request.
When Hyper-Threading Technology is enabled, both logical processors must be
halted for performance-monitoring counters to be powered down.

• The processor is asleep as a result of being halted or because of a power-
management scheme. There are different levels of sleep. In the some deep sleep
levels, the time-stamp counter stops counting.

In addition, processor core clocks may undergo transitions at different ratios relative
to the processor’s bus clock frequency. Some of the situations that can cause
processor core clock to undergo frequency transitions include:

• TM2 transitions

• Enhanced Intel SpeedStep Technology transitions (P-state transitions)

For Intel processors that support Intel Dynamic Acceleration or XE operation, the
processor core clocks may operate at a frequency that differs from the maximum
qualified frequency (as indicated by brand string information reported by CPUID
instruction). See Section 18.17.5 for more detail.

Table 18-21. Effect of Logical Processor and CPL Qualification
for Non-logical-Processor-specific (TI) Events

T1_OS/T1_USR =
00

T1_OS/T1_USR =
01

T1_OS/T1_USR =
11

T1_OS/T1_USR =
10

T0_OS/T0_USR =
00

Zero count Counts while (a)
T0 in USR or (b)
T1 in USR

Counts
irrespective of
CPL, T0, T1

Counts while (a)
T0 in OS or (b) T1
in OS

T0_OS/T0_USR =
01

Counts while (a)
T0 in USR or (b)
T1 in USR

Counts while (a)
T0 in USR or (b)
T1 in USR

Counts
irrespective of
CPL, T0, T1

Counts
irrespective of
CPL, T0, T1

T0_OS/T0_USR =
11

Counts
irrespective of
CPL, T0, T1

Counts
irrespective of
CPL, T0, T1

Counts
irrespective of
CPL, T0, T1

Counts
irrespective of
CPL, T0, T1

T0_OS/T0_USR =
0

Counts while (a)
T0 in OS or (b) T1
in OS

Counts
irrespective of
CPL, T0, T1

Counts
irrespective of
CPL, T0, T1

Counts while (a)
T0 in OS or (b) T1
in OS
18-96 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
There are several ways to count processor clock cycles to monitor performance.
These are:

• Non-halted clockticks — Measures clock cycles in which the specified logical
processor is not halted and is not in any power-saving state. When Hyper-
Threading Technology is enabled, ticks can be measured on a per-logical-
processor basis. There are also performance events on dual-core processors that
measure clockticks per logical processor when the processor is not halted.

• Non-sleep clockticks — Measures clock cycles in which the specified physical
processor is not in a sleep mode or in a power-saving state. These ticks cannot be
measured on a logical-processor basis.

• Time-stamp counter — Measures clock cycles in which the physical processor is
not in deep sleep. These ticks cannot be measured on a logical-processor basis.

• Reference clockticks — TM2 or Enhanced Intel SpeedStep technology are two
examples of processor features that can cause processor core clockticks to
represent non-uniform tick intervals due to change of bus ratios. Performance
events that counts clockticks of a constant reference frequency was introduced
Intel Core Duo and Intel Core Solo processors. The mechanism is further
enhanced on processors based on Intel Core microarchitecture.

Some processor models permit clock cycles to be measured when the physical
processor is not in deep sleep (by using the time-stamp counter and the RDTSC
instruction). Note that such ticks cannot be measured on a per-logical-processor
basis. See Section 18.10, “Time-Stamp Counter,” for detail on processor capabilities.

The first two methods use performance counters and can be set up to cause an inter-
rupt upon overflow (for sampling). They may also be useful where it is easier for a
tool to read a performance counter than to use a time stamp counter (the timestamp
counter is accessed using the RDTSC instruction).

For applications with a significant amount of I/O, there are two ratios of interest:

• Non-halted CPI — Non-halted clockticks/instructions retired measures the CPI
for phases where the CPU was being used. This ratio can be measured on a
logical-processor basis when Hyper-Threading Technology is enabled.

• Nominal CPI — Time-stamp counter ticks/instructions retired measures the CPI
over the duration of a program, including those periods when the machine halts
while waiting for I/O.

18.17.1 Non-Halted Clockticks
Use the following procedure to program ESCRs and CCCRs to obtain non-halted
clockticks on processors based on Intel NetBurst microarchitecture:

1. Select an ESCR for the global_power_events and specify the RUNNING sub-event
mask and the desired T0_OS/T0_USR/T1_OS/T1_USR bits for the targeted
processor.
Vol. 3 18-97

DEBUGGING AND PERFORMANCE MONITORING
2. Select an appropriate counter.

3. Enable counting in the CCCR for that counter by setting the enable bit.

18.17.2 Non-Sleep Clockticks
Performance monitoring counters can be configured to count clockticks whenever the
performance monitoring hardware is not powered-down. To count Non-sleep Clock-
ticks with a performance-monitoring counter, do the following:

1. Select one of the 18 counters.

2. Select any of the ESCRs whose events the selected counter can count. Set its
event select to anything other than no_event. This may not seem necessary, but
the counter may be disabled if this is not done.

3. Turn threshold comparison on in the CCCR by setting the compare bit to 1.

4. Set the threshold to 15 and the complement to 1 in the CCCR. Since no event can
exceed this threshold, the threshold condition is met every cycle and the counter
counts every cycle. Note that this overrides any qualification (e.g. by CPL)
specified in the ESCR.

5. Enable counting in the CCCR for the counter by setting the enable bit.

In most cases, the counts produced by the non-halted and non-sleep metrics are
equivalent if the physical package supports one logical processor and is not placed in
a power-saving state. Operating systems may execute an HLT instruction and place a
physical processor in a power-saving state.

On processors that support Hyper-Threading Technology (HT), each physical package
can support two or more logical processors. Current implementation of HT provides
two logical processors for each physical processor. While both logical processors can
execute two threads simultaneously, one logical processor may halt to allow the
other logical processor to execute without sharing execution resources between two
logical processors.

Non-halted Clockticks can be set up to count the number of processor clock cycles for
each logical processor whenever the logical processor is not halted (the count may
include some portion of the clock cycles for that logical processor to complete a tran-
sition to a halted state). Physical processors that support HT enter into a power-
saving state if all logical processors halt.

The Non-sleep Clockticks mechanism uses a filtering mechanism in CCCRs. The
mechanism will continue to increment as long as one logical processor is not halted
or in a power-saving state. Applications may cause a processor to enter into a power-
saving state by using an OS service that transfers control to an OS’s idle loop. The
idle loop then may place the processor into a power-saving state after an implemen-
tation-dependent period if there is no work for the processor.
18-98 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
18.17.3 Incrementing the Time-Stamp Counter
The time-stamp counter increments when the clock signal on the system bus is
active and when the sleep pin is not asserted. The counter value can be read with the
RDTSC instruction.

The time-stamp counter and the non-sleep clockticks count may not agree in all
cases and for all processors. See Section 18.10, “Time-Stamp Counter,” for more
information on counter operation.

18.17.4 Non-Halted Reference Clockticks
Software can use either processor-specific performance monitor events (for
example: CPU_CLK_UNHALTED.BUS on processors based on the Intel Core microar-
chitecture, and equivalent event specifications on the Intel Core Duo and Intel Core
Solo processors) to count non-halted reference clockticks.

These events count reference clock cycles whenever the specified processor is not
halted. The counter counts reference cycles associated with a fixed-frequency clock
source irrespective of P-state, TM2, or frequency transitions that may occur to the
processor.

18.17.5 Cycle Counting and Opportunistic Processor Operation
As a result of the state transitions due to opportunistic processor performance oper-
ation (see Chapter 13, “Power and Thermal Management”), a logical processor or a
processor core can operate at frequency different from that indicated by the
processor’s maximum qualified frequency.

The following items are expected to hold true irrespective of when opportunistic
processor operation causes state transitions:

• The time stamp counter operates at a fixed-rate frequency of the processor.

• The IA32_MPERF counter increments at the same TSC frequency irrespective of
any transitions caused by opportunistic processor operation.

• The IA32_FIXED_CTR2 counter increments at the same TSC frequency
irrespective of any transitions caused by opportunistic processor operation.

• The Local APIC timer operation is unaffected by opportunistic processor
operation.

• The TSC, IA32_MPERF, and IA32_FIXED_CTR2 operate at the same, maximum-
resolved frequency of the platform, which is equal to the product of scalable bus
frequency and maximum resolved bus ratio.

For processors based on Intel Core microarchitecture, the scalable bus frequency is
encoded in the bit field MSR_FSB_FREQ[2:0] at (0CDH), see Appendix B, “Model-
Vol. 3 18-99

DEBUGGING AND PERFORMANCE MONITORING
Specific Registers (MSRs)”. The maximum resolved bus ratio can be read from the
following bit field:

• If XE operation is disabled, the maximum resolved bus ratio can be read in
MSR_PLATFORM_ID[12:8]. It corresponds to the maximum qualified frequency.

• IF XE operation is enabled, the maximum resolved bus ratio is given in
MSR_PERF_STAT[44:40], it corresponds to the maximum XE operation
frequency configured by BIOS.

XE operation of an Intel 64 processor is implementation specific. XE operation can be
enabled only by BIOS. If MSR_PERF_STAT[31] is set, XE operation is enabled. The
MSR_PERF_STAT[31] field is read-only.

18.18 PERFORMANCE MONITORING AND DUAL-CORE
TECHNOLOGY

The performance monitoring capability of dual-core processors duplicates the
microarchitectural resources of a single-core processor implementation. Each
processor core has dedicated performance monitoring resources.

In the case of Pentium D processor, each logical processor is associated with dedi-
cated resources for performance monitoring. In the case of Pentium processor
Extreme edition, each processor core has dedicated resources, but two logical
processors in the same core share performance monitoring resources (see Section
18.16, “Performance Monitoring and Hyper-Threading Technology”).

18.19 PERFORMANCE MONITORING ON 64-BIT INTEL XEON
PROCESSOR MP WITH UP TO 8-MBYTE L3 CACHE

The 64-bit Intel Xeon processor MP with up to 8-MByte L3 cache has a CPUID signa-
ture of family [0FH], model [03H or 04H]. Performance monitoring capabilities avail-
able to Pentium 4 and Intel Xeon processors with the same values (see Section 18.11
and Section 18.16) apply to the 64-bit Intel Xeon processor MP with an L3 cache.

The level 3 cache is connected between the system bus and IOQ through additional
control logic. See Figure 18-33.
18-100 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
Additional performance monitoring capabilities and facilities unique to 64-bit Intel
Xeon processor MP with an L3 cache are described in this section. The facility for
monitoring events consists of a set of dedicated model-specific registers (MSRs),
each dedicated to a specific event. Programming of these MSRs requires using
RDMSR/WRMSR instructions with 64-bit values.

The lower 32-bits of the MSRs at addresses 107CC through 107D3 are treated as 32
bit performance counter registers. These performance counters can be accessed
using RDPMC instruction with the index starting from 18 through 25. The EDX
register returns zero when reading these 8 PMCs.

The performance monitoring capabilities consist of four events. These are:

• IBUSQ event — This event detects the occurrence of micro-architectural
conditions related to the iBUSQ unit. It provides two MSRs: MSR_IFSB_IBUSQ0
and MSR_IFSB_IBUSQ1. Configure sub-event qualification and enable/disable
functions using the high 32 bits of these MSRs. The low 32 bits act as a 32-bit
event counter. Counting starts after software writes a non-zero value to one or
more of the upper 32 bits. See Figure 18-34.

Figure 18-33. Block Diagram of 64-bit Intel Xeon Processor MP with 8-MByte L3
Vol. 3 18-101

DEBUGGING AND PERFORMANCE MONITORING
• ISNPQ event — This event detects the occurrence of microarchitectural
conditions related to the iSNPQ unit. It provides two MSRs: MSR_IFSB_ISNPQ0
and MSR_IFSB_ISNPQ1. Configure sub-event qualifications and enable/disable
functions using the high 32 bits of the MSRs. The low 32-bits act as a 32-bit event
counter. Counting starts after software writes a non-zero value to one or more of
the upper 32-bits. See Figure 18-35.

Figure 18-34. MSR_IFSB_IBUSQx, Addresses: 107CCH and 107CDH

L3_state_match

46 3845 37 36 3334

Saturate
Fill_match
Eviction_match

Snoop_match
Type_match
T1_match
T0_match

Reserved

63 56 55 48 324957585960 35

1 1

32 bit event count

031

MSR_IFSB_IBUSQx, Addresses: 107CCH and 107CDH
18-102 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
• EFSB event — This event can detect the occurrence of micro-architectural
conditions related to the iFSB unit or system bus. It provides two MSRs:
MSR_EFSB_DRDY0 and MSR_EFSB_DRDY1. Configure sub-event qualifications
and enable/disable functions using the high 32 bits of the 64-bit MSR. The low
32-bit act as a 32-bit event counter. Counting starts after software writes a non-
zero value to one or more of the qualification bits in the upper 32-bits of the MSR.
See Figure 18-36.

Figure 18-35. MSR_IFSB_ISNPQx, Addresses: 107CEH and 107CFH

L3_state_match

46 3845 37 36 3334

Saturate

Snoop_match
Type_match

T1_match
T0_match

Reserved

63 56 55 48 3257585960 3539

Agent_match

31 0

32 bit event count

MSR_IFSB_ISNPQx, Addresses: 107CEH and 107CFH
Vol. 3 18-103

DEBUGGING AND PERFORMANCE MONITORING
• IBUSQ Latency event — This event accumulates weighted cycle counts for
latency measurement of transactions in the iBUSQ unit. The count is enabled by
setting MSR_IFSB_CTRL6[bit 26] to 1; the count freezes after software sets
MSR_IFSB_CTRL6[bit 26] to 0. MSR_IFSB_CNTR7 acts as a 64-bit event
counter for this event. See Figure 18-37.

Figure 18-36. MSR_EFSB_DRDYx, Addresses: 107D0H and 107D1H

Other

49 3850 37 36 3334

Saturate

Own

Reserved

63 56 55 48 3257585960 3539

31 0

32 bit event count

MSR_EFSB_DRDYx, Addresses: 107D0H and 107D1H
18-104 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
18.20 PERFORMANCE MONITORING ON DUAL-CORE INTEL
XEON PROCESSOR 7100 SERIES

The Dual-Core Intel Xeon processor 7100 Series have a CPUID signature of family
[0FH], model [06H] and a unified L3 cache shared between two cores. Each core in
an Intel Xeon processor 7100 series supports Intel Hyper-Threading Technology,
providing two logical processors per core.

Intel Xeon processor 7100 series are based on Intel NetBurst microarchitecture, but
the IOQ logic in each processor core is replaced with a Simple Direct Interface (SDI)
logic. The L3 cache is connected between the system bus and the SDI through addi-
tional control logic. See Figure 18-38.

Almost all of the performance monitoring capabilities available to processors with the
same CPUID signatures (see Section 18.11 and Section 18.16) apply to the Intel
Xeon processor 7100 series. The IOQ_allocation and IOQ_active_entries events are
not supported. Additional performance monitoring capabilities available to Intel Xeon
processor 7100 series are described in this section.

Figure 18-37. MSR_IFSB_CTL6, Address: 107D2H;
MSR_IFSB_CNTR7, Address: 107D3H

Reserved

MSR_IFSB_CTL6 Address: 107D2H

MSR_IFSB_CNTR7 Address: 107D3H

Enable

63 05759

63 0

64 bit event count
Vol. 3 18-105

DEBUGGING AND PERFORMANCE MONITORING
The facility for monitoring events consists of a set of dedicated model-specific
registers (MSRs). There are eight event select/counting MSRs that are dedicated to
counting events associated with specified microarchitectural conditions. Program-
ming of these MSRs requires using RDMSR/WRMSR instructions with 64-bit values.
In addition, an MSR MSR_EMON_L3_GL_CTL provides simplified interface to control
freezing, resetting, re-enabling operation of any combination of these event
select/counting MSRs.

The eight MSRs dedicated to count occurrences of specific conditions are further
divided to count three sub-classes of microarchitectural conditions:

• Two MSRs (MSR_EMON_L3_CTR_CTL0 and MSR_EMON_L3_CTR_CTL1) are
dedicated to counting GBSQ events. Up to two GBSQ events can be programmed
and counted simultaneously.

• Two MSRs (MSR_EMON_L3_CTR_CTL2 and MSR_EMON_L3_CTR_CTL3) are
dedicated to counting GSNPQ events. Up to two GBSQ events can be
programmed and counted simultaneously.

• Four MSRs (MSR_EMON_L3_CTR_CTL4, MSR_EMON_L3_CTR_CTL5,
MSR_EMON_L3_CTR_CTL6, and MSR_EMON_L3_CTR_CTL7) are dedicated to
counting external bus operations.

The bit fields in each of eight MSRs share the following common characteristics:

Figure 18-38. Block Diagram of Intel Xeon Processor 7100 Series

S y s t e m B u s

3 r d L e v e l C a c h e
1 6 o r 8 - w a y

D u a l - C o r e I n t e l X e o n P r o c e s s o r 7 1 0 0 S e r i e s

G B S Q , G S N P Q , G I N T Q , . .

S D I – B S Q a n d S N P Q

P r o c e s s o r C o r e

S D I – B S Q a n d S N P Q

P r o c e s s o r C o r e
18-106 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
• Bits 63:32 is the event control field that includes an event mask and other bit
fields that control counter operation. The event mask field specifies details of the
microarchitectural condition, and its definition differs across GBSQ, GSNPQ, FSB.

• Bits 31:0 is the event count field. If the specified condition is met during each
relevant clock domain of the event logic, the matched condition signals the
counter logic to increment the associated event count field. The lower 32-bits of
these 8 MSRs at addresses 107CC through 107D3 are treated as 32 bit
performance counter registers. These performance counters can be accessed
using RDPMC instruction with the index starting from 18 through 25. The EDX
register returns zero when reading these 8 PMCs.

18.20.1 GBSQ Event Interface
The layout of MSR_EMON_L3_CTR_CTL0 and MSR_EMON_L3_CTR_CTL1 is given in
Figure 18-39. Counting starts after software writes a non-zero value to one or more
of the upper 32 bits.

The event mask field (bits 58:32) consists of the following eight attributes:

• Agent_Select (bits 35:32): Each bit specifies a logical processor in the physical
package. The lower two bits corresponds to two logical processors in the first
processor core, the upper two bits corresponds to two logical processors in the
second processor core. 0FH encoding matches transactions from any logical
processor.
Vol. 3 18-107

DEBUGGING AND PERFORMANCE MONITORING
• Data_Flow (bits 37:36): Bit 36 specifies demand transactions, bit 37 specifies
prefetch transactions.

• Type_Match (bits 43:38): Specifies transaction types. If all six bits are set, event
count will include all transaction types.

• Snoop_Match: (bits 46:44): The three bits specify (in ascending bit position)
clean snoop result, HIT snoop result, and HITM snoop results respectively.

• L2_State (bits 53:47): Each bit specifies an L2 coherency state.

• Core_Select (bits 55:54): The valid encodings are

— 00B: Match transactions from any core in the physical package

— 01B: Match transactions from this core only

— 10B: Match transactions from the other core in the physical package

— 11B: Match transaction from both cores in the physical package

• Fill_Eviction (bits 57:56): The valid encodings are

— 00B: Match any transactions

— 01B: Match transactions that fill L2

Figure 18-39. MSR_EMON_L3_CTR_CTL0/1, Addresses: 107CCH/107CDH

Core_select

44 3843 37 3654 53

Saturate
Cross_snoop
Fill_eviction

Snoop_match
Type_match
Data_flow
Agent_select

Reserved

63 56 55 46 324757585960 35

32 bit event count

031

MSR_EMON_L3_CTR_CTL0/1, Addresses: 107CCH/107CDH

L2_state
18-108 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
— 10B: Match transactions that fill L2 without an eviction

— 11B: Match transaction fill L2 with an eviction

• Cross_Snoop (bit 58): The encodings are \

— 0B: Match any transactions

— 1B: Match cross snoop transactions

For each counting clock domain, if all eight attributes match, event logic signals to
increment the event count field.

18.20.2 GSNPQ Event Interface
The layout of MSR_EMON_L3_CTR_CTL2 and MSR_EMON_L3_CTR_CTL3 is given in
Figure 18-40. Counting starts after software writes a non-zero value to one or more
of the upper 32 bits.

The event mask field (bits 58:32) consists of the following six attributes:

• Agent_Select (bits 37:32): Each of the lowest 4 bits specifies a logical processor
in the physical package. The lowest two bits corresponds to two logical
processors in the first processor core, the next two bits corresponds to two logical
processors in the second processor core. Bit 36 specifies other symmetric agent
transactions. Bit 37 specifies central agent transactions. 3FH encoding matches
transactions from any logical processor.

• Type_Match (bits 43:38): Specifies transaction types. If all six bits are set, event
count will include any transaction types.

• Snoop_Match: (bits 46:44): The three bits specify (in ascending bit position)
clean snoop result, HIT snoop result, and HITM snoop results respectively.

• L2_State (bits 53:47): Each bit specifies an L2 coherency state.

• Core_Select (bits 56:54): Bit 56 enables Core_Select matching. If bit 56 is clear,
Core_select encoding is ignored. If bit 56 is set, the valid encodings for the lower
two bits (bit 55, 54) are

— 00B: Match transactions from only one core (irrespective which core) in the
physical package

— 01B: Match transactions from this core and not the other core

— 10B: Match transactions from the other core in the physical package, but not
this core

— 11B: Match transaction from both cores in the physical package

• Block_Snoop (bit 57): specifies blocked snoop.

For each counting clock domain, if all six attributes match, event logic signals to
increment the event count field.
Vol. 3 18-109

DEBUGGING AND PERFORMANCE MONITORING
18.20.3 FSB Event Interface
The layout of MSR_EMON_L3_CTR_CTL4 through MSR_EMON_L3_CTR_CTL7 is given
in Figure 18-41. Counting starts after software writes a non-zero value to one or
more of the upper 32 bits.

The event mask field (bits 58:32) is organized as follows:

• Bit 58: must set to 1.

• FSB_Submask (bits 57:32): Specifies FSB-specific sub-event mask.

The FSB sub-event mask defines a set of independent attributes. The event logic
signals to increment the associated event count field if one of the attribute matches.
Some of the sub-event mask bit counts durations. A duration event increments at
most once per cycle.

Figure 18-40. MSR_EMON_L3_CTR_CTL2/3, Addresses: 107CEH/107CFH

L2_state

46 3844 37 364354

Saturate

Snoop_match
Type_match

Reserved

63 56 55 47 3257585960 53 39

Agent_match

31 0

32 bit event count

MSR_EMON_L3_CTR_CTL2/3, Addresses: 107CEH/107CFH

Block_snoop
Core_select
18-110 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
18.20.3.1 FSB Sub-Event Mask Interface
• FSB_type (bit 37:32): Specifies different FSB transaction types originated from

this physical package

• FSB_L_clear (bit 38): Count clean snoop results from any source for transaction
originated from this physical package

• FSB_L_hit (bit 39): Count HIT snoop results from any source for transaction
originated from this physical package

• FSB_L_hitm (bit 40): Count HITM snoop results from any source for transaction
originated from this physical package

• FSB_L_defer (bit 41): Count DEFER responses to this processor’s transactions

• FSB_L_retry (bit 42): Count RETRY responses to this processor’s transactions

• FSB_L_snoop_stall (bit 43): Count snoop stalls to this processor’s transactions

• FSB_DBSY (bit 44): Count DBSY assertions by this processor (without a
concurrent DRDY)

• FSB_DRDY (bit 45): Count DRDY assertions by this processor

• FSB_BNR (bit 46): Count BNR assertions by this processor

• FSB_IOQ_empty (bit 47): Counts each bus clocks when the IOQ is empty

• FSB_IOQ_full (bit 48): Counts each bus clocks when the IOQ is full

• FSB_IOQ_active (bit 49): Counts each bus clocks when there is at least one entry
in the IOQ

Figure 18-41. MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: 107D0H-107D3H

1

49 3850 37 36 3334

Saturate

FSB submask

Reserved

63 56 55 48 3257585960 3539

31 0

32 bit event count

MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: 107D0H-107D3H
Vol. 3 18-111

DEBUGGING AND PERFORMANCE MONITORING
• FSB_WW_data (bit 50): Counts back-to-back write transaction’s data phase.

• FSB_WW_issue (bit 51): Counts back-to-back write transaction request pairs
issued by this processor.

• FSB_WR_issue (bit 52): Counts back-to-back write-read transaction request
pairs issued by this processor.

• FSB_RW_issue (bit 53): Counts back-to-back read-write transaction request
pairs issued by this processor.

• FSB_other_DBSY (bit 54): Count DBSY assertions by another agent (without a
concurrent DRDY)

• FSB_other_DRDY (bit 55): Count DRDY assertions by another agent

• FSB_other_snoop_stall (bit 56): Count snoop stalls on the FSB due to another
agent

• FSB_other_BNR (bit 57): Count BNR assertions from another agent

18.20.4 Common Event Control Interface
The MSR_EMON_L3_GL_CTL MSR provides simplified access to query overflow status
of the GBSQ, GSNPQ, FSB event counters. It also provides control bit fields to freeze,
unfreeze, or reset those counters. The following bit fields are supported:

• GL_freeze_cmd (bit 0): Freeze the event counters specified by the
GL_event_select field.

• GL_unfreeze_cmd (bit 1): Unfreeze the event counters specified by the
GL_event_select field.

• GL_reset_cmd (bit 2): Clear the event count field of the event counters specified
by the GL_event_select field. The event select field is not affected.

• GL_event_select (bit 23:16): Selects one or more event counters to subject to
specified command operations indicated by bits 2:0. Bit 16 corresponds to
MSR_EMON_L3_CTR_CTL0, bit 23 corresponds to MSR_EMON_L3_CTR_CTL7.

• GL_event_status (bit 55:48): Indicates the overflow status of each event
counters. Bit 48 corresponds to MSR_EMON_L3_CTR_CTL0, bit 55 corresponds
to MSR_EMON_L3_CTR_CTL7.

In the event control field (bits 63:32) of each MSR, if the saturate control (bit 59, see
Figure 18-39 for example) is set, the event logic forces the value FFFF_FFFFH into
the event count field instead of incrementing it.

18.21 PERFORMANCE MONITORING (P6 FAMILY
PROCESSOR)

The P6 family processors provide two 40-bit performance counters, allowing two
types of events to be monitored simultaneously. These can either count events or
18-112 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
measure duration. When counting events, a counter increments each time a speci-
fied event takes place or a specified number of events takes place. When measuring
duration, it counts the number of processor clocks that occur while a specified condi-
tion is true. The counters can count events or measure durations that occur at any
privilege level.

Table A-14, Appendix A, lists the events that can be counted with the P6 family
performance monitoring counters.

NOTE
The performance-monitoring events listed in Appendix A are
intended to be used as guides for performance tuning. Counter
values reported are not guaranteed to be accurate and should be
used as a relative guide for tuning. Known discrepancies are
documented where applicable.

The performance-monitoring counters are supported by four MSRs: the performance
event select MSRs (PerfEvtSel0 and PerfEvtSel1) and the performance counter MSRs
(PerfCtr0 and PerfCtr1). These registers can be read from and written to using the
RDMSR and WRMSR instructions, respectively. They can be accessed using these
instructions only when operating at privilege level 0. The PerfCtr0 and PerfCtr1 MSRs
can be read from any privilege level using the RDPMC (read performance-monitoring
counters) instruction.

NOTE
The PerfEvtSel0, PerfEvtSel1, PerfCtr0, and PerfCtr1 MSRs and the
events listed in Table A-14 are model-specific for P6 family
processors. They are not guaranteed to be available in other IA-32
processors.

18.21.1 PerfEvtSel0 and PerfEvtSel1 MSRs
The PerfEvtSel0 and PerfEvtSel1 MSRs control the operation of the performance-
monitoring counters, with one register used to set up each counter. They specify the
events to be counted, how they should be counted, and the privilege levels at which
counting should take place. Figure 18-42 shows the flags and fields in these MSRs.

The functions of the flags and fields in the PerfEvtSel0 and PerfEvtSel1 MSRs are as
follows:

• Event select field (bits 0 through 7) — Selects the event logic unit to detect
certain microarchitectural conditions (see Table A-14, for a list of events and their
8-bit codes).

• Unit mask (UMASK) field (bits 8 through 15) — Further qualifies the event
logic unit selected in the event select field to detect a specific microarchitectural
condition. For example, for some cache events, the mask is used as a MESI-
protocol qualifier of cache states (see Table A-14).
Vol. 3 18-113

DEBUGGING AND PERFORMANCE MONITORING
• USR (user mode) flag (bit 16) — Specifies that events are counted only when
the processor is operating at privilege levels 1, 2 or 3. This flag can be used in
conjunction with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that events are
counted only when the processor is operating at privilege level 0. This flag can be
used in conjunction with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of events.
The processor counts the number of deasserted to asserted transitions of any
condition that can be expressed by the other fields. The mechanism is limited in
that it does not permit back-to-back assertions to be distinguished. This
mechanism allows software to measure not only the fraction of time spent in a
particular state, but also the average length of time spent in such a state (for
example, the time spent waiting for an interrupt to be serviced).

• PC (pin control) flag (bit 19) — When set, the processor toggles the PMi pins
and increments the counter when performance-monitoring events occur; when
clear, the processor toggles the PMi pins when the counter overflows. The
toggling of a pin is defined as assertion of the pin for a single bus clock followed
by deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the processor
generates an exception through its local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — This flag is only present in the
PerfEvtSel0 MSR. When set, performance counting is enabled in both
performance-monitoring counters; when clear, both counters are disabled.

• INV (invert) flag (bit 23) — Inverts the result of the counter-mask comparison
when set, so that both greater than and less than comparisons can be made.

Figure 18-42. PerfEvtSel0 and PerfEvtSel1 MSRs

31

INV—Invert counter mask
EN—Enable counters*
INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

* Only available in PerfEvtSel0.

Counter Mask
EE

N

I
N
T

19 1618 15172021222324

Reserved

I
N
V

P
C

U
S
R

O
S Unit Mask (UMASK)(CMASK)
18-114 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
• Counter mask (CMASK) field (bits 24 through 31) — When nonzero, the
processor compares this mask to the number of events counted during a single
cycle. If the event count is greater than or equal to this mask, the counter is
incremented by one. Otherwise the counter is not incremented. This mask can be
used to count events only if multiple occurrences happen per clock (for example,
two or more instructions retired per clock). If the counter-mask field is 0, then
the counter is incremented each cycle by the number of events that occurred that
cycle.

18.21.2 PerfCtr0 and PerfCtr1 MSRs
The performance-counter MSRs (PerfCtr0 and PerfCtr1) contain the event or duration
counts for the selected events being counted. The RDPMC instruction can be used by
programs or procedures running at any privilege level and in virtual-8086 mode to
read these counters. The PCE flag in control register CR4 (bit 8) allows the use of this
instruction to be restricted to only programs and procedures running at privilege
level 0.

The RDPMC instruction is not serializing or ordered with other instructions. Thus, it
does not necessarily wait until all previous instructions have been executed before
reading the counter. Similarly, subsequent instructions may begin execution before
the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the
performance counters, using the RDMSR and WRMSR instructions. A secure oper-
ating system would clear the PCE flag during system initialization to disable direct
user access to the performance-monitoring counters, but provide a user-accessible
programming interface that emulates the RDPMC instruction.

The WRMSR instruction cannot arbitrarily write to the performance-monitoring
counter MSRs (PerfCtr0 and PerfCtr1). Instead, the lower-order 32 bits of each MSR
may be written with any value, and the high-order 8 bits are sign-extended according
to the value of bit 31. This operation allows writing both positive and negative values
to the performance counters.

18.21.3 Starting and Stopping the Performance-Monitoring Counters
The performance-monitoring counters are started by writing valid setup information
in the PerfEvtSel0 and/or PerfEvtSel1 MSRs and setting the enable counters flag in
the PerfEvtSel0 MSR. If the setup is valid, the counters begin counting following the
execution of a WRMSR instruction that sets the enable counter flag. The counters can
be stopped by clearing the enable counters flag or by clearing all the bits in the
PerfEvtSel0 and PerfEvtSel1 MSRs. Counter 1 alone can be stopped by clearing the
PerfEvtSel1 MSR.
Vol. 3 18-115

DEBUGGING AND PERFORMANCE MONITORING
18.21.4 Event and Time-Stamp Monitoring Software
To use the performance-monitoring counters and time-stamp counter, the operating
system needs to provide an event-monitoring device driver. This driver should
include procedures for handling the following operations:

• Feature checking

• Initialize and start counters

• Stop counters

• Read the event counters

• Read the time-stamp counter

The event monitor feature determination procedure must check whether the current
processor supports the performance-monitoring counters and time-stamp counter.
This procedure compares the family and model of the processor returned by the
CPUID instruction with those of processors known to support performance moni-
toring. (The Pentium and P6 family processors support performance counters.) The
procedure also checks the MSR and TSC flags returned to register EDX by the CPUID
instruction to determine if the MSRs and the RDTSC instruction are supported.

The initialize and start counters procedure sets the PerfEvtSel0 and/or PerfEvtSel1
MSRs for the events to be counted and the method used to count them and initializes
the counter MSRs (PerfCtr0 and PerfCtr1) to starting counts. The stop counters
procedure stops the performance counters (see Section 18.21.3, “Starting and Stop-
ping the Performance-Monitoring Counters”).

The read counters procedure reads the values in the PerfCtr0 and PerfCtr1 MSRs, and
a read time-stamp counter procedure reads the time-stamp counter. These proce-
dures would be provided in lieu of enabling the RDTSC and RDPMC instructions that
allow application code to read the counters.

18.21.5 Monitoring Counter Overflow
The P6 family processors provide the option of generating a local APIC interrupt when
a performance-monitoring counter overflows. This mechanism is enabled by setting
the interrupt enable flag in either the PerfEvtSel0 or the PerfEvtSel1 MSR. The
primary use of this option is for statistical performance sampling.

To use this option, the operating system should do the following things on the
processor for which performance events are required to be monitored:

• Provide an interrupt vector for handling the counter-overflow interrupt.

• Initialize the APIC PERF local vector entry to enable handling of performance-
monitor counter overflow events.

• Provide an entry in the IDT that points to a stub exception handler that returns
without executing any instructions.

• Provide an event monitor driver that provides the actual interrupt handler and
modifies the reserved IDT entry to point to its interrupt routine.
18-116 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
When interrupted by a counter overflow, the interrupt handler needs to perform the
following actions:

• Save the instruction pointer (EIP register), code-segment selector, TSS segment
selector, counter values and other relevant information at the time of the
interrupt.

• Reset the counter to its initial setting and return from the interrupt.

An event monitor application utility or another application program can read the
information collected for analysis of the performance of the profiled application.

18.22 PERFORMANCE MONITORING (PENTIUM
PROCESSORS)

The Pentium processor provides two 40-bit performance counters, which can be used
to count events or measure duration. The counters are supported by three MSRs: the
control and event select MSR (CESR) and the performance counter MSRs (CTR0 and
CTR1). These can be read from and written to using the RDMSR and WRMSR instruc-
tions, respectively. They can be accessed using these instructions only when oper-
ating at privilege level 0.

Each counter has an associated external pin (PM0/BP0 and PM1/BP1), which can be
used to indicate the state of the counter to external hardware.

NOTES
The CESR, CTR0, and CTR1 MSRs and the events listed in Table A-15
are model-specific for the Pentium processor.

The performance-monitoring events listed in Appendix A are
intended to be used as guides for performance tuning. Counter
values reported are not guaranteed to be accurate and should be
used as a relative guide for tuning. Known discrepancies are
documented where applicable.

18.22.1 Control and Event Select Register (CESR)
The 32-bit control and event select MSR (CESR) controls the operation of perfor-
mance-monitoring counters CTR0 and CTR1 and the associated pins (see
Figure 18-43). To control each counter, the CESR register contains a 6-bit event
select field (ES0 and ES1), a pin control flag (PC0 and PC1), and a 3-bit counter
control field (CC0 and CC1). The functions of these fields are as follows:

• ES0 and ES1 (event select) fields (bits 0-5, bits 16-21) — Selects (by
entering an event code in the field) up to two events to be monitored. See Table
A-15 for a list of available event codes.
Vol. 3 18-117

DEBUGGING AND PERFORMANCE MONITORING
• CC0 and CC1 (counter control) fields (bits 6-8, bits 22-24) — Controls the
operation of the counter. Control codes are as follows:

000 — Count nothing (counter disabled)

001 — Count the selected event while CPL is 0, 1, or 2

010 — Count the selected event while CPL is 3

011 — Count the selected event regardless of CPL

100 — Count nothing (counter disabled)

101 — Count clocks (duration) while CPL is 0, 1, or 2

110 — Count clocks (duration) while CPL is 3

111 — Count clocks (duration) regardless of CPL

The highest order bit selects between counting events and counting clocks
(duration); the middle bit enables counting when the CPL is 3; and the low-order
bit enables counting when the CPL is 0, 1, or 2.

• PC0 and PC1 (pin control) flags (bits 9, 25) — Selects the function of the
external performance-monitoring counter pin (PM0/BP0 and PM1/BP1). Setting
one of these flags to 1 causes the processor to assert its associated pin when the
counter has overflowed; setting the flag to 0 causes the pin to be asserted when
the counter has been incremented. These flags permit the pins to be individually
programmed to indicate the overflow or incremented condition. The external
signalling of the event on the pins will lag the internal event by a few clocks as the
signals are latched and buffered.

While a counter need not be stopped to sample its contents, it must be stopped and
cleared or preset before switching to a new event. It is not possible to set one
counter separately. If only one event needs to be changed, the CESR register must

Figure 18-43. CESR MSR (Pentium Processor Only)

31

PC1—Pin control 1
CC1—Counter control 1
ES1—Event select 1
PC0—Pin control 0

8 0

CC0—Counter control 0
ES0—Event select 0

16 15212224

Reserved

9 56

ESOCC0
P
C
0

ES1CC1
P
C
1

2526 10
18-118 Vol. 3

DEBUGGING AND PERFORMANCE MONITORING
be read, the appropriate bits modified, and all bits must then be written back to
CESR. At reset, all bits in the CESR register are cleared.

18.22.2 Use of the Performance-Monitoring Pins
When performance-monitor pins PM0/BP0 and/or PM1/BP1 are configured to indicate
when the performance-monitor counter has incremented and an “occurrence event”
is being counted, the associated pin is asserted (high) each time the event occurs.
When a “duration event” is being counted, the associated PM pin is asserted for the
entire duration of the event. When the performance-monitor pins are configured to
indicate when the counter has overflowed, the associated PM pin is asserted when
the counter has overflowed.

When the PM0/BP0 and/or PM1/BP1 pins are configured to signal that a counter has
incremented, it should be noted that although the counters may increment by 1 or 2
in a single clock, the pins can only indicate that the event occurred. Moreover, since
the internal clock frequency may be higher than the external clock frequency, a
single external clock may correspond to multiple internal clocks.

A “count up to” function may be provided when the event pin is programmed to
signal an overflow of the counter. Because the counters are 40 bits, a carry out of bit
39 indicates an overflow. A counter may be preset to a specific value less then 240 −
1. After the counter has been enabled and the prescribed number of events has tran-
spired, the counter will overflow.

Approximately 5 clocks later, the overflow is indicated externally and appropriate
action, such as signaling an interrupt, may then be taken.

The PM0/BP0 and PM1/BP1 pins also serve to indicate breakpoint matches during in-
circuit emulation, during which time the counter increment or overflow function of
these pins is not available. After RESET, the PM0/BP0 and PM1/BP1 pins are config-
ured for performance monitoring, however a hardware debugger may reconfigure
these pins to indicate breakpoint matches.

18.22.3 Events Counted
Events that performance-monitoring counters can be set to count and record (using
CTR0 and CTR1) are divided in two categories: occurrence and duration:

• Occurrence events — Counts are incremented each time an event takes place.
If PM0/BP0 or PM1/BP1 pins are used to indicate when a counter increments, the
pins are asserted each clock counters increment. But if an event happens twice in
one clock, the counter increments by 2 (the pins are asserted only once).

• Duration events — Counters increment the total number of clocks that the
condition is true. When used to indicate when counters increment, PM0/BP0
and/or PM1/BP1 pins are asserted for the duration.
Vol. 3 18-119

DEBUGGING AND PERFORMANCE MONITORING
18-120 Vol. 3

CHAPTER 19
INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS

19.1 OVERVIEW
This chapter describes the basics of virtual machine architecture and an overview of
the virtual-machine extensions (VMX) that support virtualization of processor hard-
ware for multiple software environments.

Information about VMX instructions is provided in Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2B. Other aspects of VMX and system
programming considerations are described in chapters of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3B.

19.2 VIRTUAL MACHINE ARCHITECTURE
Virtual-machine extensions define processor-level support for virtual machines on
IA-32 processors. Two principal classes of software are supported:

• Virtual-machine monitors (VMM) — A VMM acts as a host and has full control
of the processor(s) and other platform hardware. A VMM presents guest software
(see next paragraph) with an abstraction of a virtual processor and allows it to
execute directly on a logical processor. A VMM is able to retain selective control of
processor resources, physical memory, interrupt management, and I/O.

• Guest software — Each virtual machine (VM) is a guest software environment
that supports a stack consisting of operating system (OS) and application
software. Each operates independently of other virtual machines and uses on the
same interface to processor(s), memory, storage, graphics, and I/O provided by
a physical platform. The software stack acts as if it were running on a platform
with no VMM. Software executing in a virtual machine must operate with reduced
privilege so that the VMM can retain control of platform resources.

19.3 INTRODUCTION TO VMX OPERATION
Processor support for virtualization is provided by a form of processor operation
called VMX operation. There are two kinds of VMX operation: VMX root operation and
VMX non-root operation. In general, a VMM will run in VMX root operation and guest
software will run in VMX non-root operation. Transitions between VMX root operation
and VMX non-root operation are called VMX transitions. There are two kinds of VMX
transitions. Transitions into VMX non-root operation are called VM entries. Transi-
tions from VMX non-root operation to VMX root operation are called VM exits.
Vol. 3 19-1

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
Processor behavior in VMX root operation is very much as it is outside VMX operation.
The principal differences are that a set of new instructions (the VMX instructions) is
available and that the values that can be loaded into certain control registers are
limited (see Section 19.8).

Processor behavior in VMX non-root operation is restricted and modified to facilitate
virtualization. Instead of their ordinary operation, certain instructions (including the
new VMCALL instruction) and events cause VM exits to the VMM. Because these
VM exits replace ordinary behavior, the functionality of software in VMX non-root
operation is limited. It is this limitation that allows the VMM to retain control of
processor resources.

There is no software-visible bit whose setting indicates whether a logical processor is
in VMX non-root operation. This fact may allow a VMM to prevent guest software from
determining that it is running in a virtual machine.

Because VMX operation places restrictions even on software running with current
privilege level (CPL) 0, guest software can run at the privilege level for which it was
originally designed. This capability may simplify the development of a VMM.

19.4 LIFE CYCLE OF VMM SOFTWARE
Figure 19-1 illustrates the life cycle of a VMM and its guest software as well as the
interactions between them. The following items summarize that life cycle:

• Software enters VMX operation by executing a VMXON instruction.

• Using VM entries, a VMM can then enter guests into virtual machines (one at a
time). The VMM effects a VM entry using instructions VMLAUNCH and
VMRESUME; it regains control using VM exits.

• VM exits transfer control to an entry point specified by the VMM. The VMM can
take action appropriate to the cause of the VM exit and can then return to the
virtual machine using a VM entry.

• Eventually, the VMM may decide to shut itself down and leave VMX operation. It
does so by executing the VMXOFF instruction.
19-2 Vol. 3

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
19.5 VIRTUAL-MACHINE CONTROL STRUCTURE
VMX non-root operation and VMX transitions are controlled by a data structure called
a virtual-machine control structure (VMCS).

Access to the VMCS is managed through a component of processor state called the
VMCS pointer (one per logical processor). The value of the VMCS pointer is the 64-bit
address of the VMCS. The VMCS pointer is read and written using the instructions
VMPTRST and VMPTRLD. The VMM configures a VMCS using the VMREAD, VMWRITE,
and VMCLEAR instructions.

A VMM could use a different VMCS for each virtual machine that it supports. For a
virtual machine with multiple logical processors (virtual processors), the VMM could
use a different VMCS for each virtual processor.

19.6 DISCOVERING SUPPORT FOR VMX
Before system software enters into VMX operation, it must discover the presence of
VMX support in the processor. System software can determine whether a processor
supports VMX operation using CPUID. If CPUID.1:ECX.VMX[bit 5] = 1, then VMX
operation is supported. See Figure 19-2.

Figure 19-1. Interaction of a Virtual-Machine Monitor and Guests

VM Monitor

Guest 0 Guest 1

VM Exit VM ExitVM Entry

VMXOFFVMXON
Vol. 3 19-3

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
The VMX architecture is designed to be extensible so that future processors in VMX
operation can support additional features not present in first-generation implemen-
tations of the VMX architecture. The availability of extensible VMX features is
reported to software using a set of VMX capability MSRs (see Appendix G, “VMX
Capability Reporting Facility”).

19.7 ENABLING AND ENTERING VMX OPERATION
Before system software can enter VMX operation, it enables VMX by setting
CR4.VMXE[bit 13] = 1. VMX operation is then entered by executing the VMXON
instruction. VMXON causes an invalid-opcode exception (#UD) if executed with
CR4.VMXE = 0. Once in VMX operation, it is not possible to clear CR4.VMXE (see
Section 19.8). System software leaves VMX operation by executing the VMXOFF
instruction. CR4.VMXE can be cleared outside of VMX operation after executing of
VMXOFF.

VMXON is also controlled by the IA32_FEATURE_CONTROL MSR (MSR address 3AH).
This MSR is cleared to zero when a logical processor is reset. The relevant bits of the
MSR are:

• Bit 0 is the lock bit. If this bit is clear, VMXON causes a general-protection
exception. If the lock bit is set, WRMSR to this MSR causes a general-protection
exception. Once the lock bit is set, the MSR cannot be modified until a power-up
reset condition. System BIOS can use this bit to provide a setup option for BIOS
to disable support for VMX. To enable VMX support in a platform, BIOS must set
bit 2 (see below) as well as the lock bit.

Figure 19-2. CPUID Extended Feature Information ECX

31 15 1314 12 9 8 6 5 4 3 2 1 0

Reserved

ECX

11 101623 1718192021222425262728

VMX—Virtual Machine Extensions
DS-CPL—CPL Qual. Debug Store

SSE3—Streaming SIMD Extensions 3

30 29

TM2—Thermal Monitor 2
CNXT-ID—L1 Context ID

EST—Enhanced Intel SpeedStep® Technology

MONITOR—Monitor/Mwait

7

19-4 Vol. 3

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
• Bit 2 enables VMXON. If this bit is clear, VMXON causes a general-protection
exception.

Before executing VMXON, software should allocate a naturally aligned 4-KByte region
of memory that a logical processor may use to support VMX operation.1 This region
is called the VMXON region. The address of the VMXON region (the VMXON pointer)
is provided in an operand to VMXON. Section 20.10.4, “VMXON Region,” details how
software should initialize and access the VMXON region.

19.8 RESTRICTIONS ON VMX OPERATION
VMX operation places restrictions on processor operation. These are detailed below:

• In VMX operation, processors may fix certain bits in CR0 and CR4 to specific
values and not support other values. VMXON fails if any of these bits contains an
unsupported value (see “VMXON—Enter VMX Operation” in Chapter 5 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B).
Any attempt to set one of these bits to an unsupported value while in VMX
operation (including VMX root operation) using any of the CLTS, LMSW, or MOV
CR instructions causes a general-protection exception. VM entry or VM exit
cannot set any of these bits to an unsupported value.2

NOTE
The first processors to support VMX operation require that the
following bits be 1 in VMX operation: CR0.PE, CR0.NE, CR0.PG, and
CR4.VMXE. The restrictions on CR0.PE and CR0.PG imply that VMX
operation is supported only in paged protected mode (including
IA-32e mode). Therefore, guest software cannot be run in unpaged
protected mode or in real-address mode. See Section 25.2,
“Supporting Processor Operating Modes in Guest Environments,” for
a discussion of how a VMM might support guest software that expects
to run in unpaged protected mode or in real-address mode.

• VMXON fails if a logical processor is in A20M mode (see “VMXON—Enter VMX
Operation” in Chapter 5 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B). Once the processor is in VMX operation, A20M
interrupts are blocked. Thus, it is impossible to be in A20M mode in VMX
operation.

1. Future processors may require that a different amount of memory be reserved. If so, this fact is
reported to software using the VMX capability-reporting mechanism.

2. Software should consult the VMX capability MSRs IA32_VMX_CR0_FIXED0 and
IA32_VMX_CR0_FIXED1 to determine how bits in CR0 are set. (see Appendix G.6). For CR4, soft-
ware should consult the VMX capability MSRs IA32_VMX_CR4_FIXED0 and
IA32_VMX_CR4_FIXED1 (see Appendix G.7).
Vol. 3 19-5

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
• The INIT signal is blocked whenever a logical processor is in VMX root operation.
It is not blocked in VMX non-root operation. Instead, INITs cause VM exits (see
Section 21.3, “Other Causes of VM Exits”).
19-6 Vol. 3

CHAPTER 20
VIRTUAL-MACHINE CONTROL STRUCTURES

20.1 OVERVIEW
The virtual-machine control data structure (VMCS) is defined for VMX operation. A
VMCS manages transitions in and out of VMX non-root operation (VM entries and
VM exits) as well as processor behavior in VMX non-root operation. This structure is
manipulated by the new instructions VMCLEAR, VMPTRLD, VMREAD, and VMWRITE.

A VMM can use a different VMCS for each virtual machine that it supports. For a
virtual machine with multiple logical processors (virtual processors), the VMM can
use a different VMCS for each virtual processor.

Each logical processor associates a region in memory with each VMCS. This region is
called the VMCS region.1 Software references a specific VMCS by using the 64-bit
physical address of the region; such an address is called a VMCS pointer. VMCS
pointers must be aligned on a 4-KByte boundary (bits 11:0 must be zero). On
processors that support Intel 64 architecture, these pointers must not set bits
beyond the processor’s physical-address width.2 On processors that do not support
Intel 64 architecture, they must not set any bits in the range 63:32.

A logical processor may maintain any number of active VMCSs. At any given time,
one is the current VMCS:

• Software makes a VMCS active by executing VMPTRLD with the address of the
VMCS. The processor may optimize VMX operation by maintaining the state of an
active VMCS in memory, on the processor, or both. Software should not make a
VMCS active on more than one logical processor (see Section 20.10.1 for how to
migrate a VMCS from one logical processor to another). Software makes a VMCS
inactive by executing VMCLEAR with the address of the VMCS. A logical processor
does not use an inactive VMCS or maintain its state on the processor.

If VMXOFF is executed while a VMCS is active, the VMCS data in the corre-
sponding VMCS region are undefined after execution of VMXOFF. Software can
avoid this problem by avoiding execution of VMXOFF while a VMCS is active.

• Software makes a VMCS current by executing VMPTRLD with the address of the
VMCS; that address is loaded into the current-VMCS pointer. VMX instructions
VMLAUNCH, VMPTRST, VMREAD, VMRESUME, and VMWRITE operate on the
current VMCS. In particular, the VMPTRST instruction stores the current-VMCS

1. The amount of memory required for a VMCS region is at most 4 KBytes. The exact size is imple-
mentation specific and can be determined by consulting the VMX capability MSR
IA32_VMX_BASIC to determine the size of the VMCS region (see Appendix G.1).

2. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
Vol. 3 20-1

VIRTUAL-MACHINE CONTROL STRUCTURES
pointer into a specified memory location (it stores the value FFFFFFFF_FFFFFFFFH
if there is no current VMCS). A VMCS remains current until either software
executes VMPTRLD with the address of a different VMCS (which then becomes
the current VMCS) or software executes VMCLEAR with the address of the current
VMCS (after which there is no current VMCS).

This document frequently uses the term “the VMCS” to refer to the current VMCS.

20.2 FORMAT OF THE VMCS REGION
A VMCS region comprises up to 4-KBytes.1 The format of a VMCS region is given in
Table 20-1.

The first 32 bits of the VMCS region contain the VMCS revision identifier. Proces-
sors that maintain VMCS data in different formats (see below) use different VMCS
revision identifiers. These identifiers enable software to avoid using a VMCS region
formatted for one processor on a processor that uses a different format.

Software should write the VMCS revision identifier to the VMCS region before using
that region for a VMCS. The VMCS revision identifier is never written by the
processor; VMPTRLD may fail if its operand references a VMCS region whose VMCS
revision identifier differs from that used by the processor. Software can discover the
VMCS revision identifier that a processor uses by reading the VMX capability MSR
IA32_VMX_BASIC (see Appendix G, “VMX Capability Reporting Facility”).

The next 32 bits of the VMCS region are used for the VMX-abort indicator. The
contents of these bits do not control processor operation in any way. A logical
processor writes a non-zero value into these bits if a VMX abort occurs (see Section
23.7). Software may also write into this field.

The remainder of the VMCS region is used for VMCS data (those parts of the VMCS
that control VMX non-root operation and the VMX transitions). The format of these
data is implementation-specific. VMCS data are discussed in Section 20.3 through
Section 20.9. To ensure proper behavior in VMX operation, software should maintain
the VMCS region and related structures (enumerated in Section 20.10.3) in

1. The exact size is implementation specific and can be determined by consulting the VMX capabil-
ity MSR IA32_VMX_BASIC to determine the size of the VMCS region (see Appendix G.1).

Table 20-1. Format of the VMCS Region

Byte Offset Contents

0 VMCS revision identifier

4 VMX-abort indicator

8 VMCS data (implementation-specific format)
20-2 Vol. 3

VIRTUAL-MACHINE CONTROL STRUCTURES
writeback cacheable memory. Future implementations may allow or require a
different memory type1. Software should consult the VMX capability MSR
IA32_VMX_BASIC (see Appendix G.1).

20.3 ORGANIZATION OF VMCS DATA
The VMCS data are organized into six logical groups:

• Guest-state area. Processor state is saved into the guest-state area on
VM exits and loaded from there on VM entries.

• Host-state area. Processor state is loaded from the host-state area on VM exits.

• VM-execution control fields. These fields control processor behavior in VMX
non-root operation. They determine in part the causes of VM exits.

• VM-exit control fields. These fields control VM exits.

• VM-entry control fields. These fields control VM entries.

• VM-exit information fields. These fields receive information on VM exits and
describe the cause and the nature of VM exits. They are read-only.

The VM-execution control fields, the VM-exit control fields, and the VM-entry control
fields are sometimes referred to collectively as VMX controls.

20.4 GUEST-STATE AREA
This section describes fields contained in the guest-state area of the VMCS. As noted
earlier, processor state is loaded from these fields on every VM entry (see Section
22.3.2) and stored into these fields on every VM exit (see Section 23.3).

20.4.1 Guest Register State
The following fields in the guest-state area correspond to processor registers:

• Control registers CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do
not support Intel 64 architecture).

• Debug register DR7 (64 bits; 32 bits on processors that do not support Intel 64
architecture).

1. Alternatively, software may map any of these regions or structures with the UC memory type.
Doing so is strongly discouraged unless necessary as it will cause the performance of transitions
using those structures to suffer significantly. In addition, the processor will continue to use the
memory type reported in the VMX capability MSR IA32_VMX_BASIC with exceptions noted in
Appendix G.1.
Vol. 3 20-3

VIRTUAL-MACHINE CONTROL STRUCTURES
• RSP, RIP, and RFLAGS (64 bits each; 32 bits on processors that do not support
Intel 64 architecture).1

• The following fields for each of the registers CS, SS, DS, ES, FS, GS, LDTR, and
TR:

— Selector (16 bits).

— Base address (64 bits; 32 bits on processors that do not support Intel 64
architecture). The base-address fields for CS, SS, DS, and ES have only 32
architecturally-defined bits; nevertheless, the corresponding VMCS fields
have 64 bits on processors that support Intel 64 architecture.

— Segment limit (32 bits). The limit field is always a measure in bytes.

— Access rights (32 bits). The format of this field is given in Table 20-2 and
detailed as follows:

• The low 16 bits correspond to bits 23:8 of the upper 32 bits of a 64-bit
segment descriptor. While bits 19:16 of code-segment and data-segment
descriptors correspond to the upper 4 bits of the segment limit, the corre-
sponding bits (bits 11:8) are reserved in this VMCS field.

• Bit 16 indicates an unusable segment. Attempts to use such a segment
fault except in 64-bit mode. In general, a segment register is unusable if
it has been loaded with a null selector.2

• Bits 31:17 are reserved.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For processors that do
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers
(EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to
lower 32 bits of the indicated register.

2. There are a few exceptions to this statement. For example, a segment with a non-null selector
may be unusable following a task switch that fails after its commit point; see “Interrupt
10—Invalid TSS Exception (#TS)” in Section 5.14, “Exception and Interrupt Handling in 64-bit
Mode,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. In
contrast, the TR register is usable after processor reset despite having a null selector; see Table
9-1 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Table 20-2. Format of Access Rights

Bit Position(s) Field

3:0 Segment type

4 S — Descriptor type (0 = system; 1 = code or data)

6:5 DPL — Descriptor privilege level
20-4 Vol. 3

VIRTUAL-MACHINE CONTROL STRUCTURES
The base address, segment limit, and access rights compose the “hidden” part
(or “descriptor cache”) of each segment register. These data are included in the
VMCS because it is possible for a segment register’s descriptor cache to be incon-
sistent with the segment descriptor in memory (in the GDT or the LDT)
referenced by the segment register’s selector.

Note that the value of the DPL field for SS is always equal to the logical
processor’s current privilege level (CPL).1

• The following fields for each of the registers GDTR and IDTR:

— Base address (64 bits; 32 bits on processors that do not support Intel 64
architecture).

— Limit (32 bits). The limit fields contain 32 bits even though these fields are
specified as only 16 bits in the architecture.

• The following MSRs:

— IA32_DEBUGCTL (64 bits)

— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on
processors that do not support Intel 64 architecture)

• The register SMBASE (32 bits). This register contains the base address of the
logical processor’s SMRAM image.

7 P — Segment present

11:8 Reserved

12 AVL — Available for use by system software

13 Reserved (except for CS)
L — 64-bit mode active (for CS only)

14 D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

15 G — Granularity

16 Segment unusable (0 = usable; 1 = unusable)

31:17 Reserved

1. In protected mode, CPL is also associated with the RPL field in the CS selector. However, the RPL
fields are not meaningful in real-address mode or in virtual-8086 mode.

Table 20-2. Format of Access Rights (Contd.)

Bit Position(s) Field
Vol. 3 20-5

VIRTUAL-MACHINE CONTROL STRUCTURES
20.4.2 Guest Non-Register State
In addition to the register state described in Section 20.4.1, the guest-state area
includes the following fields that characterize guest state but which do not corre-
spond to processor registers:

• Activity state (32 bits). This field identifies the logical processor’s activity state.
When a logical processor is executing instructions normally, it is in the active
state. Execution of certain instructions and the occurrence of certain events may
cause a logical processor to transition to an inactive state in which it ceases to
execute instructions.

The following activity states are defined:1

— 0: Active. The logical processor is executing instructions normally.

— 1: HLT. The logical processor is inactive because it executed the HLT
instruction.

— 2: Shutdown. The logical processor is inactive because it incurred a triple
fault2 or some other serious error.

— 3: Wait-for-SIPI. The logical processor is inactive because it is waiting for a
startup-IPI (SIPI).

Future processors may include support for other activity states. Software should
read the VMX capability MSR IA32_VMX_MISC (see Appendix G.5) to determine
what activity states are supported.

• Interruptibility state (32 bits). The IA-32 architecture includes features that
permit certain events to be blocked for a period of time. This field contains
information about such blocking. Details and the format of this field are given in
Table 20-3.

1. Execution of the MWAIT instruction may put a logical processor into an inactive state. However,
this VMCS field never reflects this state. See Section 23.1.

2. A triple fault occurs when a logical processor encounters an exception while attempting to
deliver a double fault.

Table 20-3. Format of Interruptibility State

Bit
Position(s)

Bit Name Notes

0 Blocking by STI See the “STI—Set Interrupt Flag” section in Chapter 4 of the
Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2B.

Execution of STI with RFLAGS.IF = 0 blocks interrupts (and,
optionally, other events) for one instruction after its
execution. Setting this bit indicates that this blocking is in
effect.
20-6 Vol. 3

VIRTUAL-MACHINE CONTROL STRUCTURES
• Pending debug exceptions (64 bits; 32 bits on processors that do not support
Intel 64 architecture). IA-32 processors may recognize one or more debug
exceptions without immediately delivering them.1 This field contains information
about such exceptions. This field is described in Table 20-4.

1 Blocking by
MOV SS

See the “MOV—Move a Value from the Stack” and “POP—Pop
a Value from the Stack” sections in Chapter 3 and Chapter 4
of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volumes 2A & 2B, and Section 5.8.3 in
the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

Execution of a MOV to SS or a POP to SS blocks interrupts for
one instruction after its execution. In addition, certain debug
exceptions are inhibited between a MOV to SS or a POP to SS
and a subsequent instruction. Setting this bit indicates that
the blocking of all these events is in effect. This document
uses the term “blocking by MOV SS,” but it applies equally to
POP SS.

2 Blocking by SMI See Section 24.2 in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A.

System-management interrupts (SMIs) are disabled while the
processor is in system-management mode (SMM). Setting this
bit indicates that blocking of SMIs is in effect.

3 Blocking by NMI See Section 5.7.1 in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A and Section 24.8 in
the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3B.

Delivery of a non-maskable interrupt (NMI) or a system-
management interrupt (SMI) blocks subsequent NMIs until the
next execution of IRET. See Section 21.4 for how this
behavior of IRET may change in VMX non-root operation.
Setting this bit indicates that blocking of NMIs is in effect.
Clearing this bit does not imply that NMIs are not
(temporarily) blocked for other reasons.

If the “virtual NMIs” VM-execution control (see Section
20.6.1) is 1, this bit does not control the blocking of NMIs.
Instead, it refers to “virtual-NMI blocking” (the fact that guest
software is not ready for an NMI).

31:4 Reserved VM entry will fail if these bits are not 0. See Section 22.3.1.5.

Table 20-3. Format of Interruptibility State (Contd.)

Bit
Position(s)

Bit Name Notes
Vol. 3 20-7

VIRTUAL-MACHINE CONTROL STRUCTURES
• VMCS link pointer (64 bits). This field is included for future expansion. Software
should set this field to FFFFFFFF_FFFFFFFFH to avoid VM-entry failures (see
Section 22.3.1.5).

20.5 HOST-STATE AREA
This section describes fields contained in the host-state area of the VMCS. As noted
earlier, processor state is loaded from these fields on every VM exit (see Section
23.5).

All fields in the host-state area correspond to processor registers:

• CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel
64 architecture).

• RSP and RIP (64 bits each; 32 bits on processors that do not support Intel 64
architecture).

1. For example, execution of a MOV to SS or a POP to SS may inhibit some debug exceptions for one
instruction. See Section 5.8.3 of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A. In addition, certain events incident to an instruction (for example, an INIT signal) may
take priority over debug traps generated by that instruction. See Table 5-2 in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Table 20-4. Format of Pending-Debug-Exceptions

Bit
Position(s)

Bit Name Notes

3:0 B3 – B0 When set, each of these bits indicates that the corresponding
breakpoint condition was met. Any of these bits may be set
even if the corresponding enabling bit in DR7 is not set.

11:4 Reserved VM entry fails if these bits are not 0. See Section 22.3.1.5.

12 Enabled
breakpoint

When set, this bit indicates that at least one data or I/O
breakpoint was met and was enabled in DR7.

13 Reserved VM entry fails if this bit is not 0. See Section 22.3.1.5.

14 BS When set, this bit indicates that a debug exception would
have been triggered by single-step execution mode.

63:15 Reserved VM entry fails if these bits are not 0. See Section 22.3.1.5.
Bits 63:32 exist only on processors that support Intel 64
architecture.
20-8 Vol. 3

VIRTUAL-MACHINE CONTROL STRUCTURES
• Selector fields (16 bits each) for the segment registers CS, SS, DS, ES, FS, GS,
and TR. There is no field in the host-state area for the LDTR selector.

• Base-address fields for FS, GS, TR, GDTR, and IDTR (64 bits each; 32 bits on
processors that do not support Intel 64 architecture).

• The following MSRs:

— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on
processors that do not support Intel 64 architecture).

In addition to the state identified here, some processor state components are loaded
with fixed values on every VM exit; there are no fields corresponding to these compo-
nents in the host-state area. See Section 23.5 for details of how state is loaded on
VM exits.

20.6 VM-EXECUTION CONTROL FIELDS
The VM-execution control fields govern VMX non-root operation. These are described
in Section 20.6.1 through Section 20.6.8.

20.6.1 Pin-Based VM-Execution Controls
The pin-based VM-execution controls constitute a 32-bit vector that governs the
handling of asynchronous events (for example: interrupts).1 Table 20-5 lists the
controls supported. See Chapter 21 for how these controls affect processor behavior
in VMX non-root operation.

1. Some asynchronous events cause VM exits regardless of the settings of the pin-based VM-exe-
cution controls (see Section 21.3).
Vol. 3 20-9

VIRTUAL-MACHINE CONTROL STRUCTURES
All other bits in this field are reserved, some to 0 and some to 1. Software should
consult the VMX capability MSR IA32_VMX_PINBASED_CTLS (see Appendix G.2) to
determine how to set reserved bits. Failure to set reserved bits properly causes
subsequent VM entries to fail (see Section 22.2).

20.6.2 Processor-Based VM-Execution Controls
The processor-based VM-execution controls constitute two 32-bit vectors that
govern the handling of synchronous events, mainly those caused by the execution of
specific instructions.1 These are the primary processor-based VM-execution
controls and the secondary processor-based VM-execution controls.

Table 20-6 and Table 20-7 list the processor-based VM-execution controls. See
Chapter 21 for more details of how these controls affect processor behavior in VMX
non-root operation.

Bit 31 of the primary processor-based VM-execution controls determines whether
the secondary processor-based VM-execution controls are used. If that bit is 0, the
logical processor operates as if all the secondary processor-based VM-execution
controls were 0. Processors that support only the 0-setting of bit 31 of the primary
processor-based VM-execution controls do not support the secondary processor-
based VM-execution controls.

Table 20-5. Definitions of Pin-Based VM-Execution Controls
Bit Position(s) Name Description

0 External-interrupt
exiting

If this control is 1, external interrupts cause VM exits.
Otherwise, they are delivered normally through the guest
interrupt-descriptor table (IDT). If this control is 1, the value
of RFLAGS.IF does not affect interrupt blocking.

3 NMI exiting If this control is 1, non-maskable interrupts (NMIs) cause
VM exits. Otherwise, they are delivered normally using
descriptor 2 of the IDT. This control also determines
interactions between IRET and blocking by NMI (see Section
21.4).

5 Virtual NMIs If this control is 1, NMIs are never blocked and the “blocking
by NMI” bit (bit 3) in the interruptibility-state field indicates
“virtual-NMI blocking” (see Table 20-3). This control also
interacts with the “NMI-window exiting” VM-execution
control (see Section 20.6.2).

This control can be set only if the “NMI exiting” VM-execution
control (above) is 1.

1. Some instructions cause VM exits regardless of the settings of the processor-based VM-execu-
tion controls (see Section 21.1.2), as do task switches (see Section 21.3).
20-10 Vol. 3

VIRTUAL-MACHINE CONTROL STRUCTURES
Table 20-6. Definitions of Primary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

2 Interrupt-window
exiting

If this control is 1, a VM exit occurs at the beginning of any
instruction if RFLAGS.IF = 1 and there are no other blocking
of interrupts (see Section 20.4.2).

3 Use TSC offsetting This control determines whether executions of RDTSC and
executions of RDMSR that read from the
IA32_TIME_STAMP_COUNTER MSR return a value modified
by the TSC offset field (see Section 20.6.5 and Section 21.4).

7 HLT exiting This control determines whether executions of HLT cause
VM exits.

9 INVLPG exiting This determines whether executions of INVLPG cause
VM exits.

10 MWAIT exiting This control determines whether executions of MWAIT cause
VM exits.

11 RDPMC exiting This control determines whether executions of RDPMC cause
VM exits.

12 RDTSC exiting This control determines whether executions of RDTSC cause
VM exits.

19 CR8-load exiting This control determines whether executions of MOV to CR8
cause VM exits. This control must be 0 on processors that do
not support Intel 64 architecture.

20 CR8-store exiting This control determines whether executions of MOV from
CR8 cause VM exits. This control must be 0 on processors
that do not support Intel 64 architecture.

21 Use TPR shadow Setting this control to 1 activates the TPR shadow, which is
maintained in a page of memory addressed by the virtual-
APIC address. See Section 21.4.

This control must be 0 on processors that do not support
Intel 64 architecture.

22 NMI-window
exiting

If this control is 1, a VM exit occurs at the beginning of any
instruction if there is no virtual-NMI blocking (see Section
20.4.2).

This control can be set only if the “virtual NMIs” VM-execution
control (see Section 20.6.1) is 1.

23 MOV-DR exiting This control determines whether executions of MOV DR
cause VM exits.

24 Unconditional I/O
exiting

This control determines whether executions of I/O
instructions (IN, INS/INSB/INSW/INSD, OUT, and
OUTS/OUTSB/OUTSW/OUTSD) cause VM exits.

This control is ignored if the “use I/O bitmaps” control is 1.
Vol. 3 20-11

VIRTUAL-MACHINE CONTROL STRUCTURES
All other bits in these fields are reserved, some to 0 and some to 1. Software should
consult the VMX capability MSRs IA32_VMX_PROCBASED_CTLS and
IA32_VMX_PROCBASED_CTLS2 (see Appendix G.2) to determine how to set
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to
fail (see Section 22.2).

25 Use I/O bitmaps This control determines whether I/O bitmaps are used to
restrict executions of I/O instructions (see Section 20.6.4 and
Section 21.1.3).

For this control, “0” means “do not use I/O bitmaps” and “1”
means “use I/O bitmaps.” If the I/O bitmaps are used, the
setting of the “unconditional I/O exiting” control is ignored.

28 Use MSR bitmaps This control determines whether MSR bitmaps are used to
control execution of the RDMSR and WRMSR instructions (see
Section 20.6.4 and Section 21.1.3).

For this control, “0” means “do not use MSR bitmaps” and “1”
means “use MSR bitmaps.” If the MSR bitmaps are not used,
all executions of the RDMSR and WRMSR instructions cause
VM exits.

Not all processors support the 1-setting of this control.
Software may consult the VMX capability MSR
IA32_VMX_PROCBASED_CTLS (see Appendix G.2) to
determine whether that setting is supported.

29 MONITOR exiting This control determines whether executions of MONITOR
cause VM exits.

30 PAUSE exiting This control determines whether executions of PAUSE cause
VM exits.

31 Activate secondary
controls

This control determines whether the secondary processor-
based VM-execution controls are used. If this control is 0, the
logical processor operates as if all the secondary processor-
based VM-execution controls were also 0.

Table 20-7. Definitions of Secondary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

0 Virtualize APIC
accesses

If this control is 1, a VM exit occurs on any attempt to access
data on the page with the APIC-access address. See Section
21.2.

Table 20-6. Definitions of Primary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description
20-12 Vol. 3

VIRTUAL-MACHINE CONTROL STRUCTURES
20.6.3 Exception Bitmap
The exception bitmap is a 32-bit field that contains one bit for each exception.
When an exception occurs, its vector is used to select a bit in this field. If the bit is 1,
the exception causes a VM exit. If the bit is 0, the exception is delivered normally
through the IDT, using the descriptor corresponding to the exception’s vector.

Whether a page fault (exception with vector 14) causes a VM exit is determined by
bit 14 in the exception bitmap as well as the error code produced by the page fault
and two 32-bit fields in the VMCS (the page-fault error-code mask and page-
fault error-code match). See Section 21.3 for details.

20.6.4 I/O-Bitmap Addresses
The VM-execution control fields include the 64-bit physical addresses of I/O
bitmaps A and B (each of which are 4 KBytes in size). I/O bitmap A contains one bit
for each I/O port in the range 0000H through 7FFFH; I/O bitmap B contains bits for
ports in the range 8000H through FFFFH.

A logical processor uses these bitmaps if and only if the “use I/O bitmaps” control is
1. If the bitmaps are used, execution of an I/O instruction causes a VM exit if any bit
in the I/O bitmaps corresponding to a port it accesses is 1. See Section 21.1.3 for
details. If the bitmaps are used, their addresses must be 4-KByte aligned.

20.6.5 Time-Stamp Counter Offset
VM-execution control fields include a 64-bit TSC-offset field. If the “RDTSC exiting”
control is 0 and the “use TSC offsetting” control is 1, this field controls executions of
the RDTSC instruction and executions of the RDMSR instruction that read from the
IA32_TIME_STAMP_COUNTER MSR. The signed value of the TSC offset is combined
with the contents of the time-stamp counter (using signed addition) and the sum is
reported to guest software in EDX:EAX. See Chapter 21 for a detailed treatment of
the behavior of RDTSC and RDMSR in VMX non-root operation.

20.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4
VM-execution control fields include guest/host masks and read shadows for the
CR0 and CR4 registers. These fields control executions of instructions that access
those registers (including CLTS, LMSW, MOV CR, and SMSW). They are 64 bits on
processors that support Intel 64 architecture and 32 bits on processors that do not.

In general, bits set to 1 in a guest/host mask correspond to bits “owned” by the host:

• Guest attempts to set them (using CLTS, LMSW, or MOV to CR) to values differing
from the corresponding bits in the corresponding read shadow cause VM exits.

• Guest reads (using MOV from CR or SMSW) return values for these bits from the
corresponding read shadow.
Vol. 3 20-13

VIRTUAL-MACHINE CONTROL STRUCTURES
Bits cleared to 0 correspond to bits “owned” by the guest; guest attempts to modify
them succeed and guest reads return values for these bits from the control register
itself.

See Chapter 21 for details regarding how these fields affect VMX non-root operation.

20.6.7 CR3-Target Controls
The VM-execution control fields include a set of 4 CR3-target values and a CR3-
target count. The CR3-target values each have 64 bits on processors that support
Intel 64 architecture and 32 bits on processors that do not. The CR3-target count has
32 bits on all processors.

An execution of MOV to CR3 in VMX non-root operation does not cause a VM exit if its
source operand matches one of these values. If the CR3-target count is n, only the
first n CR3-target values are considered; if the CR3-target count is 0, MOV to CR3
always causes a VM exit

There are no limitations on the values that can be written for the CR3-target values.
VM entry fails (see Section 22.2) if the CR3-target count is greater than 4.

Future processors may support a different number of CR3-target values. Software
should read the VMX capability MSR IA32_VMX_MISC (see Appendix G.5) to deter-
mine the number of values supported.

20.6.8 Controls for APIC Accesses
There are two mechanisms by which software accesses registers of the logical
processor’s local APIC:

• It can perform memory-mapped accesses to addresses in the 4-KByte page
referenced by the physical address in the IA32_APIC_BASE MSR (see Section
8.4.4, “Local APIC Status and Location” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A).

• In 64-bit mode, it can access the local APIC’s task-priority register (TPR) using
the MOV CR8 instruction.

There are two processor-based VM-execution controls (see Section 20.6.2) that
control such accesses. There are “use TPR shadow” and “virtualize APIC accesses”.
These controls interact with the following fields:

• APIC-access address (64 bits). This field is the physical address of the 4-KByte
APIC-access page. If the “virtualize APIC accesses” VM-execution control is 1,
operations that access this page may cause VM exits. See Section 21.2 and
Section 21.5.

The APIC-access address exists only on processors that support the 1-setting of
the “virtualize APIC accesses” VM-execution control.
20-14 Vol. 3

VIRTUAL-MACHINE CONTROL STRUCTURES
• Virtual-APIC address (64 bits). This field is the physical address of the 4-KByte
virtual-APIC page. The virtual-APIC page contains the TPR shadow, which
comprises bits 7:4 in byte 80H of that page. The TPR shadow is accessed by the
following operations if the “use TPR shadow” VM-execution control is 1:

— The MOV CR8 instructions (see Section 21.1.3 and Section 21.4).

— Accesses to byte 80H on the APIC-access page if, in addition, the “virtualize
APIC accesses” VM-execution control is 1 (see Section 21.5.3).

If the “use TPR shadow” VM-execution control is 1, the virtual-APIC address must
be 4-KByte aligned.

The virtual-APIC address exists only on processors that support the 1-setting of
the “use TPR shadow” VM-execution control.

• TPR threshold (32 bits). Bits 3:0 of this field determine the threshold below
which the TPR shadow (see previous item) cannot fall. A VM exit occurs after an
an operation (e.g., an execution of MOV to CR8) that reduces the TPR shadow
below this value. See Section 21.4 and Section 21.5.3.

The TPR threshold exists only on processors that support the 1-setting of the
“use TPR shadow” VM-execution control.

20.6.9 MSR-Bitmap Address
On processors that support the 1-setting of the “use MSR bitmaps” VM-execution
control, the VM-execution control fields include the 64-bit physical address of four
contiguous MSR bitmaps, which are each 1-KByte in size. This field does not exist
on processors that do not support the 1-setting of that control. The four bitmaps are:

• Read bitmap for low MSRs (located at the MSR-bitmap address). This contains
one bit for each MSR address in the range 00000000H – 00001FFFH. The bit
determines whether an execution of RDMSR applied to that MSR causes a
VM exit.

• Read bitmap for high MSRs (located at the MSR-bitmap address plus 1024).
This contains one bit for each MSR address in the range C0000000H –
C0001FFFH. The bit determines whether an execution of RDMSR applied to that
MSR causes a VM exit.

• Write bitmap for low MSRs (located at the MSR-bitmap address plus 2048).
This contains one bit for each MSR address in the range 00000000H –
00001FFFH. The bit determines whether an execution of WRMSR applied to that
MSR causes a VM exit.

• Write bitmap for high MSRs (located at the MSR-bitmap address plus 3072).
This contains one bit for each MSR address in the range C0000000H –
C0001FFFH. The bit determines whether an execution of WRMSR applied to that
MSR causes a VM exit.

A logical processor uses these bitmaps if and only if the “use MSR bitmaps” control
is 1. If the bitmaps are used, an execution of RDMSR or WRMSR causes a VM exit if
Vol. 3 20-15

VIRTUAL-MACHINE CONTROL STRUCTURES
the value of RCX is in neither of the ranges covered by the bitmaps or if the appro-
priate bit in the MSR bitmaps (corresponding to the instruction and the RCX value) is
1. See Section 21.1.3 for details. If the bitmaps are used, their address must be 4-
KByte aligned.

20.6.10 Executive-VMCS Pointer
The executive-VMCS pointer is a 64-bit field used in the dual-monitor treatment of
system-management interrupts (SMIs) and system-management mode (SMM). SMM
VM exits save this field as described in Section 24.16.2. VM entries that return from
SMM use this field as described in Section 24.16.4.

20.7 VM-EXIT CONTROL FIELDS
The VM-exit control fields govern the behavior of VM exits. They are discussed in
Section 20.7.1 and Section 20.7.2.

20.7.1 VM-Exit Controls
The VM-exit controls constitute a 32-bit vector that governs the basic operation of
VM exits. Table 20-8 lists the controls supported. See Chapter 23 for complete details
of how these controls affect VM exits.

Table 20-8. Definitions of VM-Exit Controls

Bit Position(s) Name Description

9 Host address-
space size

On processors that support Intel 64 architecture, this control
determines whether a logical processor is in 64-bit mode
after the next VM exit. Its value is loaded into CS.L,
IA32_EFER.LME, and IA32_EFER.LMA on every VM exit.1

This control must be 0 on processors that do not support
Intel 64 architecture.

NOTES:
1. Since Intel 64 architecture specifies that IA32_EFER.LMA is always set to the logical-AND of

CR0.PG and IA32_EFER.LME, and since CR0.PG is always 1 in VMX operation, IA32_EFER.LMA is
always identical to IA32_EFER.LME in VMX operation.

15 Acknowledge
interrupt on exit

This control affects VM exits due to external interrupts:

• If such a VM exit occurs and this control is 1, the logical
processor acknowledges the interrupt controller, acquiring
the interrupt’s vector. The vector is stored in the VM-exit
interruption-information field, which is marked valid.

• If such a VM exit occurs and this control is 0, the interrupt
is not acknowledged and the VM-exit interruption-
information field is marked invalid.
20-16 Vol. 3

VIRTUAL-MACHINE CONTROL STRUCTURES
All other bits in this field are reserved, some to 0 and some to 1. Software should
consult the VMX capability MSR IA32_VMX_EXIT_CTLS (see Appendix G.3) to deter-
mine how it should set the reserved bits. Failure to set reserved bits properly causes
subsequent VM entries to fail (see Section 22.2).

20.7.2 VM-Exit Controls for MSRs
A VMM may specify lists of MSRs to be stored and loaded on VM exits. The following
VM-exit control fields determine how MSRs are stored on VM exits:

• VM-exit MSR-store count (32 bits). This field specifies the number of MSRs to
be stored on VM exit. It is recommended that this count not exceed 512 bytes.1
Otherwise, unpredictable processor behavior (including a machine check) may
result during VM exit.

• VM-exit MSR-store address (64 bits). This field contains the physical address
of the VM-exit MSR-store area. The area is a table of entries, 16 bytes per entry,
where the number of entries is given by the VM-exit MSR-store count. The format
of each entry is given in Table 20-9. If the VM-exit MSR-store count is not zero,
the address must be 16-byte aligned.

See Section 23.4 for how this area is used on VM exits.

The following VM-exit control fields determine how MSRs are loaded on VM exits:

• VM-exit MSR-load count (32 bits). This field contains the number of MSRs to
be loaded on VM exit. It is recommended that this count not exceed 512 bytes.
Otherwise, unpredictable processor behavior (including a machine check) may
result during VM exit.2

1. Future implementations may allow more MSRs to be stored reliably. Software should consult the
VMX capability MSR IA32_VMX_MISC to determine the number supported (see Appendix G.5).

Table 20-9. Format of an MSR Entry
Bit Position(s) Contents

31:0 MSR index

63:32 Reserved

127:64 MSR data

2. Future implementations may allow more MSRs to be loaded reliably. Software should consult the
VMX capability MSR IA32_VMX_MISC to determine the number supported (see Appendix G.5).
Vol. 3 20-17

VIRTUAL-MACHINE CONTROL STRUCTURES
• VM-exit MSR-load address (64 bits). This field contains the physical address of
the VM-exit MSR-load area. The area is a table of entries, 16 bytes per entry,
where the number of entries is given by the VM-exit MSR-load count (see
Table 20-9). If the VM-exit MSR-load count is not zero, the address must be
16-byte aligned.

See Section 23.6 for how this area is used on VM exits.

20.8 VM-ENTRY CONTROL FIELDS
The VM-entry control fields govern the behavior of VM entries. They are discussed in
Sections 20.8.1 through 20.8.3.

20.8.1 VM-Entry Controls
The VM-entry controls constitute a 32-bit vector that governs the basic operation of
VM entries. Table 20-10 lists the controls supported. See Chapter 22 for how these
controls affect VM entries.

All other bits in this field are reserved, some to 0 and some to 1. Software should
consult the VMX capability MSR IA32_VMX_ENTRY_CTLS (see Appendix G.4) to
determine how it should set the reserved bits. Failure to set reserved bits properly
causes subsequent VM entries to fail (see Section 22.2).

Table 20-10. Definitions of VM-Entry Controls
Bit Position(s) Name Description

9 IA-32e mode guest On processors that support Intel 64 architecture, this control
determines whether the logical processor is in IA-32e mode
after VM entry. Its value is loaded into IA32_EFER.LMA and
IA32_EFER.LME as part of VM entry.1

This control must be 0 on processors that do not support
Intel 64 architecture.

NOTES:
1. Since Intel 64 architecture specifies that IA32_EFER.LMA is always set to the logical-AND of

CR0.PG and IA32_EFER.LME, and since CR0.PG is always 1 in VMX operation; IA32_EFER.LMA is
always identical to IA32_EFER.LME in VMX operation.

10 Entry to SMM This control determines whether the logical processor is in
system-management mode (SMM) after VM entry. This
control must be 0 for any VM entry from outside SMM.

11 Deactivate dual-
monitor treatment

If set to 1, the default treatment of SMIs and SMM is in effect
after the VM entry (see Section 24.16.7). This control must
be 0 for any VM entry from outside SMM.
20-18 Vol. 3

VIRTUAL-MACHINE CONTROL STRUCTURES
20.8.2 VM-Entry Controls for MSRs
A VMM may specify a list of MSRs to be loaded on VM entries. The following VM-entry
control fields manage this functionality:

• VM-entry MSR-load count (32 bits). This field contains the number of MSRs to
be loaded on VM entry. It is recommended that this count not exceed 512 bytes.
Otherwise, unpredictable processor behavior (including a machine check) may
result during VM entry.1

• VM-entry MSR-load address (64 bits). This field contains the physical address
of the VM-entry MSR-load area. The area is a table of entries, 16 bytes per entry,
where the number of entries is given by the VM-entry MSR-load count. The
format of entries is described in Table 20-9. If the VM-entry MSR-load count is not
zero, the address must be 16-byte aligned.

See Section 22.4 for details of how this area is used on VM entries.

20.8.3 VM-Entry Controls for Event Injection
VM entry can be configured to conclude by delivering an event through the guest IDT
(after all guest state and MSRs have been loaded). This process is called event
injection and is controlled by the following three VM-entry control fields:

• VM-entry interruption-information field (32 bits). This field provides details
about the event to be injected. Table 20-11 describes the field.

1. Future implementations may allow more MSRs to be loaded reliably. Software should consult the
VMX capability MSR IA32_VMX_MISC to determine the number supported (see Appendix G.5).

Table 20-11. Format of the VM-Entry Interruption-Information Field
Bit
Position(s)

Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Reserved
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Software interrupt
5: Privileged software exception
6: Software exception
7: Reserved

11 Deliver error code (0 = do not deliver; 1 = deliver)

30:12 Reserved

31 Valid
Vol. 3 20-19

VIRTUAL-MACHINE CONTROL STRUCTURES
— The vector (bits 7:0) determines which entry in the IDT is used.

— The interruption type (bits 10:8) determines details of how the injection is
performed. In general, a VMM should use the type hardware exception for
all exceptions other than breakpoint exceptions (#BP; generated by INT3)
and overflow exceptions (#OF; generated by INTO); it should use the type
software exception for #BP and #OF.

— For exceptions, the deliver-error-code bit (bit 11) determines whether
delivery pushes an error code on the guest stack.

— VM entry injects an event if and only if the valid bit (bit 31) is 1.

• VM-entry exception error code (32 bits). This field is used if and only if the
valid bit (bit 31) and the deliver-error-code bit (bit 11) are both set in the
VM-entry interruption-information field.

• VM-entry instruction length (32 bits). For injection of events whose type is
software interrupt, software exception, or privileged software exception, this
field is used to determine the value of RIP that is pushed on the stack.

See Section 22.5 for details regarding the mechanics of event injection, including the
use of the interruption type and the VM-entry instruction length.

VM exits clear the valid bit (bit 31) in the VM-entry interruption-information field.

20.9 VM-EXIT INFORMATION FIELDS
The VMCS contains a section of read-only fields that contain information about the
most recent VM exit. Attempts to write to these fields with VMWRITE fail (see
“VMWRITE—Write Field to Virtual-Machine Control Structure” in Chapter 5 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B).

20.9.1 Basic VM-Exit Information
The following VM-exit information fields provide basic information about a VM exit:

• Exit reason (32 bits). This field encodes the reason for the VM exit and has the
structure given in Table 20-12.
20-20 Vol. 3

VIRTUAL-MACHINE CONTROL STRUCTURES
— Bits 15:0 provide basic information about the cause of the VM exit (if bit 31 is
clear) or of the VM-entry failure (if bit 31 is set). Appendix I enumerates the
basic exit reasons.

— Bit 29 is set if and only if the processor was in VMX root operation at the time
the VM exit occurred. This can happen only for SMM VM exits. See Section
24.16.2.

— Because some VM-entry failures load processor state from the host-state
area (see Section 22.7), software must be able to distinguish such cases from
true VM exits. Bit 31 is used for that purpose.

• Exit qualification (64 bits; 32 bits on processors that do not support Intel 64
architecture). This field contains additional information about the cause of
VM exits due to the following: debug exceptions; page-fault exceptions; start-up
IPIs (SIPIs); task switches; INVLPG; VMCLEAR; VMPTRLD; VMPTRST; VMREAD;
VMWRITE; VMXON; control-register accesses; MOV DR; I/O instructions; and
MWAIT. The format of the field depends on the cause of the VM exit. See Section
23.2.1 for details.

20.9.2 Information for VM Exits Due to Vectored Events
Event-specific information is provided for VM exits due to the following vectored
events: exceptions (including those generated by the instructions INT3, INTO,
BOUND, and UD2); external interrupts that occur while the “acknowledge interrupt
on exit” VM-exit control is 1; and non-maskable interrupts (NMIs). This information
is provided in the following fields:

• VM-exit interruption information (32 bits). This field receives basic
information associated with the event causing the VM exit. Table 20-13 describes
this field.

Table 20-12. Format of Exit Reason

Bit
Position(s)

Contents

15:0 Basic exit reason

28:16 Reserved (cleared to 0)

29 VM exit from VMX root operation

30 Reserved (cleared to 0)

31 VM-entry failure (0 = true VM exit; 1 = VM-entry failure)
Vol. 3 20-21

VIRTUAL-MACHINE CONTROL STRUCTURES
• VM-exit interruption error code (32 bits). For VM exits caused by hardware
exceptions that would have delivered an error code on the stack, this field
receives that error code.

Section 23.2.2 provides details of how these fields are saved on VM exits.

20.9.3 Information for VM Exits That Occur During Event Delivery
Additional information is provided for VM exits that occur during event delivery in
VMX non-root operation.1 This information is provided in the following fields:

• IDT-vectoring information (32 bits). This field receives basic information
associated with the event that was being delivered when the VM exit occurred.
Table 20-14 describes this field.

Table 20-13. Format of the VM-Exit Interruption-Information Field
Bit Position(s) Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4 – 5: Not used
6: Software exception
7: Not used

11 Error code valid (0 = invalid; 1 = valid)

12 NMI unblocking due to IRET

30:13 Reserved (cleared to 0)

31 Valid

1. This includes cases in which the event delivery was caused by event injection as part of
VM entry; see Section 22.5.2.
20-22 Vol. 3

VIRTUAL-MACHINE CONTROL STRUCTURES
• IDT-vectoring error code (32 bits). For VM exits the occur during delivery of
hardware exceptions that would have delivered an error code on the stack, this
field receives that error code.

See Section 23.2.3 provides details of how these fields are saved on VM exits.

20.9.4 Information for VM Exits Due to Instruction Execution
The following fields are used for VM exits caused by attempts to execute certain
instructions in VMX non-root operation:

• VM-exit instruction length (32 bits). For VM exits resulting from instruction
execution, this field receives the length in bytes of the instruction whose
execution led to the VM exit.1 See Section 23.2.4 for details of when and how this
field is used.

• Guest linear address (64 bits; 32 bits on processors that do not support Intel
64 architecture). This field is used in the following cases:

— VM exits due to attempts to execute LMSW with a memory operand.

— VM exits due to attempts to execute INS or OUTS.

Table 20-14. Format of the IDT-Vectoring Information Field
Bit
Position(s)

Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Software interrupt
5: Privileged software exception
6: Software exception
7: Not used

11 Error code valid (0 = invalid; 1 = valid)

12 Undefined

30:13 Reserved (cleared to 0)

31 Valid

1. This field is also used for VM exits that occur during the delivery of a software interrupt or soft-
ware exception.
Vol. 3 20-23

VIRTUAL-MACHINE CONTROL STRUCTURES
— VM exits due to system-management interrupts (SMIs) that arrive
immediately after retirement of I/O instructions.

See Section 23.2.4 for details of when and how this field is used.

• VM-exit instruction information (32 bits). This field is used in the following
cases:

— VM exits due to attempts to execute VMCLEAR, VMPTRLD, VMPTRST,
VMREAD, VMWRITE, or VMXON.

— On some processors, VM exits due to attempts to execute INS or OUTS.1

The format of the field depends on the cause of the VM exit. See Section 23.2.4
for details.

The following fields (64 bits each; 32 bits on processors that do not support Intel 64
architecture) are used only for VM exits due to SMIs that arrive immediately after
retirement of I/O instructions. They provide information about that I/O instruction:

• I/O RCX. The value of RCX before the I/O instruction started.

• I/O RSI. The value of RSI before the I/O instruction started.

• I/O RDI. The value of RDI before the I/O instruction started.

• I/O RIP. The value of RIP before the I/O instruction started (the RIP that
addressed the I/O instruction).

20.9.5 VM-Instruction Error Field
The 32-bit VM-instruction error field does not provide information about the most
recent VM exit. In fact, it is not modified on VM exits. Instead, it provides information
about errors encountered by a non-faulting execution of one of the VMX instructions.

20.10 SOFTWARE ACCESS TO THE VMCS AND RELATED
STRUCTURES

This section details guidelines that software should observe when accessing a VMCS
and related structures. It also provides descriptions of consequences for failing to
follow guidelines.

20.10.1 Software Access to the Virtual-Machine Control Structure
To ensure proper processor behavior, software should observe certain guidelines
when accessing an active VMCS.

1. Whether the processor provides this information on these VM exits can be determined by con-
sulting the VMX capability MSR IA32_VMX_BASIC (see Appendix G.1).
20-24 Vol. 3

VIRTUAL-MACHINE CONTROL STRUCTURES
No VMCS should ever be active on more than one logical processor. If a VMCS is to be
“migrated” from one logical processor to another, the first logical processor should
execute VMCLEAR for the VMCS (to make it inactive on that logical processor and to
ensure that all VMCS data are in memory) before the other logical processor
executes VMPTRLD for the VMCS (to make it active on the second logical processor).

Software should never access or modify the VMCS data of an active VMCS using ordi-
nary memory operations, in part because the format used to store the VMCS data is
implementation-specific and not architecturally defined, and also because a logical
processor may maintain some VMCS data of an active VMCS on the processor and not
in the VMCS region. The following items detail some of the hazards of performing
such accesses:

• Any data read from a VMCS with an ordinary memory read does not reliably
reflect the state of the VMCS. Results may vary from time to time or from logical
processor to logical processor.

• Writing to a VMCS with an ordinary memory write is not guaranteed to have a
deterministic effect on the VMCS. Doing so may lead to unpredictable behavior.
Any or all of the following may occur: (1) VM entries may fail for unexplained
reasons or may load undesired processor state; (2) the processor may not
correctly support VMX non-root operation as documented in Chapter 21 and may
generate unexpected VM exits; and (3) VM exits may load undesired processor
state, save incorrect state into the VMCS, or cause the logical processor to
transition to a shutdown state.

Software can avoid such problems by removing any linear-address mappings to a
VMCS region before executing a VMPTRLD for that region and by not remapping it
until after executing VMCLEAR for that region.

Software should use the VMREAD and VMWRITE instructions to access the different
fields in the current VMCS (see Section 20.10.2).

Software should initialize all fields in a VMCS (using VMWRITE) before using the
VMCS for VM entry. Failure to do so may result in unpredictable behavior; for
example, a VM entry may fail for unexplained reasons, or a successful transition
(VM entry or VM exit) may load processor state with unexpected values.

20.10.2 VMREAD, VMWRITE, and Encodings of VMCS Fields
Every field of the VMCS is associated with a 32-bit value that is its encoding. The
encoding is provided in an operand to VMREAD and VMWRITE when software wishes
to read or write that field. These instructions fail if given, in 64-bit mode, an operand
that sets an encoding bit beyond bit 32. See Chapter 5 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2B, for a description of these
instructions.
Vol. 3 20-25

VIRTUAL-MACHINE CONTROL STRUCTURES
The structure of the 32-bit encodings of the VMCS components is determined princi-
pally by the width of the fields and their function in the VMCS. See Table 20-15.

The following items detail the meaning of the bits in each encoding:

• Field width. Bits 14:13 encode the width of the field.

1) A value of 0 indicates a 16-bit field.

b. A value of 1 indicates a 64-bit field.

c. A value of 2 indicates a 32-bit field.

d. A value of 3 indicates a natural-width field. Such fields have 64 bits on
processors that support Intel 64 architecture and 32 bits on processors that
do not.

Fields whose encodings use value 1 are specially treated to allow 32-bit software
access to all 64 bits of the field. Such access is allowed by defining, for each such
field, an encoding that allows direct access to the high 32 bits of the field. See
below.

• Field type. Bits 11:10 encode the type of VMCS field: control, guest-state, host-
state, or read-only data. The last category includes the VM-exit information fields
and the VM-instruction error field.

• Index. Bits 9:1 distinguish components with the same field width and type.

Table 20-15. Structure of VMCS Component Encoding

Bit Position(s) Contents

31:15 Reserved (must be 0)

14:13 Width:

0: 16-bit
1: 64-bit
2: 32-bit
3: natural-width

12 Reserved (must be 0)

11:10 Type:

0: control
1: read-only data
2: guest state
3: host state

9:1 Index

0 Access type (0 = full; 1 = high); must be full for 16-bit, 32-bit, and natural-
width fields
20-26 Vol. 3

VIRTUAL-MACHINE CONTROL STRUCTURES
• Access type. Bit 0 must be 0 for all fields except for 64-bit fields (those with
field-width 1; see above). A VMREAD or VMWRITE using an encoding with this bit
cleared to 0 accesses the entire field. For a 64-bit field with field-width 1, a
VMREAD or VMWRITE using an encoding with this bit set to 1 accesses only the
high 32 bits of the field.

Appendix H gives the encodings of all fields in the VMCS.

The following describes the operation of VMREAD and VMWRITE based on processor
mode, VMCS-field width, and access type:

• 16-bit fields:

— A VMREAD returns the value of the field in bits 15:0 of the destination
operand; other bits of the destination operand are cleared to 0.

— A VMWRITE writes the value of bits 15:0 of the source operand into the VMCS
field; other bits of the source operand are not used.

• 32-bit fields:

— A VMREAD returns the value of the field in bits 31:0 of the destination
operand; in 64-bit mode, bits 63:32 of the destination operand are cleared to
0.

— A VMWRITE writes the value of bits 31:0 of the source operand into the VMCS
field; in 64-bit mode, bits 63:32 of the source operand are not used.

• 64-bit fields and natural-width fields using the full access type outside IA-32e
mode.

— A VMREAD returns the value of bits 31:0 of the field in its destination
operand; bits 63:32 of the field are ignored.

— A VMWRITE writes the value of its source operand to bits 31:0 of the field and
clears bits 63:32 of the field.

• 64-bit fields and natural-width fields using the full access type in 64-bit mode
(only on processors that support Intel 64 architecture).

— A VMREAD returns the value of the field in bits 63:0 of the destination
operand

— A VMWRITE writes the value of bits 63:0 of the source operand into the VMCS
field.

• 64-bit fields using the high access type.

— A VMREAD returns the value of bits 63:32 of the field in bits 31:0 of the
destination operand; in 64-bit mode, bits 63:32 of the destination operand
are cleared to 0.

— A VMWRITE writes the value of bits 31:0 of the source operand to bits 63:32
of the field; in 64-bit mode, bits 63:32 of the source operand are not used.

Software seeking to read a 64-bit field outside IA-32e mode can use VMREAD with
the full access type (reading bits 31:0 of the field) and VMREAD with the high access
type (reading bits 63:32 of the field); the order of the two VMREAD executions is not
Vol. 3 20-27

VIRTUAL-MACHINE CONTROL STRUCTURES
important. Software seeking to modify a 64-bit field outside IA-32e mode should first
use VMWRITE with the full access type (establishing bits 31:0 of the field while
clearing bits 63:32) and then use VMWRITE with the high access type (establishing
bits 63:32 of the field).

20.10.3 Software Access to Related Structures
In addition to data in the VMCS region itself, VMX non-root operation can be
controlled by data structures that are referenced by pointers in a VMCS (for example,
the I/O bitmaps). Note that, while the pointers to these data structures are parts of
the VMCS, the data structures themselves are not. They are not accessible using
VMREAD and VMWRITE but by ordinary memory writes.

Software should ensure that each such data structure is modified only when no
logical processor with a current VMCS that references it is in VMX non-root operation.
Doing otherwise may lead to unpredictable behavior (including behaviors identified in
Section 20.10.1).

20.10.4 VMXON Region
Before executing VMXON, software allocates a region of memory (called the VMXON
region)1 that the logical processor uses to support VMX operation. The physical
address of this region (the VMXON pointer) is provided in an operand to VMXON. The
VMXON pointer is subject to the limitations that apply to VMCS pointers:

• The VMXON pointer must be 4-KByte aligned (bits 11:0 must be zero).

• On processors that support Intel 64 architecture, the VMXON pointer must not
set any bits beyond the processor’s physical-address width.2 On processors that
do not support Intel 64 architecture, the VMXON pointer must not set any bits in
the range 63:32.

Before executing VMXON, software should write the VMCS revision identifier (see
Section 20.2) to the VMXON region. It need not initialize the VMXON region in any
other way. Software should use a separate region for each logical processor and
should not access or modify the VMXON region of a logical processor between execu-
tion of VMXON and VMXOFF on that logical processor. Doing otherwise may lead to
unpredictable behavior (including behaviors identified in Section 20.10.1).

1. The amount of memory required for the VMXON region is the same as that required for a VMCS
region. This size is implementation specific and can be determined by consulting the VMX capa-
bility MSR IA32_VMX_BASIC (see Appendix G.1).

2. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
20-28 Vol. 3

VIRTUAL-MACHINE CONTROL STRUCTURES
20.11 USING VMCLEAR TO INITIALIZE A VMCS REGION
A processor may use the VMCS data portion of a VMCS region to maintain implemen-
tation-specific information about the VMCS. When software first allocates a region of
memory for use as a VMCS region, the data in that region may be interpreted in an
implementation-specific manner. In addition to its other functions, the VMCLEAR
instruction initializes any implementation-specific information in the VMCS region
referenced by its operand. To avoid the uncertainties of implementation-specific
behavior, software should execute VMCLEAR on a VMCS region before making the
corresponding VMCS active with VMPTRLD.

A logical processor uses the VMCS region to maintain the launch state of the corre-
sponding VMCS. The launch state may be clear or launched. The VMCLEAR instruc-
tion puts the VMCS referenced by its operand into the clear state. The VMLAUNCH
instruction requires a VMCS whose launch state is clear and changes its launch state
to launched. The VMRESUME instruction requires a VMCS whose launch state is
launched. There are no other ways to modify the launch state of a VMCS (it cannot be
modified using VMWRITE) and there is no direct way to read it (it cannot be read
using VMREAD). Improper software usage (for example, software writing to the
VMCS data of an active VMCS) may leave the launch state undefined.

The following software usage is consistent with these limitations:

• VMCLEAR should be executed for a VMCS before it is used for VM entry.

• VMLAUNCH should be used for the first VM entry using a VMCS after VMCLEAR
has been executed for that VMCS.

• VMRESUME should be used for any subsequent VM entry using a VMCS (until the
next execution of VMCLEAR for the VMCS).

It is expected that, in general, VMRESUME will have lower latency than VMLAUNCH.
Since “migrating” a VMCS from one logical processor to another requires use of
VMCLEAR (see Section 20.10.1), which sets the launch state of the VMCS to “clear,”
such migration requires the next VM entry to be performed using VMLAUNCH. Soft-
ware developers can avoid the performance cost of increased VM-entry latency by
avoiding unnecessary migration of a VMCS from one logical processor to another.
Vol. 3 20-29

VIRTUAL-MACHINE CONTROL STRUCTURES
20-30 Vol. 3

CHAPTER 21
VMX NON-ROOT OPERATION

In a virtualized environment using VMX, the guest software stack typically runs on a
logical processor in VMX non-root operation. This mode of operation is similar to that
of ordinary processor operation outside of the virtualized environment. This chapter
describes the differences between VMX non-root operation and ordinary processor
operation with special attention to causes of VM exits (which bring a logical processor
from VMX non-root operation to root operation). The differences between VMX non-
root operation and ordinary processor operation are described in the following
sections:

• Section 21.1, “Instructions That Cause VM Exits”

• Section 21.2, “APIC-Access VM Exits”

• Section 21.3, “Other Causes of VM Exits”

• Section 21.4, “Changes to Instruction Behavior in VMX Non-Root Operation”

• Section 21.5, “APIC Accesses That Do Not Cause VM Exits”

• Section 21.6, “Other Changes in VMX Non-Root Operation”

Chapter 20, “Virtual-Machine Control Structures,” describes the data control struc-
ture that governs VMX operation (root and non-root). Chapter 22, “VM Entries,”
describes the operation of VM entries which allow the processor to transition from
VMX root operation to non-root operation.

21.1 INSTRUCTIONS THAT CAUSE VM EXITS
Certain instructions may cause VM exits if executed in VMX non-root operation.
Unless otherwise specified, such VM exits are “fault-like,” meaning that the instruc-
tion causing the VM exit does not execute and no processor state is updated by the
instruction. Section 23.1 details architectural state in the context of a VM exit.

Section 21.1.1 defines the prioritization between faults and VM exits for instructions
subject to both. Section 21.1.2 identifies instructions that cause VM exits whenever
they are executed in VMX non-root operation (and thus can never be executed in
VMX non-root operation). Section 21.1.3 identifies instructions that cause VM exits
depending on the settings of certain VM-execution control fields (see Section 20.6).

21.1.1 Relative Priority of Faults and VM Exits
The following principles describe the ordering between existing faults and VM exits:

• Certain exceptions have priority over VM exits. These include invalid-opcode
exceptions, faults based on privilege level, and general-protection exceptions
Vol. 3 21-1

VMX NON-ROOT OPERATION
that are based on checking I/O permission bits in the task-state segment (TSS).
For example, execution of RDMSR with CPL = 3 generates a general-protection
exception and not a VM exit.1

• Faults incurred while fetching instruction operands have priority over VM exits
that are conditioned based on the contents of those operands (see LMSW in
Section 21.1.3).

• VM exits caused by execution of the INS and OUTS instructions (resulting either
because the “unconditional I/O exiting” VM-execution control is 1 or because the
“use I/O bitmaps control is 1) have priority over the following faults:

— A general-protection fault due to the relevant segment (ES for INS; DS for
OUTS unless overridden by an instruction prefix) being unusable

— A general-protection fault due to an offset beyond the limit of the relevant
segment

— An alignment-check exception

• Fault-like VM exits have priority over general-protection exceptions other than
those mentioned above. For example, RDMSR of a non-existent MSR with
CPL = 0 generates a VM exit and not a general-protection exception.

When Section 21.1.2 or Section 21.1.3 (below) identify an instruction execution that
may lead to a VM exit, it is assumed that the instruction does not incur a fault that
takes priority over a VM exit.

21.1.2 Instructions That Cause VM Exits Unconditionally
The following instructions cause VM exits when they are executed in VMX non-root
operation: CPUID, INVD, MOV from CR3. This is also true of instructions introduced
with VMX, which include: VMCALL,2 VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST,
VMREAD, VMRESUME, VMWRITE, VMXOFF, and VMXON.

21.1.3 Instructions That Cause VM Exits Conditionally
Certain instructions cause VM exits in VMX non-root operation depending on the
setting of the VM-execution controls. The following instructions can cause “fault-like”
VM exits based on the conditions described:

• CLTS. The CLTS instruction causes a VM exit if the bits in position 3 (corre-
sponding to CR0.TS) are set in both the CR0 guest/host mask and the CR0 read
shadow.

1. MOV DR is an exception to this rule; see Section 21.1.3.

2. Under the dual-monitor treatment of SMIs and SMM, executions of VMCALL cause SMM VM exits
in VMX root operation outside SMM. See Section 24.16.2.
21-2 Vol. 3

VMX NON-ROOT OPERATION
• HLT. The HLT instruction causes a VM exit if the “HLT exiting” VM-execution
control is 1.

• IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD. The
behavior of each of these instructions is determined by the settings of the
“unconditional I/O exiting” and “use I/O bitmaps” VM-execution controls:

— If both controls are 0, the instruction executes normally.

— If the “unconditional I/O exiting” VM-execution control is 1 and the “use I/O
bitmaps” VM-execution control is 0, the instruction causes a VM exit.

— If the “use I/O bitmaps” VM-execution control is 1, the instruction causes a
VM exit if it attempts to access an I/O port corresponding to a bit set to 1 in
the appropriate I/O bitmap (see Section 20.6.4). If an I/O operation “wraps
around” the 16-bit I/O-port space (accesses ports FFFFH and 0000H), the I/O
instruction causes a VM exit (the “unconditional I/O exiting” VM-execution
control is ignored if the “use I/O bitmaps” VM-execution control is 1).

See Section 21.1.1 for information regarding the priority of VM exits relative to
faults that may be caused by the INS and OUTS instructions.

• INLVPG. The INLVPG instruction causes a VM exit if the “INLVPG exiting”
VM-execution control is 1.

• LMSW. In general, the LMSW instruction causes a VM exit if it would write, for
any bit set in the low 4 bits of the CR0 guest/host mask, a value different than the
corresponding bit in the CR0 read shadow. Note that LMSW never clears bit 0 of
CR0 (CR0.PE). Thus, LMSW causes a VM exit if either of the following are true:

— The bits in position 0 (corresponding to CR0.PE) are set in both the CR0
guest/mask and the source operand, and the bit in position 0 is clear in the
CR0 read shadow.

— For any bit position in the range 3:1, the bit in that position is set in the CR0
guest/mask and the values of the corresponding bits in the source operand
and the CR0 read shadow differ.

• MONITOR. The MONITOR instruction causes a VM exit if the “MONITOR exiting”
VM-execution control is 1.

• MOV from CR8. The MOV from CR8 instruction (which can be executed only in
64-bit mode) causes a VM exit if the “CR8-store exiting” VM-execution control is
1. Note that, if this control is 0, the behavior of the MOV from CR8 instruction is
modified if the “use TPR shadow” VM-execution control is 1 (see Section 21.4).

• MOV to CR0. The MOV to CR0 instruction causes a VM exit unless the value of its
source operand matches, for the position of each bit set in the CR0 guest/host
mask, the corresponding bit in the CR0 read shadow. (If every bit is clear in the
CR0 guest/host mask, MOV to CR0 cannot cause a VM exit.)

• MOV to CR3. The MOV to CR3 instruction causes a VM exit unless the value of its
source operand is equal to one of the CR3-target values specified in the VMCS.
Note that, if the CR3-target count in n, only the first n CR3-target values are
considered; if the CR3-target count is 0, MOV to CR3 always causes a VM exit.
Vol. 3 21-3

VMX NON-ROOT OPERATION
• MOV to CR4. The MOV to CR4 instruction causes a VM exit unless the value of its
source operand matches, for the position of each bit set in the CR4 guest/host
mask, the corresponding bit in the CR4 read shadow.

• MOV to CR8. The MOV to CR8 instruction (which can be executed only in 64-bit
mode) causes a VM exit if the “CR8-load exiting” VM-execution control is 1. Note
that, if this control is 0, the behavior of the MOV to CR8 instruction is modified if
the “use TPR shadow” VM-execution control is 1 (see Section 21.4) and it may
cause a trap-like VM exit (see below).

• MOV DR. The MOV DR instruction causes a VM exit if the “MOV-DR exiting”
VM-execution control is 1. Such VM exits represent an exception to the principles
identified in Section 21.1.1; they take priority over all faults that may occur in the
execution of MOV DR.

• MWAIT. The MWAIT instruction causes a VM exit if the “MWAIT exiting”
VM-execution control is 1.

• PAUSE. The PAUSE instruction causes a VM exit if the “PAUSE exiting”
VM-execution control is 1.

• RDMSR. The RDMSR instruction causes a VM exit if any of the following are true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of RCX is not in the range 00000000H – 00001FFFH or
C0000000H – C0001FFFH.

— The value of RCX is in the range 00000000H – 00001FFFH and the nth bit in
read bitmap for low MSRs is 1, where n is the value of RCX.

— The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in
read bitmap for high MSRs is 1, where n is the value of RCX & 00001FFFH.

See Section 20.6.9 for details regarding how these bitmaps are identified.

• RDPMC. The RDPMC instruction causes a VM exit if the “RDPMC exiting”
VM-execution control is 1.

• RDTSC. The RDTSC instruction causes a VM exit if the “RDTSC exiting”
VM-execution control is 1.

• RSM. The RSM instruction causes a VM exit if executed in system-management
mode (SMM).1

• WRMSR. The WRMSR instruction causes a VM exit if any of the following are
true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of RCX is not in the range 00000000H – 00001FFFH or
C0000000H – C0001FFFH.

1. Execution of the RSM instruction outside SMM causes an invalid-opcode exception regardless of
whether the processor is in VMX operation. It also does so in VMX root operation in SMM; see
Section 24.16.3.
21-4 Vol. 3

VMX NON-ROOT OPERATION
— The value of RCX is in the range 00000000H – 00001FFFH and the nth bit in
write bitmap for low MSRs is 1, where n is the value of RCX.

— The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in
write bitmap for high MSRs is 1, where n is the value of RCX & 00001FFFH.

See Section 20.6.9 for details regarding how these bitmaps are identified.

The MOV to CR8 instruction (which can be executed only in 64-bit mode) may cause
a “trap-like” VM exit. This means that the instruction completes before the VM exit
occurs and that processor state is updated by the instruction (for example, the value
of RIP saved in the guest-state area of the VMCS references the next instruction).
Specifically, a VM exit occurs after execution of MOV to CR8 if the following are true:

• The “CR8-load exiting” VM-execution control is 0.

• The “use TPR shadow” VM-execution control is 1.

• The execution of MOV to CR8 reduces the value of the TPR shadow below that of
the TPR threshold VM-execution control field (see Section 20.6.8 and Section
21.4).

21.2 APIC-ACCESS VM EXITS
If the “virtualize APIC accesses” VM-execution control is 1, an attempt to access
memory using a physical address on the APIC-access page (see Section 20.6.8)
causes a VM exit. Such a VM exit is called an APIC-access VM exit.

In general, an operation that attempts to access memory with a physical address on
the APIC-access page causes an APIC-access VM exit. This may be qualified based on
the type of access. Section 21.2.1 describes the treatment of linear accesses, while
Section 21.2.2 describes that of physical accesses. Section 21.2.3 discusses
accesses to the TPR field on the APIC-access page (called VTPR accesses), which do
not, if the “use TPR shadow” VM-execution control is 1, cause APIC-access VM exits.

21.2.1 Linear Accesses to the APIC-Access Page
An access to the APIC-access page is called a linear access if (1) it results from a
memory access using a linear address; and (2) the access’s physical address is the
translation of that linear address. Section 21.2.1.1 specifies which linear accesses to
the APIC-access page cause APIC-access VM exits.

In general, the treatment of APIC-access VM exits caused by linear accesses is
similar to that of page faults. Based upon this treatment, Section 21.2.1.2 specifies
the priority of such VM exits with respect to other events, while Section 21.2.1.3
discusses instructions that may cause page faults without accessing memory and the
treatment when they access the APIC-access page.
Vol. 3 21-5

VMX NON-ROOT OPERATION
21.2.1.1 Linear Accesses That Cause APIC-Access VM Exits
Whether a linear access to the APIC-access page causes an APIC-access VM exit
depends in part of the nature of the translation used by the linear address:

• If the linear access uses a translation with a 4-KByte page, it causes an APIC-
access VM exit.

• If the linear access uses a translation with a large page (2-MByte or 4-MByte),
the access may or may not cause an APIC-access VM exit. Section 21.5.1
describes the treatment of such accesses that do not cause an APIC-access
VM exits.

It is recommended that software configure the paging structures so that any transla-
tion to the APIC-access page uses a 4-KByte page.

21.2.1.2 Priority of APIC-Access VM Exits Caused by Linear Accesses
The following items specify the priority relative to other events of APIC-access
VM exits caused by linear accesses.

• The priority of an APIC-access VM exit on a linear access to memory is below that
of any page fault that that access may incur. That is, a linear access does not
cause an APIC-access VM exit if it would cause a page fault.

• A linear access does not cause an APIC-access VM exit until after the accessed
bits are set in the paging structures.

• A linear write access will not cause an APIC-access VM exit until after the dirty bit
is set in the appropriate paging structure.

• With respect to all other events, any APIC-access VM exit due to a linear access
has the same priority as any page fault that the linear access could cause. (This
item applies to other events that the linear access may generate as well as events
that may be generated by other accesses by the same instruction or operation.)

These principles imply among other things, that an APIC-access VM exit may occur
during the execution of a repeated string instruction (including INS and OUTS).
Suppose, for example, that the first n iterations (n may be 0) of such an instruction
do not access the APIC-access page and that the next iteration does access that
page. As a result, the first n iterations may complete and be followed by an APIC-
access VM exit. The instruction pointer saved in the VMCS references the repeated
string instruction and the values of the general-purpose registers reflect the comple-
tion of n iterations.
21-6 Vol. 3

VMX NON-ROOT OPERATION
21.2.1.3 Instructions That May Cause Page Faults Without Accessing
Memory

APIC-access VM exits may occur as a result of executing an instruction that can
cause a page fault even if that instruction would not access the APIC-access page.
The following are some examples:

• The CLFLUSH instruction is considered to read from the linear address in its
source operand. If that address translates to one on the APIC-access page, the
instruction causes an APIC-access VM exit.

• The ENTER instruction causes a page fault if the byte referenced by the final
value of the stack pointer is not writable (even though ENTER does not write to
that byte if its size operand is non-zero). If that byte is writable but is on the
APIC-access page, ENTER causes an APIC-access VM exit.1

• An execution of the MASKMOVQ or MASKMOVDQU instructions with a zero mask
may or may not cause a page fault if the destination page is unwritable (the
behavior is implementation-specific). An execution with a zero mask causes an
APIC-access VM exit only on processors for which it could cause a page fault.

• The MONITOR instruction is considered to read from the effective address in EAX.
If the linear address corresponding to that address translates to one on the APIC-
access page, the instruction causes an APIC-access VM exit.

• An execution of the PREFETCH instruction that would result in an access to the
APIC-access page does not cause an APIC-access VM exit.

21.2.2 Physical Accesses to the APIC-Access Page
An access to the APIC-access page is called a physical access if (1) it is not gener-
ated by a linear address; or (2) its physical address is not the translation of the
access’s linear address. Physical accesses include the following:

• Reads from the page tables when translating a linear address.

• Loads of the page-directory pointers by MOV CR when CR4.PAE = 1.

• Updates to the accessed and dirty bits in the page tables.

• Any of the following accesses made by the processor to support VMX non-root
operation:

— Accesses to the VMCS region.

— Accesses to data structures referenced (directly or indirectly) by physical
addresses in VM-execution control fields in the VMCS. These include the I/O
bitmaps, the MSR bitmaps, and the virtual-APIC page.

1. The ENTER instruction may also cause page faults due to the memory accesses that it actually
does perform. With regard to APIC-access VM exits, these are treated just as accesses by any
other instruction.
Vol. 3 21-7

VMX NON-ROOT OPERATION
• Accesses that effect transitions into and out of SMM.1 These include the
following:

— Accesses to SMRAM during SMI delivery and during execution of RSM.

— Accesses during SMM VM exits (including accesses to MSEG) and during
VM entries that return from SMM.

A physical access to the APIC-access page may or may not cause an APIC-access
VM exit. The priority of an APIC-access VM exit caused by physical access is not
defined relative to other events that the access may cause. Section 21.5.2 describes
the treatment of physical accesses to the APIC-access page that do not cause APIC-
access VM exits.

It is recommended that software not set the APIC-access address to any of those
used by physical memory accesses (identified above). For example, it should not set
the APIC-access address to the physical address of any of the active paging struc-
tures.

21.2.3 VTPR Accesses
A memory access is a VTPR access if all of the following hold: (1) the “use TPR
shadow” VM-execution control is 1; (2) the access is not for an instruction fetch;
(3) the access is at most 32 bits in width; and (4) the access is to offset 80H on the
APIC-access page.

A memory access is not a VTPR access (even if it accesses only bytes in the range
80H–83H on the APIC-access page) if any of the following hold: (1) the “use TPR
shadow” VM-execution control is 0; (2) the access is for an instruction fetch; (3) the
access is more than 32 bits in width; or (4) the access is to some offset is on the
APIC-access page other than 80H. For example, a 16-bit access to offset 81H on the
APIC-access page is not a VTPR access, even if the “use TPR shadow” VM-execution
control is 1.

In general, VTPR accesses do not cause APIC-access VM exits. Instead, they are
treated as described in Section 21.5.3. Physical VTPR accesses (see Section 21.2.2)
may or may not cause APIC-access VM exits; see Section 21.5.2.

21.3 OTHER CAUSES OF VM EXITS
In addition to VM exits caused by instruction execution, the following events can
cause VM exits:

• Exceptions. Exceptions (faults, traps, and aborts) cause VM exits based on the
exception bitmap (see Section 20.6.3). If an exception occurs, its vector (in the

1. Technically, these accesses do not occur in VMX non-root operation. They are included here for
clarity.
21-8 Vol. 3

VMX NON-ROOT OPERATION
range 0–31) is used to select a bit in the exception bitmap. If the bit is 1, a
VM exit occurs; if the bit is 0, the exception is delivered normally through the
guest IDT. This use of the exception bitmap applies also to exceptions generated
by the instructions INT3, INTO, BOUND, and UD2.

Page faults (exceptions with vector 14) are specially treated. When a page fault
occurs, a logical processor consults (1) bit 14 of the exception bitmap; (2) the
error code produced with the page fault [PFEC]; (3) the page-fault error-code
mask field [PFEC_MASK]; and (4) the page-fault error-code match field
[PFEC_MATCH]. It checks if PFEC & PFEC_MASK = PFEC_MATCH. If there is
equality, the specification of bit 14 in the exception bitmap is followed (for
example, a VM exit occurs if that bit is set). If there is inequality, the meaning of
that bit is reversed (for example, a VM exit occurs if that bit is clear).

Thus, if the design requires VM exits on all page faults, software can set bit 14 in
the exception bitmap to 1 and set the page-fault error-code mask and match
fields each to 00000000H. If the design does not require VM exits on page faults,
software could set bit 14 in the exception bitmap to 1, set the page-fault error-
code mask field to 00000000H, and set the page-fault error-code match field to
FFFFFFFFH.

• External interrupts. An external interrupt causes a VM exit if the “external-
interrupt exiting” VM-execution control is 1. Otherwise, the interrupt is delivered
normally through the IDT. (If a logical processor is in the shutdown state or the
wait-for-SIPI state, external interrupts are blocked. The interrupt is not delivered
through the IDT and no VM exit occurs.)

• Non-maskable interrupts (NMIs). An NMI causes a VM exit if the “NMI
exiting” VM-execution control is 1. Otherwise, it is delivered using descriptor 2 of
the IDT. (If a logical processor is in the wait-for-SIPI state, NMIs are blocked. The
NMI is not delivered through the IDT and no VM exit occurs.)

• INIT signals. INIT signals cause VM exits. A logical processor performs none of
the operations normally associated with these events. Such exits do not modify
register state or clear pending events as they would outside of VMX operation. (If
a logical processor is in the wait-for-SIPI state, INIT signals are blocked. They do
not cause VM exits in this case.)

• Start-up IPIs (SIPIs). SIPIs cause VM exits. If a logical processor is not in
the wait-for-SIPI activity state when a SIPI arrives, no VM exit occurs and the
SIPI is discarded. VM exits due to SIPIs do not perform any of the normal
operations associated with those events: they do not modify register state as
they would outside of VMX operation. (If a logical processor is not in the wait-for-
SIPI state, SIPIs are blocked. They do not cause VM exits in this case.)

• Task switches. Task switches are not allowed in VMX non-root operation. Any
attempt to effect a task switch in VMX non-root operation causes a VM exit. See
Section 21.6.2.

• System-management interrupts (SMIs). If the logical processor is using the
dual-monitor treatment of SMIs and system-management mode (SMM), SMIs
cause SMM VM exits. See Section 24.16.2.1
Vol. 3 21-9

VMX NON-ROOT OPERATION
In addition, there are controls that cause VM exits based on the readiness of guest
software to receive interrupts:

• If the “interrupt-window exiting” VM-execution control is 1, a VM exit occurs
before execution of any instruction if RFLAGS.IF = 11 and there is no blocking of
events by STI or by MOV SS (see Table 20-3). Such a VM exit occurs immediately
after VM entry if the above conditions are true (see Section 22.6.4).

Non-maskable interrupts (NMIs) and higher priority events take priority over
VM exits caused by this control. VM exits caused by this control take priority over
external interrupts and lower priority events.

These VM exits wake a logical processor from the same inactive states as would
an external interrupt. Specifically, they wake a logical processor from the states
entered using the HLT and MWAIT instructions. These VM exits do not occur if the
logical processor is in the shutdown state or the wait-for-SIPI state.

• If the “NMI-window exiting” VM-execution control is 1, a VM exit occurs before
execution of any instruction if there is no virtual-NMI blocking and there is no
blocking of events by MOV SS (see Table 20-3). (A logical processor may also
prevent such a VM exit if there is blocking of events by STI.) Such a VM exit
occurs immediately after VM entry if the above conditions are true (see Section
22.6.5).

Debug-trap exceptions and higher priority events take priority over VM exits
caused by this control. VM exits caused by this control take priority over non-
maskable interrupts (NMIs) and lower priority events.

These VM exits wake a logical processor from the same inactive states as would
an NMI. Specifically, they wake a logical processor from the shutdown state and
from the states entered using the HLT and MWAIT instructions. These VM exits do
not occur if the logical processor is in the wait-for-SIPI state.

21.4 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-
ROOT OPERATION

The behavior of some instructions is changed in VMX non-root operation. Some of
these changes are determined by the settings of certain VM-execution control fields.
The following items detail such changes:

1. Under the dual-monitor treatment of SMIs and SMM, SMIs also cause SMM VM exits if they occur
in VMX root operation outside SMM. If the processor is using the default treatment of SMIs and
SMM, SMIs are delivered as described in Section 24.15.1.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For IA-32 processors,
this notation refers to the 32-bit forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few
places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated regis-
ter.
21-10 Vol. 3

VMX NON-ROOT OPERATION
• CLTS. Behavior of the CLTS instruction is determined by the bits in position 3
(corresponding to CR0.TS) in the CR0 guest/host mask and the CR0 read
shadow:

— If bit 3 in the CR0 guest/host mask is 0, CLTS clears CR0.TS normally (the
value of bit 3 in the CR0 read shadow is irrelevant in this case), unless CR0.TS
is fixed to 1 in VMX operation (see Section 19.8), in which case CLTS causes
a general-protection exception.

— If bit 3 in the CR0 guest/host mask is 1 and bit 3 in the CR0 read shadow is 0,
CLTS completes but does not change the contents of CR0.TS.

— If the bits in position 3 in the CR0 guest/host mask and the CR0 read shadow
are both 1, CLTS causes a VM exit (see Section 21.1.3).

• IRET. Behavior of IRET with regard to NMI blocking (see Table 20-3) is
determined by the settings of the “NMI exiting” and “virtual NMIs” VM-execution
controls:

— If the “NMI exiting” VM-execution control is 0, IRET operates normally and
unblocks NMIs.

— If the “NMI exiting” VM-execution control is 1, IRET does not affect blocking
of NMIs.

— If the “virtual NMIs” VM-execution control is 1, the logical processor tracks
virtual-NMI blocking. In this case, IRET removes any virtual-NMI blocking.

If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” control must be
0. (See Section 22.2.1.1.)

• LMSW. An execution of LMSW that does not cause a VM exit (see Section 21.1.3)
leaves unmodified any bit in CR0 corresponding to a bit set in the CR0 guest/host
mask. It causes a general-protection exception if it attempts to set any bit to a
value not supported in VMX operation (see Section 19.8)

• MOV from CR0. The behavior of MOV from CR0 is determined by the CR0
guest/host mask and the CR0 read shadow. For each position corresponding to a
bit clear in the CR0 guest/host mask, the destination operand is loaded with the
value of the corresponding bit in CR0. For each position corresponding to a bit set
in the CR0 guest/host mask, the destination operand is loaded with the value of
the corresponding bit in the CR0 read shadow. Thus, if every bit is cleared in the
CR0 guest/host mask, MOV from CR0 reads normally from CR0; if every bit is set
in the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read
shadow.

Note that, depending on the contents of the CR0 guest/host mask and the CR0
read shadow, bits may be set in the destination that would never be set when
reading directly from CR0.

• MOV from CR4. The behavior of MOV from CR4 is determined by the CR4
guest/host mask and the CR4 read shadow. For each position corresponding to a
bit clear in the CR4 guest/host mask, the destination operand is loaded with the
value of the corresponding bit in CR4. For each position corresponding to a bit set
Vol. 3 21-11

VMX NON-ROOT OPERATION
in the CR4 guest/host mask, the destination operand is loaded with the value of
the corresponding bit in the CR4 read shadow. Thus, if every bit is cleared in the
CR4 guest/host mask, MOV from CR4 reads normally from CR4; if every bit is set
in the CR4 guest/host mask, MOV from CR4 returns the value of the CR4 read
shadow.

Note that, depending on the contents of the CR4 guest/host mask and the CR4
read shadow, bits may be set in the destination that would never be set when
reading directly from CR4.

• MOV from CR8. Behavior of the MOV from CR8 instruction (which can be
executed only in 64-bit mode) is determined by the settings of the “CR8-store
exiting” and “use TPR shadow” VM-execution controls:

— If both controls are 0, MOV from CR8 operates normally.

— If the “CR8-store exiting” VM-execution control is 0 and the “use TPR
shadow” VM-execution control is 1, MOV from CR8 reads from the TPR
shadow. Specifically, it loads bits 3:0 of its destination operand with the value
of bits 7:4 of byte 128 of the virtual-APIC page (see Section 20.6.8). Bits
63:4 of the destination operand are cleared.

— If the “CR8-store exiting” VM-execution control is 1, MOV from CR8 causes a
VM exit (see Section 21.1.3); the “use TPR shadow” VM-execution control is
ignored in this case.

• MOV to CR0. An execution of MOV to CR0 that does not cause a VM exit (see
Section 21.1.3) leaves unmodified any bit in CR0 corresponding to a bit set in the
CR0 guest/host mask. It causes a general-protection exception if it attempts to
set any bit to a value not supported in VMX operation (see Section 19.8).

• MOV to CR4. An execution of MOV to CR4 that does not cause a VM exit (see
Section 21.1.3) leaves unmodified any bit in CR4 corresponding to a bit set in the
CR4 guest/host mask. Such an execution causes a general-protection exception
if it attempts to set any bit to a value not supported in VMX operation (see
Section 19.8).

• MOV to CR8. Behavior of the MOV to CR8 instruction (which can be executed
only in 64-bit mode) is determined by the settings of the “CR8-load exiting” and
“use TPR shadow” VM-execution controls:

— If both controls are 0, MOV to CR8 operates normally.

— If the “CR8-load exiting” VM-execution control is 0 and the “use TPR shadow”
VM-execution control is 1, MOV to CR8 writes to the TPR shadow. Specifically,
it stores bits 3:0 of its source operand into bits 7:4 of byte 128 of the virtual-
APIC page (see Section 20.6.8); bits 3:0 of that byte and bytes 129-131 of
that page are cleared. Such a store may cause a VM exit to occur after it
completes (see Section 21.1.3).

— If the “CR8-load exiting” VM-execution control is 1, MOV to CR8 causes a
VM exit (see Section 21.1.3); the “use TPR shadow” VM-execution control is
ignored in this case.
21-12 Vol. 3

VMX NON-ROOT OPERATION
• RDMSR. Section 21.1.3 identifies when executions of the RDMSR instruction
cause VM exits. If an execution of RDMSR does not cause a VM exit and if RCX
contains 10H (indicating the IA32_TIME_STAMP_COUNTER MSR), the value
returned by the RDMSR instruction is determined by the setting of the “use TSC
offsetting” VM-execution control as well as the TSC offset:

— If the control is 0, RDMSR operates normally, loading EAX:EDX with the value
of the IA32_TIME_STAMP_COUNTER MSR.

— If the control is 1, RDMSR loads EAX:EDX with the sum (using signed
addition) of the value of the IA32_TIME_STAMP_COUNTER MSR and the
value of the TSC offset (interpreted as a signed value).

• RDTSC. Behavior of the RDTSC instruction is determined by the settings of the
“RDTSC exiting” and “use TSC offsetting” VM-execution controls as well as the
TSC offset:

— If both controls are 0, RDTSC operates normally.

— If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting”
VM-execution control is 1, RDTSC loads EAX:EDX with the sum (using signed
addition) of the value of the IA32_TIME_STAMP_COUNTER MSR and the
value of the TSC offset (interpreted as a signed value).

— If the “RDTSC exiting” VM-execution control is 1, RDTSC causes a VM exit
(see Section 21.1.3).

• SMSW. The behavior of SMSW is determined by the CR0 guest/host mask and
the CR0 read shadow. For each position corresponding to a bit clear in the CR0
guest/host mask, the destination operand is loaded with the value of the corre-
sponding bit in CR0. For each position corresponding to a bit set in the CR0
guest/host mask, the destination operand is loaded with the value of the corre-
sponding bit in the CR0 read shadow. Thus, if every bit is cleared in the CR0
guest/host mask, MOV from CR0 reads normally from CR0; if every bit is set in
the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read
shadow.

Note the following: (1) for any memory destination or for a 16-bit register desti-
nation, only the low 16 bits of the CR0 guest/host mask and the CR0 read shadow
are used (bits 63:16 of a register destination are left unchanged); (2) for a 32-bit
register destination, only the low 32 bits of the CR0 guest/host mask and the CR0
read shadow are used (bits 63:32 of the destination are cleared); and
(3) depending on the contents of the CR0 guest/host mask and the CR0 read
shadow, bits may be set in the destination that would never be set when reading
directly from CR0.

• WRMSR. Section 21.1.3 identifies when executions of the WRMSR instruction
cause VM exits. If an execution of WRMSR causes neither a fault or a VM exit and
if RCX contains 79H (indicating IA32_BIOS_UPDT_TRIG MSR); no microcode
update is loaded and control passes to the next instruction. This implies that
microcode updates cannot be loaded in VMX non-root operation.
Vol. 3 21-13

VMX NON-ROOT OPERATION
21.5 APIC ACCESSES THAT DO NOT CAUSE VM EXITS
As noted in Section 21.2, if the “virtualize APIC accesses” VM-execution control is 1,
most memory accesses to the APIC-access page (see Section 20.6.8) cause APIC-
access VM exits. Section 21.2 identifies potential exceptions. These are covered in
Section 21.5.1 through Section 21.5.3.

In some cases, an attempt to access memory on the APIC-access page is converted
to an access to the virtual-APIC page (see Section 20.6.8). In these cases, the access
uses the memory type reported in bit 53:50 of the IA32_VMX_BASIC MSR (see
Appendix G.1).

21.5.1 Linear Accesses to the APIC-Access Page Using Large-Page
Translations

As noted in Section 21.2.1, a linear access to the APIC-access page using translation
with a large page (2-MByte or 4-MByte) may or may not cause an APIC-access
VM exit. If it does not and the access is not a VTPR access (see Section 21.2.3), the
access operates on memory on the APIC-access page. Section 21.5.3 describes the
treatment if there is no APIC-access VM exit and the access is a VTPR access.

21.5.2 Physical Accesses to the APIC-Access Page
As noted in Section 21.2.2, a physical access to the APIC-access page may or may
not cause an APIC-access VM exit. If it does not and the access is not a VTPR access
(see Section 21.2.3), the access operates on memory on the APIC-access page.
Section 21.5.3 describes the treatment if there is no APIC-access VM exit and the
access is a VTPR access.

21.5.3 VTPR Accesses
As noted in Section 21.2.3, VTPR refers to the 16-byte field at offset 128 on the APIC-
access page. A memory access is a VTPR access if all of the following hold: (1) the
“use TPR shadow” VM-execution control is 1; (2) the access is not for an instruction
fetch; (3) the access is at most 32 bits in width; and (4) the access is to offset 128
on the APIC-access page.

The treatment of VTPR accesses depends on the nature of the access:

• A linear VTPR access using a translation with a 4-KByte page does not cause an
APIC-access VM exit. Instead, it is converted so that, instead of accessing offset
128 on the APIC-access page, it accesses offset 128 on the virtual-APIC page.
Further details are provided in Section 21.5.3.1 to Section 21.5.3.3.
21-14 Vol. 3

VMX NON-ROOT OPERATION
• A linear VTPR access using a translation with a large page (2-MByte or 4-MByte)
may be treated in either of two ways:

— It may operate on memory on the APIC-access page. The details in Section
21.5.3.1 to Section 21.5.3.3 do not apply.

— It may be converted so that, instead of accessing offset 128 on the APIC-
access page, it accesses offset 128 on the virtual-APIC page. Further details
are provided in Section 21.5.3.1 to Section 21.5.3.3.

• A physical VTPR access may be treated in one of three ways:

— It may cause an APIC-access VM exit. The details in Section 21.5.3.1 to
Section 21.5.3.3 do not apply.

— It may operate on memory on the APIC-access page. The details in Section
21.5.3.1 to Section 21.5.3.3 do not apply.

— It may be converted so that, instead of accessing offset 128 on the APIC-
access page, it accesses offset 128 on the virtual-APIC page. Further details
are provided in Section 21.5.3.1 to Section 21.5.3.3.

Linear VTPR accesses never cause APIC-access VM exits (recall that an access is a
VTPR access only if the “use TPR shadow” VM-execution control is 1).

21.5.3.1 Treatment of Individual VTPR Accesses
The following items detail the treatment of VTPR accesses:

• VTPR read accesses. Such an access completes normally (reading data from the
field at offset 128 on the virtual-APIC page).

The following items detail certain instructions that are considered to perform
read accesses and how they behavior when accessing the VTPR:

— A VTPR access using the CLFLUSH instruction flushes data for offset 128 on
the virtual-APIC page.

— A VTPR access using the LMSW instruction may cause a VM exit due to the
CR0 guest/host mask and the CR0 read shadow.

— A VTPR access using the MONITOR instruction causes the logical processor to
monitor offset 128 on the virtual-APIC page.

— A VTPR access using the PREFETCH instruction may prefetch data; if so, it is
from offset 128 on the virtual-APIC page.

• VTPR write accesses. Such an access completes normally (writing data to the
field at offset 128 on the virtual-APIC page) and causes a TPR-shadow update
(see Section 21.5.3.3).

The following items detail certain instructions that are considered to perform
write accesses and how they behavior when accessing the VTPR:

— The ENTER instruction is considered to write to VTPR if the byte referenced by
the final value of the stack pointer is at offset 128 on the APIC-access page
Vol. 3 21-15

VMX NON-ROOT OPERATION
(even though ENTER does not write to that byte if its size operand is non-
zero). The instruction is followed by a TPR-shadow update.

— A VTPR access using the SMSW instruction stores data determined by the
current CR0 contents, the CR0 guest/host mask, and the CR0 read shadow.
The instruction is followed by a TPR-shadow update.

21.5.3.2 Operations with Multiple Accesses
Some operations may access multiple addresses. These operations include the
execution of some instructions and the delivery of events through the IDT (including
those injected with VM entry). In some cases, the Intel® 64 architecture specifies the
ordering of these memory accesses. The following items describe the treatment of
VTPR accesses that are part of such multi-access operations:

• Read-modify-write instructions may first perform a VTPR read access and then a
VTPR write access. Both accesses complete normally (as described in Section
21.5.3.1). The instruction is followed by a TPR-shadow update (see Section
21.5.3.3).

• Some operations may perform a VTPR write access and subsequently cause a
fault. This situation is treated as follows:

— If the fault leads to a VM exit, no TPR-shadow update occurs.

— If the fault does not lead to a VM exit, a TPR-shadow update occurs after fault
delivery completes and before execution of the fault handler.

• If an operation includes a VTPR access and an access to some other field on the
APIC-access page, the latter access causes an APIC-access VM exit as described
in Section 21.2.

If the operation performs a VTPR write access before the APIC-access VM exit,
there is no TPR-shadow update.

• Suppose that the first iteration of a repeated string instruction (including OUTS)
that accesses the APIC-access page performs a VTPR read access and that the
next iteration would read from the APIC-access page using an offset other than
128. The following items describe the behavior of the logical processor:

— The iteration that performs the VTPR read access completes successfully,
reading data from offset 128 on the virtual-APIC page.

— The iteration that would read from the other offset causes an APIC-access
VM exit. The instruction pointer saved in the VMCS references the repeated
string instruction and the values of the general-purpose registers are such
that iteration would be repeated if the instruction were restarted.

• Suppose that the first iteration of a repeated string instruction (including INS)
that accesses the APIC-access page performs a VTPR write access and that the
next iteration would write to the APIC-access page using an offset other than
128. The following items describe the behavior of the logical processor:
21-16 Vol. 3

VMX NON-ROOT OPERATION
— The iteration that performs the VTPR write access writes data to offset 128 on
the virtual-APIC page. The write is followed by a TPR-shadow update, which
may cause a VM exit (see Section 21.5.3.3).

• If the TPR-shadow update does cause a VM exit, the instruction pointer
saved in the VMCS references the repeated string instruction and the
values of the general-purpose registers are such that the next iteration
would be performed if the instruction were restarted.

• If the TPR-shadow update does not cause a VM exit, the iteration that
would write to the other offset causes an APIC-access VM exit. The
instruction pointer saved in the VMCS references the repeated string
instruction and the values of the general-purpose registers are such that
that iteration would be repeated if the instruction were restarted.

• Suppose that the last iteration of a repeated string instruction (including INS)
performs a VTPR write access. The iteration writes data to offset 128 on the
virtual-APIC page. The write is followed by a TPR-shadow update, which may
cause a VM exit (see Section 21.5.3.3). If it does, the instruction pointer saved in
the VMCS references the instruction after the string instruction and the values of
the general-purpose registers reflect completion of the string instruction.

21.5.3.3 TPR-Shadow Updates
If the “use TPR shadow” and “virtualize APIC accesses” VM-execution controls are
both 1, a logical processor performs certain actions after any operation (or iteration
of a repeated string instruction) with a VTPR write access. These actions are called a
TPR-shadow update. (As noted in Section 21.5.3.2, a TPR-shadow update does not
occur following an access that causes a VM exit.)

A TPR-shadow update includes the following actions:

1. Bits 31:8 at offset 128 on the virtual-APIC page are cleared.

2. If the value of bits 3:0 of the TPR threshold VM-execution control field is greater
than the value of bits 7:4 at offset 128 on the virtual-APIC page, a VM exit will
occur.

TPR-shadow updates have the same priority as the “trap on task switch” event (see
Section 5.9, “Priority Among Simultaneous Exceptions and Interrupts,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).1 TPR-
shadow updates (and any VM exits they cause) are not blocked if RFLAGS.IF = 0 or
by the MOV SS, POP SS, or STI instructions.

1. Because task switches cannot occur in VMX non-root operation (see Section 21.6.2), the relative
priority of TPR-shadow updates and “trap on task switch” events is not defined.
Vol. 3 21-17

VMX NON-ROOT OPERATION
21.6 OTHER CHANGES IN VMX NON-ROOT OPERATION
Treatments of event blocking and of task switches differ in VMX non-root operation as
described in the following sections.

21.6.1 Event Blocking
Event blocking is modified in VMX non-root operation as follows:

• If the “external-interrupt exiting” VM-execution control is 1, RFLAGS.IF does not
control the blocking of external interrupts. In this case, an external interrupt that
is not blocked for other reasons causes a VM exit (even if RFLAGS.IF = 0).

• If the “external-interrupt exiting” VM-execution control is 1, external interrupts
may or may not be blocked by STI or by MOV SS (behavior is implementation-
specific).

• If the “NMI exiting” VM-execution control is 1, non-maskable interrupts (NMIs)
may or may not be blocked by STI or by MOV SS (behavior is implementation-
specific).

21.6.2 Treatment of Task Switches
Task switches are not allowed in VMX non-root operation. Any attempt to effect a
task switch in VMX non-root operation causes a VM exit. However, the following
checks are performed (in the order indicated), possibly resulting in a fault, before
there is any possibility of a VM exit due to task switch:

1. If a task gate is being used, appropriate checks are made on its P bit and on the
proper values of the relevant privilege fields. The following cases detail the
privilege checks performed:

a. If CALL, INT n, or JMP accesses a task gate in IA-32e mode, a general-
protection exception occurs.

b. If CALL, INT n, INT3, INTO, or JMP accesses a task gate outside IA-32e mode,
privilege-levels checks are performed on the task gate but, if they pass,
privilege levels are not checked on the referenced task-state segment (TSS)
descriptor.

c. If CALL or JMP accesses a TSS descriptor directly in IA-32e mode, a general-
protection exception occurs.

d. If CALL or JMP accesses a TSS descriptor directly outside IA-32e mode,
privilege levels are checked on the TSS descriptor.

e. If a non-maskable interrupt (NMI), an exception, or an external interrupt
accesses a task gate in the IDT in IA-32e mode, a general-protection
exception occurs.
21-18 Vol. 3

VMX NON-ROOT OPERATION
f. If a non-maskable interrupt (NMI), an exception other than breakpoint
exceptions (#BP) and overflow exceptions (#OF), or an external interrupt
accesses a task gate in the IDT outside IA-32e mode, no privilege checks are
performed.

g. If IRET is executed with RFLAGS.NT = 1 in IA-32e mode, a general-
protection exception occurs.

h. If IRET is executed with RFLAGS.NT = 1 outside IA-32e mode, a TSS
descriptor is accessed directly and no privilege checks are made.

2. Checks are made on the new TSS selector (for example, that is within GDT
limits).

3. The new TSS descriptor is read. (A page fault results if a relevant GDT page is not
present).

4. The TSS descriptor is checked for proper values of type (depends on type of task
switch), P bit, S bit, and limit.

Only if checks 1–4 all pass (do not generate faults) might a VM exit occur. However,
the ordering between a VM exit due to a task switch and a page fault resulting from
accessing the old TSS or the new TSS is implementation-specific. Some logical
processors may generate a page fault (instead of a VM exit due to a task switch) if
accessing either TSS would cause a page fault. Other logical processors may
generate a VM exit due to a task switch even if accessing either TSS would cause a
page fault.

If an attempt at a task switch through a task gate in the IDT causes an exception
(before generating a VM exit due to the task switch) and that exception causes a
VM exit, information about the event whose delivery that accessed the task gate is
recorded in the IDT-vectoring information fields and information about the exception
that caused the VM exit is recorded in the VM-exit interruption-information fields.
See Section 23.2. The fact that a task gate was being accessed is not recorded in the
VMCS.

If an attempt at a task switch through a task gate in the IDT causes VM exit due to
the task switch, information about the event whose delivery accessed the task gate
is recorded in the IDT-vectoring fields of the VMCS. Since the cause of such a VM exit
is a task switch and not an interruption, the valid bit for the VM-exit interruption
information field is 0. See Section 23.2.
Vol. 3 21-19

VMX NON-ROOT OPERATION
21-20 Vol. 3

CHAPTER 22
VM ENTRIES

Software can enter VMX non-root operation using either of the VM-entry instructions
VMLAUNCH and VMRESUME. VMLAUNCH can be used only with a VMCS whose launch
state is clear and VMRESUME can be used only with a VMCS whose the launch state
is launched. VMLAUNCH should be used for the first VM entry after VMCLEAR; VMRE-
SUME should be used for subsequent VM entries with the same VMCS.

Each VM entry performs the following steps in the order indicated:

1. Basic checks are performed to ensure that VM entry can commence
(Section 22.1).

2. The control and host-state areas of the VMCS are checked to ensure that they are
proper for supporting VMX non-root operation and that the VMCS is correctly
configured to support the next VM exit (Section 22.2).

3. The following may be performed in parallel or in any order (Section 22.3):

• The guest-state area of the VMCS is checked to ensure that, after the
VM entry completes, the state of the logical processor is consistent with
IA-32 and Intel 64 architectures.

• Processor state is loaded from the guest-state area and based on the
VM-entry controls.

• Address-range monitoring is cleared.

4. MSRs are loaded from the VM-entry MSR-load area (Section 22.4).

5. If VMLAUNCH is being executed, the launch state of the VMCS is set to
“launched.”

6. An event may be injected in the guest context (Section 22.5).

Steps 1–4 above perform checks that may cause VM entry to fail. Such failures occur
in one of the following three ways:

• Some of the checks in Section 22.1 may generate ordinary faults (for example,
an invalid-opcode exception). Such faults are delivered normally.

• Some of the checks in Section 22.1 and all the checks in Section 22.2 cause
control to pass to the instruction following the VM-entry instruction. The failure is
indicated by setting RFLAGS.ZF1 (if there is a current VMCS) or RFLAGS.CF (if
there is no current VMCS). If there is a current VMCS, an error number indicating

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For IA-32 processors,
this notation refers to the 32-bit forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few
places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated register.
Vol. 3 22-1

VM ENTRIES
the cause of the failure is stored in the VM-instruction error field. See Appendix I
for the error numbers.

• The checks in Section 22.3 and Section 22.4 cause processor state to be loaded
from the host-state area of the VMCS (as would be done on a VM exit).
Information about the failure is stored in the VM-exit information fields. See
Section 22.7 for details.

EFLAGS.TF = 1 causes a VM-entry instruction to generate a single-step debug excep-
tion only if failure of one of the checks in Section 22.1 and Section 22.2 causes
control to pass to the following instruction. A VM-entry does not generate a single-
step debug exception in any of the following cases: (1) the instruction generates a
fault; (2) failure of one of the checks in Section 22.3 or in loading MSRs causes
processor state to be loaded from the host-state area of the VMCS; or (3) the instruc-
tion passes all checks in Section 22.1, Section 22.2, and Section 22.3 and there is no
failure in loading MSRs.

Section 24.16 describes the dual-monitor treatment of system-management inter-
rupts (SMIs) and system-management mode (SMM). Under this treatment, code
running in SMM returns using VM entries instead of the RSM instruction. A VM entry
returns from SMM if it is executed in SMM and the “entry to SMM” VM-entry control
is 0. VM entries that return from SMM differ from ordinary VM entries in ways that
are detailed in Section 24.16.4.

22.1 BASIC VM-ENTRY CHECKS
Before a VM entry commences, the current state of the logical processor is checked
in the following order:

1. If the logical processor is in virtual-8086 mode or compatibility mode, an
invalid-opcode exception is generated.

2. If the current privilege level (CPL) is not zero, a general-protection exception is
generated.

3. If there is no current VMCS, RFLAGS.CF is set to 1 and control passes to the next
instruction.

4. If there is a current VMCS, the following conditions are evaluated in order; any of
these cause VM entry to fail:

a. if there is MOV-SS blocking (see Table 20-3)

b. if the VM entry is invoked by VMLAUNCH and the VMCS launch state is not
clear

c. if the VM entry is invoked by VMRESUME and the VMCS launch state is not
launched

If any of these checks fail, RFLAGS.ZF is set to 1 and control passes to the next
instruction. An error number indicating the cause of the failure is stored in the
VM-instruction error field. See Appendix J for the error numbers.
22-2 Vol. 3

VM ENTRIES
22.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA
If the checks in Section 22.1 do not cause VM entry to fail, the control and host-state
areas of the VMCS are checked to ensure that they are proper for supporting VMX
non-root operation, that the VMCS is correctly configured to support the next
VM exit, and that, after the next VM exit, the processor’s state is consistent with the
Intel 64 and IA-32 architectures.

VM entry fails if any of these checks fail. When such failures occur, control is passed
to the next instruction, RFLAGS.ZF is set to 1 to indicate the failure, and the
VM-instruction error field is loaded with an error number that indicates whether the
failure was due to the controls or the host-state area (see Appendix J).

These checks may be performed in any order. Thus, an indication by error number of
one cause (for example, host state) does not imply that there are not also other
errors. Different processors may thus give different error numbers for the same
VMCS.

The checks on the controls and the host-state area are presented in Section 22.2.1
through Section 22.2.4. These sections reference VMCS fields that correspond to
processor state. Unless otherwise stated, these references are to fields in the host-
state area.

22.2.1 Checks on VMX Controls
This section identifies VM-entry checks on the VMX control fields.

22.2.1.1 VM-Execution Control Fields
VM entries perform the following checks on the VM-execution control fields:1

• Reserved bits in the pin-based VM-execution controls must be set properly.
Software may consult the VMX capability MSR IA32_VMX_PINBASED_CTLS to
determine the proper settings (see Appendix G.2).

• Reserved bits in the primary processor-based VM-execution controls must be set
properly. Software may consult the VMX capability MSR
IA32_VMX_PROCBASED_CTLS to determine the proper settings (see Appendix
G.2).

• If the “activate secondary controls” primary processor-based VM-execution
control is 1, reserved bits in the secondary processor-based VM-execution
controls must be set properly. Software may consult the VMX capability MSR
IA32_VMX_PROCBASED_CTLS2 to determine the proper settings (see Appendix
G.2).

1. Each secondary processor-based VM-execution controls is considered to be 0 if the “activate sec-
ondary controls” primary processor-based VM-execution control is 0.
Vol. 3 22-3

VM ENTRIES
If the “activate secondary controls” primary processor-based VM-execution
control is 0 (or if the processor does not support the 1-setting of that control),
no checks are performed on the secondary processor-based VM-execution
controls. The logical processor operates as if all the secondary processor-based
VM-execution controls were 0.

• The CR3-target count must not be greater than 4. Future processors may support
a different number of CR3-target values. Software should read the VMX capability
MSR IA32_VMX_MISC to determine the number of values supported (see
Appendix G.5).

• If the “use I/O bitmaps” VM-execution control is 1, bits 11:0 of each I/O-bitmap
address must be 0. On processors that support Intel 64 architecture, neither
address should set any bits beyond the processor’s physical-address width.1 On
processors that do not support Intel 64 architecture, neither address should set
any bits in the range 63:32.

• If the “use TPR shadow” VM-execution control is 1, the virtual-APIC address must
satisfy the following checks:

— Bits 11:0 of the address must be 0.

— On processors that support Intel 64 architecture, the address should not set
any bits beyond the processor's physical-address width.

— On processors that support the IA-32 architecture, the address should not set
any bits in the range 63:32.

The following items describe the treatment of bytes 81H-83H on the virtual-
APIC page (see Section 20.6.8) if all of the above checks are satisfied and the
“use TPR shadow” VM-execution control is 1:

— If the “virtualize APIC accesses” VM-execution control is 0, the bytes may be
cleared. (If the bytes are not cleared, they are left unmodified.)

— If the “virtualize APIC accesses” VM-execution control is 1, the bytes are
cleared.

— Any clearing of the bytes occurs even if the VM entry subsequently fails.

• If the “use TPR shadow” VM-execution control is 1, bits 31:4 of the TPR threshold
VM-execution control field must be 0.

• The following check is performed if the “use TPR shadow” VM-execution control is
1 and the “virtualize APIC accesses” VM-execution control is 0: the value of
bits 3:0 of the TPR threshold VM-execution control field should not be greater
than the value of bits 7:4 in byte 80H on the virtual-APIC page (see Section
20.6.8).

• If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” VM-execution
control must be 0.

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
22-4 Vol. 3

VM ENTRIES
• If the “virtual NMIs” VM-execution control is 0, the “NMI-window exiting” VM-
execution control must be 0.

• If the “virtualize APIC-accesses” VM-execution control is 1, the APIC-access
address must satisfy the following checks:1

— Bits 11:0 of the address must be 0.

— On processors that support Intel 64 architecture, the address should not set
any bits beyond the processor's physical-address width.

— On processors that support the IA-32 architecture, the address should not set
any bits in the range 63:32.

22.2.1.2 VM-Exit Control Fields
VM entries perform the following checks on the VM-exit control fields.

• Reserved bits in the VM-exit controls must be set properly. Software may consult
the VMX capability MSR IA32_VMX_EXIT_CTLS to determine the proper settings
(see Appendix G.3).

• The following checks are performed for the VM-exit MSR-store address if the
VM-exit MSR-store count field is non-zero:

— The lower 4 bits of the VM-exit MSR-store address must be 0. On processors
that support Intel 64 architecture, the address should not set any bits beyond
the processor’s physical-address width.2 On processors that do not support
Intel 64 architecture, the address should not set any bits in the range 63:32.

— On processors that support Intel 64 architecture, the address of the last byte
in the VM-exit MSR-store area should not set any bits beyond the processor’s
physical-address width. On processors that do not support Intel 64 archi-
tecture, the address of the last byte in the VM-exit MSR-store area should not
set any bits in the range 63:32. The address of this last byte is VM-exit MSR-
store address + (MSR count * 16) – 1. (The arithmetic used for the
computation uses more bits than the processor’s physical-address width.)

• The following checks are performed for the VM-exit MSR-load address if the
VM-exit MSR-load count field is non-zero:

— The lower 4 bits of the VM-exit MSR-load address must be 0. On processors
that support Intel 64 architecture, the address should not set any bits beyond
the processor’s physical-address width. On processors that do not support
Intel 64 architecture, the address should not set any bits in the range 63:32.

1. Because “virtualize APIC accesses” is a secondary processor-based VM-execution control, it is
considered to be 0 if the “activate secondary controls” primary processor-based VM-execution
control is 0.

2. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
Vol. 3 22-5

VM ENTRIES
— On processors that support Intel 64 architecture, the address of the last byte
in the VM-exit MSR-load area should not set any bits beyond the processor’s
physical-address width. On processors that do not support Intel 64 archi-
tecture, the address of the last byte in the VM-exit MSR-load area should not
set any bits in the range 63:32. The address of this last byte is VM-exit MSR-
load address + (MSR count * 16) – 1. (The arithmetic used for the
computation uses more bits than the processor’s physical-address width.)

22.2.1.3 VM-Entry Control Fields
VM entries perform the following checks on the VM-entry control fields.

• Reserved bits in the VM-entry controls must be set properly. Software may
consult the VMX capability MSR IA32_VMX_ENTRY_CTLS to determine the proper
settings (see Appendix G.4).

• Fields relevant to VM-entry event injection must be set properly. These fields are
the VM-entry interruption-information field (see Table 20-11), the VM-entry
exception error code, and the VM-entry instruction length. If the valid bit (bit 31)
in the VM-entry interruption-information field is 1, the following must hold:

— The field’s interruption type (bits 10:8) is not set to a reserved value (1 or 7).

— The field’s vector (bits 7:0) is consistent with the interruption type:

• If the interruption type is non-maskable interrupt (NMI), the vector is 2.

• If the interruption type is hardware exception, the vector is at most 31.

— The field’s deliver-error-code bit (bit 11) is 1 if and only if the interruption
type is hardware exception and the vector indicates an exception that would
normally deliver an error code (8 = #DF; 10 = TS; 11 = #NP; 12 = #SS;
13 = #GP; 14 = #PF; or 17 = #AC).

— Reserved bits in the field (30:12) are 0.

— If the deliver-error-code bit (bit 11) is 1, bits 31:15 of the VM-entry
exception error-code field are 0.

— If the interruption type is software interrupt, software exception, or
privileged software exception, the VM-entry instruction-length field is in the
range 1–15.

• The following checks are performed for the VM-entry MSR-load address if the
VM-entry MSR-load count field is non-zero:

— The lower 4 bits of the VM-entry MSR-load address must be 0. On processors
that support Intel 64 architecture, the address should not set any bits beyond
the processor’s physical-address width.1 On processors that do not support
Intel 64 architecture, the address should not set any bits in the range 63:32.

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
22-6 Vol. 3

VM ENTRIES
— On processors that support Intel 64 architecture, the address of the last byte
in the VM-entry MSR-load area should not set any bits beyond the processor’s
physical-address width. On processors that do not support Intel 64 archi-
tecture, the address of the last byte in the VM-entry MSR-load area should
not set any bits in the range 63:32. The address of this last byte is VM-entry
MSR-load address + (MSR count * 16) – 1. (The arithmetic used for the
computation uses more bits than the processor’s physical-address width.)

• If the processor is not in SMM, the “entry to SMM” and “deactivate dual-monitor
treatment” VM-entry controls must be 0.

• The “entry to SMM” and “deactivate dual-monitor treatment” VM-entry controls
cannot both be 1.

22.2.2 Checks on Host Control Registers and MSRs
The following checks are performed on fields in the host-state area that correspond
to control registers and MSRs:

• The CR0 field must not set any bit to a value not supported in VMX operation (see
Section 19.8).1

• The CR4 field must not set any bit to a value not supported in VMX operation (see
Section 19.8).

• On processors that support Intel 64 architecture, the CR3 field must be such that
bits 63:52 and bits in the range 51:32 beyond the processor’s physical-address
width must be 0.2

• On processors that support Intel 64 architecture, the IA32_SYSENTER_ESP field
and the IA32_SYSENTER_EIP field must each contain a canonical address.

22.2.3 Checks on Host Segment and Descriptor-Table Registers
The following checks are performed on fields in the host-state area that correspond
to segment and descriptor-table registers:

• In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the RPL (bits 1:0)
and the TI flag (bit 2) must be 0.

• The selector fields for CS and TR cannot be 0000H.

• The selector field for SS cannot be 0000H if the “host address-space size” VM-exit
control is 0.

1. The bits corresponding to NW (bit 29) and CD (bit 30) are never checked because the values of
these bits are not changed by VM exit; see Section 23.5.1.

2. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
Vol. 3 22-7

VM ENTRIES
• On processors that support Intel 64 architecture, the base-address fields for FS,
GS, GDTR, IDTR, and TR must contain canonical addresses.

22.2.4 Checks Related to Address-Space Size
On processors that support Intel 64 architecture, the following checks related to
address-space size are performed on VMX controls and fields in the host-state area:

• If the logical processor is outside IA-32e mode (if IA32_EFER.LMA = 0) at the
time of VM entry, the following must hold:

— The “IA-32e mode guest” VM-entry control is 0.

— The “host address-space size” VM-exit control is 0.

• If the logical processor is in IA-32e mode (if IA32_EFER.LMA = 1) at the time of
VM entry, the “host address-space size” VM-exit control must be 1.

• If the “host address-space size” VM-exit control is 0, the following must hold:

— The “IA-32e mode guest” VM-entry control is 0.

— Bits 63:32 in the RIP field is 0.

• If the “host address-space size” VM-exit control is 1, the following must hold:

— Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1.

— The RIP field contains a canonical address.

On processors that do not support Intel 64 architecture, checks are performed to
ensure that the “IA-32e mode guest” VM-entry control and the “host address-space
size” VM-exit control are both 0.

22.3 CHECKING AND LOADING GUEST STATE
If all checks on the VMX controls and the host-state area pass (see Section 22.2), the
following operations take place concurrently: (1) the guest-state area of the VMCS is
checked to ensure that, after the VM entry completes, the state of the logical
processor is consistent with IA-32 and Intel 64 architectures; (2) processor state is
loaded from the guest-state area or as specified by the VM-entry control fields; and
(3) address-range monitoring is cleared.

Because the checking and the loading occur concurrently, a failure may be discov-
ered only after some state has been loaded. For this reason, the logical processor
responds to such failures by loading state from the host-state area, as it would for a
VM exit. See Section 22.7.
22-8 Vol. 3

VM ENTRIES
22.3.1 Checks on the Guest State Area
This section describes checks performed on fields in the guest-state area. These
checks may be performed in any order. The following subsections reference fields
that correspond to processor state. Unless otherwise stated, these references are to
fields in the guest-state area.

22.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRs
The following checks are performed on fields in the guest-state area corresponding to
control registers, debug registers, and MSRs:

• The CR0 field must not set any bit to a value not supported in VMX operation
(see Section 19.8).1

• The CR4 field must not set any bit to a value not supported in VMX operation
(see Section 19.8).

• Bits reserved in the IA32_DEBUGCTL MSR must be 0 in the field for that register.

• The following checks are performed on processors that support Intel 64 archi-
tecture:

— If the “IA-32e mode guest” VM-entry control is 1, bit 5 in the CR4 field (corre-
sponding to CR4.PAE) must be 1.

— The CR3 field must be such that bits 63:52 and bits in the range 51:32
beyond the processor’s physical-address width are 0.2

— Bits 63:32 in the DR7 field must be 0.

— The IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field must each
contain a canonical address.

22.3.1.2 Checks on Guest Segment Registers
This section specifies the checks on the fields for CS, SS, DS, ES, FS, GS, TR, and
LDTR. The following terms are used in defining these checks:

• The guest will be virtual-8086 if the VM flag (bit 17) is 1 in the RFLAGS field in
the guest-state area.

• The guest will be IA-32e mode if the “IA-32e mode guest” VM-entry control is 1.
(This is possible only on processors that support Intel 64 architecture.)

• Any one of these registers is said to be usable if the unusable bit (bit 16) is 0 in
the access-rights field for that register.

1. The bits corresponding to NW (bit 29) and CD (bit 30) are never checked because the values of
these bits are not changed by VM entry; see Section 22.3.2.1.

2. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
Vol. 3 22-9

VM ENTRIES
The following are the checks on these fields:

• Selector fields.

— TR. The TI flag (bit 2) must be 0.

— LDTR. If LDTR is usable, the TI flag (bit 2) must be 0.

— SS. If the guest will not be virtual-8086, the RPL (bits 1:0) must equal the
RPL of the selector field for CS.

• Base-address fields.

— CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the address must be
the selector field shifted right 4 bits.

— The following checks are performed on processors that support Intel 64 archi-
tecture:

• TR, FS, GS. The address must be canonical.

• LDTR. If LDTR is usable, the address must be canonical.

• CS. Bits 63:32 of the address must be zero.

• SS, DS, ES. If the register is usable, bits 63:32 of the address must be
zero.

• Limit fields for CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the field
must be 0000FFFFH.

• Access-rights fields.

— CS, SS, DS, ES, FS, GS.

• If the guest will be virtual-8086, the field must be 000000F3H. Note that
this implies the following:

— Bits 3:0 (Type) must be 3, indicating an expand-up read/write
accessed data segment.

— Bit 4 (S) must be 1.

— Bits 6:5 (DPL) must be 3.

— Bit 7 (P) must be 1.

— Bits 11:8 (reserved), bit 12 (software available), bit 13 (reserved/L),
bit 14 (D/B), bit 15 (G), bit 16 (unusable), and bits 31:17 (reserved)
must all be 0.

• If the guest will not be virtual-8086, the different sub-fields are
considered separately:

— Bits 3:0 (Type).

• CS. Bit 0 of the Type must be 1 (accessed) and bit 3 of the Type
must be 1 (code segment).

• SS. If SS is usable, the Type must be 3 or 7 (read/write,
accessed data segment).
22-10 Vol. 3

VM ENTRIES
• DS, ES, FS, GS. The following checks apply if the register is
usable:

— Bit 0 of the Type must be 1 (accessed).

— If bit 3 of the Type is 1 (code segment), then bit 1 of the
Type must be 1 (readable).

— Bit 4 (S). If the register is CS or if the register is usable, S must
be 1.

— Bits 6:5 (DPL).

• CS.

— If the Type is in the range 8–11 (non-conforming code
segment), the DPL must equal the RPL (bits 1:0) from the
selector field.

— If the Type is in the range 12–15 (conforming code
segment), the DPL cannot be greater than the RPL from the
selector field.

• SS. The DPL must equal the RPL from the selector field

• DS, ES, FS, GS. If the register is usable and the register’s Type is
in the range 0 – 11 (data segment or non-conforming code
segment), then the DPL cannot be less than the RPL from the
selector field

— Bit 7 (P). If the register is CS or if the register is usable, P must be 1.

— Bits 11:8 (reserved). If the register is CS or if the register is usable,
these bits must all be 0.

— Bit 14 (D/B). For CS, D/B must be 0 if the guest will be IA-32e mode
and the L bit (bit 13) in the access-rights field is 1.

— Bit 15 (G). The following checks apply if the register is CS or if the
register is usable:

• If any bit in the limit field in the range 11:0 is 0, G must be 0.

• If any bit in the limit field in the range 31:20 is 1, G must be 1.

— Bits 31:17 (reserved). If the register is CS or if the register is
usable, these bits must all be 0.

— TR. The different sub-fields are considered separately:

• Bits 3:0 (Type).

— If the guest will not be IA-32e mode, the Type must be 3 (16-bit
busy TSS) or 11 (32-bit busy TSS).

— If the guest will be IA-32e mode, the Type must be 11 (64-bit busy
TSS).

• Bit 4 (S). S must be 0.
Vol. 3 22-11

VM ENTRIES
• Bit 7 (P). P must be 1.

• Bits 11:8 (reserved). These bits must all be 0.

• Bit 15 (G).

— If any bit in the limit field in the range 11:0 is 0, G must be 0.

— If any bit in the limit field in the range 31:20 is 1, G must be 1.

• Bit 16 (Unusable). The unusable bit must be 0.

• Bits 31:17 (reserved). These bits must all be 0.

— LDTR. The following checks on the different sub-fields apply only if LDTR is
usable:

• Bits 3:0 (Type). The Type must be 2 (LDT).

• Bit 4 (S). S must be 0.

• Bit 7 (P). P must be 1.

• Bits 11:8 (reserved). These bits must all be 0.

• Bit 15 (G).

— If any bit in the limit field in the range 11:0 is 0, G must be 0.

— If any bit in the limit field in the range 31:20 is 1, G must be 1.

• Bits 31:17 (reserved). These bits must all be 0.

22.3.1.3 Checks on Guest Descriptor-Table Registers
The following checks are performed on the fields for GDTR and IDTR:

• On processors that support Intel 64 architecture, the base-address fields must
contain canonical addresses.

• Bits 31:16 of each limit field must be 0.

22.3.1.4 Checks on Guest RIP and RFLAGS
The following checks are performed on fields in the guest-state area corresponding to
RIP and RFLAGS:

• RIP. The following checks are performed on processors that support Intel 64
architecture:

— Bits 63:32 must be 0 if the “IA-32e mode guest” VM-entry control is 0 or if
the L bit (bit 13) in the access-rights field for CS is 0.

— If the processor supports N < 64 linear-address bits, bits 63:N must be
identical if the “IA-32e mode guest” VM-entry control is 1 and the L bit in the
22-12 Vol. 3

VM ENTRIES
access-rights field for CS is 1.1 (No check applies if the processor supports 64
linear-address bits.)

• RFLAGS.

— Reserved bits 63:22 (bits 31:22 on processors that do not support Intel 64
architecture), bit 15, bit 5 and bit 3 must be 0 in the field, and reserved bit 1
must be 1.

— On processors that support Intel 64 architecture, the VM flag (bit 17) must be
0 if the “IA-32e mode guest” VM-entry control is 1.

— The IF flag (RFLAGS[bit 9]) must be 1 if the valid bit (bit 31) in the VM-entry
interruption-information field is 1 and the interruption type (bits 10:8) is
external interrupt.

22.3.1.5 Checks on Guest Non-Register State
The following checks are performed on fields in the guest-state area corresponding to
non-register state:

• Activity state.

— The activity-state field must contain a value in the range 0 – 3, indicating an
activity state supported by the implementation (see Section 20.4.2). Future
processors may include support for other activity states. Software should
read the VMX capability MSR IA32_VMX_MISC (see Appendix G.5) to
determine what activity states are supported.

— The activity-state field must not indicate the HLT state if the DPL (bits 6:5) in
the access-rights field for SS is not 0.2

— The activity-state field must indicate the active state if the interruptibility-
state field indicates blocking by either MOV-SS or by STI (if either bit 0 or
bit 1 in that field is 1).

— If the valid bit (bit 31) in the VM-entry interruption-information field is 1, the
interruption to be delivered (as defined by interruption type and vector) must
not be one that would normally be blocked while a logical processor is in the
activity state corresponding to the contents of the activity-state field. The
following items enumerate the interruptions whose injection is allowed for the
different activity states:

• Active. Any interruption is allowed.

• HLT. The only events allowed are those with interruption type external
interrupt or non-maskable interrupt (NMI) and those with interruption

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The num-
ber of linear-address bits supported is returned in bits 15:8 of EAX.

2. As noted in Section 20.4.1, SS.DPL corresponds to the logical processor’s current privilege level
(CPL).
Vol. 3 22-13

VM ENTRIES
type hardware exception and vector 1 (debug exception) or vector 18
(machine-check exception).

• Shutdown. Only NMIs and machine-check exceptions are allowed.

• Wait-for-SIPI. No interruptions are allowed.

— The activity-state field must not indicate the wait-for-SIPI state if the “entry
to SMM” VM-entry control is 1.

• Interruptibility state.

— The reserved bits (bits 31:4) must be 0.

— The field cannot indicate blocking by both STI and MOV SS (bits 0 and 1
cannot both be 1).

— Bit 0 (blocking by STI) must be 0 if the IF flag (bit 9) is 0 in the RFLAGS field.

— Bit 0 (blocking by STI) and bit 1 (blocking by MOV-SS) must both be 0 if the
valid bit (bit 31) in the VM-entry interruption-information field is 1 and the
interruption type (bits 10:8) in that field has value 0, indicating external
interrupt.

— Bit 1 (blocking by MOV-SS) must be 0 if the valid bit (bit 31) in the VM-entry
interruption-information field is 1 and the interruption type (bits 10:8) in that
field has value 2, indicating non-maskable interrupt (NMI).

— Bit 2 (blocking by SMI) must be 0 if the processor is not in SMM.

— Bit 2 (blocking by SMI) must be 1 if the “entry to SMM” VM-entry control is 1.

— A processor may require bit 0 (blocking by STI) to be 0 if the valid bit (bit 31)
in the VM-entry interruption-information field is 1 and the interruption type
(bits 10:8) in that field has value 2, indicating NMI. Other processors may not
make this requirement.

— Bit 3 (blocking by NMI) must be 0 if the “virtual NMIs” VM-execution control
is 1, the valid bit (bit 31) in the VM-entry interruption-information field is 1,
and the interruption type (bits 10:8) in that field has value 2 (indicating
NMI).

NOTE
If the “virtual NMIs” VM-execution control is 0, there is no
requirement that bit 3 be 0 if the valid bit in the VM-entry
interruption-information field is 1 and the interruption type in that
field has value 2.

• Pending debug exceptions.

— Bits 11:4, bit 13, and bits 63:15 (bits 31:15 on processors that do not
support Intel 64 architecture) must be 0.

— The following checks are performed if any of the following holds: (1) the
interruptibility-state field indicates blocking by STI (bit 0 in that field is 1);
22-14 Vol. 3

VM ENTRIES
(2) the interruptibility-state field indicates blocking by MOV SS (bit 1 in that
field is 1); or (3) the activity-state field indicates HLT:

• Bit 14 (BS) must be 1 if the TF flag (bit 8) in the RFLAGS field is 1 and the
BTF flag (bit 1) in the IA32_DEBUGCTL field is 0.

• Bit 14 (BS) must be 0 if the TF flag (bit 8) in the RFLAGS field is 0 or the
BTF flag (bit 1) in the IA32_DEBUGCTL field is 1.

• VMCS link pointer. The following checks apply if the field contains a value other
than FFFFFFFF_FFFFFFFFH:

— Bits 11:0 must be 0.

— On processors that support Intel 64 architecture, bits beyond the processor’s
physical-address width must be 0.1 On processors that do not support Intel
64 architecture, bits in the range 63:32 must be 0.

— The 32 bits located in memory referenced by the value of the field (as a
physical address) must contain the processor’s VMCS revision identifier (see
Section 20.2).

— If the processor is not in SMM or the “entry to SMM” VM-entry control is 1, the
field must not contain the current VMCS pointer.

— If the processor is in SMM and the “entry to SMM” VM-entry control is 0, the
field must not contain the VMXON pointer.

22.3.1.6 Checks on Guest Page-Directory Pointers
If bit 5 in CR4 (CR4.PAE) is 1, the logical processor uses the physical-address
extension (PAE). If IA32_EFER.LMA is 0, the logical processor also uses PAE
paging (see Section 3.8 in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A).2 When PAE paging is in use, the physical address in CR3
references a table of page-directory pointers (PDPTRs). A MOV to CR3 when PAE
paging is in use checks the validity of these pointers.

A VM entry is to a guest that uses PAE paging if (1) bit 5 (corresponding to CR4.PAE)
is set in the CR4 field in the guest-state area; and (2) the “IA-32e mode guest”
VM-entry control is 0. Such a VM entry may check the validity of the PDPTRs refer-
enced by the CR3 field in the guest-state area. Such a VM entry must check their
validity if either (1) PAE paging was not in use before the VM entry; or (2) the value
of CR3 is changing as a result of the VM entry. A VM entry to a guest that does not
use PAE paging must not check the validity of the PDPTRs.

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

2. On processors that support Intel 64 architecture, the physical-address extension may support
more than 36 physical-address bits. Software can determine the number physical-address bits
supported by executing CPUID with 80000008H in EAX. The physical-address width is returned
in bits 7:0 of EAX.
Vol. 3 22-15

VM ENTRIES
A VM entry that checks the validity of the PDPTRs uses the same checks that are used
when CR3 is loaded with MOV to CR3 when PAE paging is in use. If MOV to CR3 would
cause a general-protection exception due to the PDPTRs that would be loaded (for
example: because a reserved bit is set), the VM entry fails.

22.3.2 Loading Guest State
Processor state is updated on VM entries in the following ways:

• Some state is loaded from the guest-state area.

• Some state is determined by VM-entry controls.

• The page-directory pointers are loaded based on the values of certain control
registers.

This loading may be performed in any order and in parallel with the checking of VMCS
contents (see Section 22.3.1).

The loading of guest state is detailed in Section 22.3.2.1 to Section 22.3.2.4. These
sections reference VMCS fields that correspond to processor state. Unless otherwise
stated, these references are to fields in the guest-state area.

In addition to the state loading described in this section, VM entries may load MSRs
from the VM-entry MSR-load area (see Section 22.4). This loading occurs only after
the state loading described in this section and the checking of VMCS contents
described in Section 22.3.1.

22.3.2.1 Loading Guest Control Registers, Debug Registers, and MSRs
The following items describe how guest control registers, debug registers, and MSRs
are loaded on VM entry:

• CR0 is loaded from the CR0 field with the exception of the following bits, which
are never modified on VM entry: ET (bit 4); reserved bits 15:6, 17, and 28:19;
NW (bit 29) and CD (bit 30).1 The values of these bits in the CR0 field are
ignored.

• CR3 and CR4 are loaded from the CR3 field and the CR4 field, respectively.

• DR7 is loaded from the DR7 field with the exception that bit 12 and bits 15:14 are
always 0 and bit 10 is always 1. The values of these bits in the DR7 field are
ignored.

• The following describes how some MSRs are loaded using fields in the guest-state
area:

— IA32_DEBUGCTL MSR is loaded from the IA32_DEBUGCTL field.

1. Bits 15:6, bit 17, and bit 28:19 of CR0 and CR0.ET are unchanged by executions of MOV to CR0.
Bits 15:6, bit 17, and bit 28:19 of CR0 are always 0 and CR0.ET is always 1.
22-16 Vol. 3

VM ENTRIES
— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field.
Since this field has only 32 bits, bits 63:32 of the MSR are cleared to 0.

— The IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are loaded from
the IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field, respec-
tively. On processors that do not support Intel 64 architecture, these fields
have only 32 bits; bits 63:32 of the MSRs are cleared to 0.

— The following are performed on processors that support Intel 64 architecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields
for FS and GS, respectively (see Section 22.3.2.2).

• The LMA and LME bits in the IA32_EFER MSR are each loaded with the
setting of the “IA-32e mode guest” VM-entry control.

With the exception of FS.base and GS.base, any of these MSRs may be subse-
quently overwritten if it appears in the VM-entry MSR-load area. See Section
22.4.

• The SMBASE register is unmodified by all VM entries except those that return
from SMM.

If any of CR3[63:5] (CR3[31:5] on processors that do not support Intel 64 architec-
ture), CR4.PAE, CR4.PSE, or IA32_EFER.LMA is changing, the TLBs are updated so
that, after VM entry, the logical processor will not use any translations that were
cached before the transition. This is not necessary for changes that would not affect
paging due to the settings of other bits (for example, changes to CR4.PSE if CR4.PAE
was 1 before and after the transition).

22.3.2.2 Loading Guest Segment Registers and Descriptor-Table Registers
For each of CS, SS, DS, ES, FS, GS, TR, and LDTR, fields are loaded from the guest-
state area as follows:

• The unusable bit is loaded from the access-rights field. This bit can never be set
for TR (see Section 22.3.1.2). If it is set for one of the other registers, the
following apply:

— For each of CS, SS, DS, ES, FS, and GS, uses of the segment cause faults
(general-protection exception or stack-fault exception) outside 64-bit mode,
just as they would had the segment been loaded using a null selector. This bit
does not cause accesses to fault in 64-bit mode.

— If this bit is set for LDTR, uses of LDTR cause general-protection exceptions in
all modes, just as they would had LDTR been loaded using a null selector.

If this bit is clear for any of CS, SS, DS, ES, FS, GS, TR, and LDTR, a null
selector value does not cause a fault (general-protection exception or stack-
fault exception).

• TR. The selector, base, limit, and access-rights fields are loaded.
Vol. 3 22-17

VM ENTRIES
• CS.

— The following fields are always loaded: selector, base address, limit, and
(from the access-rights field) the L, D, and G bits.

— For the other fields, the unusable bit of the access-rights field is consulted:

• If the unusable bit is 0, all of the access-rights fields are loaded.

• If the unusable bit is 1, the remainder of CS access rights are undefined
after VM entry.

• SS, DS, ES, FS, and GS, and LDTR.

— The selector fields are loaded.

— For the other fields, the unusable bit of the corresponding access-rights field
is consulted:

• If the unusable bit is 0, the base-address, limit, and access-rights fields
are loaded.

• If the unusable bit is 1, the base address, the segment limit, and the
remainder of the access rights are undefined after VM entry. The only
exceptions are the following:

— SS.DPL: always loaded from the SS access-rights field. This will be
the current privilege level (CPL) after the VM entry completes.

— The base addresses for FS and GS: always loaded. Note that, on
processors that support Intel 64 architecture, the values loaded for
base addresses for FS and GS are also manifest in the FS.base and
GS.base MSRs.

— The base address for LDTR on processors that support Intel 64 archi-
tecture: set to an undefined but canonical value.

— Bits 63:32 of the base addresses for SS, DS, and ES on processors
that support Intel 64 architecture: cleared to 0.

GDTR and IDTR are loaded using the base and limit fields.

22.3.2.3 Loading Guest RIP, RSP, and RFLAGS
RSP, RIP, and RFLAGS are loaded from the RSP field, the RIP field, and the RFLAGS
field, respectively. The following items regard the upper 32 bits of these fields on
VM entries that are not to 64-bit mode:

• Bits 63:32 of RSP are undefined outside 64-bit mode. Thus, a logical processor
may ignore the contents of bits 63:32 of the RSP field on VM entries that are not
to 64-bit mode.

• As noted in Section 22.3.1.4, bits 63:32 of the RIP and RFLAGS fields must be 0
on VM entries that are not to 64-bit mode.
22-18 Vol. 3

VM ENTRIES
22.3.2.4 Loading Page-Directory Pointers
As noted in Section 22.3.1.6, the logical processor uses PAE paging if bit 5 in CR4
(CR4.PAE) is 1 and IA32_EFER.LMA is 0. When PAE paging is in use, the physical
address in CR3 references a table of page-directory pointers (PDPTRs). A MOV to CR3
when PAE paging is in use loads the PDPTRs into the processor (into internal, non-
architectural registers).

A VM entry to a guest that uses PAE paging loads the PDPTRs into the processor as
would MOV to CR3, using the value of CR3 being load by the VM entry.

22.3.3 Clearing Address-Range Monitoring
The Intel 64 and IA-32 architectures allow software to monitor a specified address
range using the MONITOR and MWAIT instructions. See Section 7.11.4 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. VM entries
clear any address-range monitoring that may be in effect.

22.4 LOADING MSRS
VM entries may load MSRs from the VM-entry MSR-load area (see Section 20.8.2).
Specifically each entry in that area (up to the number specified in the VM-entry MSR-
load count) is processed in order by loading the MSR indexed by bits 31:0 with the
contents of bits 127:64 as they would be written by WRMSR.

Processing of an entry fails in any of the following cases:

• The value of bits 31:0 is either C0000100H (the IA32_FS_BASE MSR) or
C0000101 (the IA32_GS_BASE MSR).

• The value of bits 31:0 indicates an MSR that can be written only in system-
management mode (SMM) and the VM entry did not commence in SMM.
(IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)

• The value of bits 31:0 indicates an MSR that cannot be loaded on VM entries for
model-specific reasons. A processor may prevent loading of certain MSRs even if
they can normally be written by WRMSR. Such model-specific behavior is
documented in Appendix B.

• Bits 63:32 are not all 0.

• An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry
would cause a general-protection exception if executed via WRMSR with
CPL = 0.1

1. Note the following about processors that support Intel 64 architecture. If CR0.PG = 1, WRMSR to
the IA32_EFER MSR causes a general-protection exception if it would modify the LME bit. Since
CR0.PG is always 1 in VMX operation, the IA32_EFER MSR should not be included in the
VM-entry MSR-load area for the purpose of modifying the LME bit.
Vol. 3 22-19

VM ENTRIES
The VM entry fails if processing fails for any entry. The logical processor responds to
such failures by loading state from the host-state area, as it would for a VM exit. See
Section 22.7.

If any MSR is being loaded in such a way that would architecturally require a TLB
flush, the TLBs are updated so that, after VM entry, the logical processor will not use
any translations that were cached before the transition.

22.5 EVENT INJECTION
If the valid bit in the VM-entry interruption-information field is 1, the logical
processor delivers an event after all components of guest state have been loaded
(including MSRs). The event is delivered using the vector in that field to select a
descriptor in the IDT. Since event injection occurs after loading IDTR from the guest-
state area, this is the guest IDT.

Section 22.5.1 provides details of event injection. In general, the event is delivered
exactly as it would had it been generated normally.

If event delivery encounters a nested exception (for example, a general-protection
exception because the vector indicates a descriptor beyond the IDT limit), the excep-
tion bitmap is consulted using the vector of that exception. If the bit is 0, the excep-
tion is delivered through the IDT. If the bit is 1, a VM exit occurs. Section 22.5.2
details cases in which event injection causes a VM exit.

22.5.1 Details of Event Injection
The event-injection process is controlled by the contents of the VM-entry interruption
information field (format given in Table 20-11), the VM-entry exception error-code
field, and the VM-entry instruction-length field. The following items provide details of
the process:

• The value pushed on the stack for RFLAGS is generally that which was loaded
from the guest-state area. The value pushed for the RF flag is not modified based
on the type of event being delivered. However, the pushed value of RFLAGS may
be modified if a software interrupt is being injected into a guest that will be in
virtual-8086 mode (see below). After RFLAGS is pushed on the stack, the value
in the RFLAGS register is modified as is done normally when delivering an event
through the IDT.

• The instruction pointer that is pushed on the stack depends on the type of event
and whether nested exceptions occur during its delivery. The term current
22-20 Vol. 3

VM ENTRIES
guest RIP refers to the value to be loaded from the guest-state area. The value
pushed is determined as follows:1

— If VM entry successfully injects (with no nested exception) an event with
interruption type external interrupt, NMI, or hardware exception, the current
guest RIP is pushed on the stack.

— If VM entry successfully injects (with no nested exception) an event with
interruption type software interrupt, privileged software exception, or
software exception, the current guest RIP is incremented by the VM-entry
instruction length before being pushed on the stack.

— If VM entry encounters an exception while injecting an event and that
exception does not cause a VM exit, the current guest RIP is pushed on the
stack regardless of event type or VM-entry instruction length. If the
encountered exception does cause a VM exit that saves RIP, the saved RIP is
current guest RIP.

• If the deliver-error-code bit (bit 11) is set in the VM-entry interruption-
information field, the contents of the VM-entry exception error-code field is
pushed on the stack as an error code would be pushed during delivery of an
exception.

• DR6, DR7, and the IA32_DEBUGCTL MSR are not modified by event injection,
even if the event has vector 1 (normal deliveries of debug exceptions, which have
vector 1, do update these registers).

• If VM entry is injecting a software interrupt and the guest will be in virtual-8086
mode (RFLAGS.VM = 1), no general-protection exception can occur due to
RFLAGS.IOPL < 3. A VM monitor should check RFLAGS.IOPL before injecting
such an event and, if desired, inject a general-protection exception instead of a
software interrupt.

• If VM entry is injecting a software interrupt and the guest will be in virtual-8086
mode with virtual-8086 mode extensions (RFLAGS.VM = CR4.VME = 1), event
delivery is subject to VME-based interrupt redirection based on the software
interrupt redirection bitmap in the task-state segment (TSS) as follows:

— If bit n in the bitmap is clear (where n is the number of the software
interrupt), the interrupt is directed to an 8086 program interrupt handler: the
processor uses a 16-bit interrupt-vector table (IVT) located at linear address
zero. If the value of RFLAGS.IOPL is less than 3, the following modifications
are made to the value of RFLAGS that is pushed on the stack: IOPL is set to
3, and IF is set to the value of VIF.

— If bit n in the bitmap is set (where n is the number of the software interrupt),
the interrupt is directed to a protected-mode interrupt handler. (In other
words, the injection is treated as described in the next item.) In this case, the
software interrupt does not invoke such a handler if RFLAGS.IOPL < 3 (a

1. While these items refer to RIP, the width of the value pushed (16 bits, 32 bits, or 64 bits) is
determined normally.
Vol. 3 22-21

VM ENTRIES
general-protection exception occurs instead). However, as noted above,
RFLAGS.IOPL cannot cause an injected software interrupt to cause such a
exception. Thus, in this case, the injection invokes a protected-mode
interrupt handler independent of the value of RFLAGS.IOPL.

Injection of events of other types are not subject to this redirection.

• If VM entry is injecting a software interrupt (not redirected as described above)
or software exception, privilege checking is performed on the IDT descriptor
being accessed as would be the case for executions of INT n, INT3, or INTO (the
descriptor’s DPL cannot be less than CPL). There is no checking of RFLAGS.IOPL,
even if the guest will be in virtual-8086 mode. Failure of this check may lead to a
nested exception. Injection of an event with interruption type external interrupt,
NMI, hardware exception, and privileged software exception, or with interruption
type software interrupt and being redirected as described above, do not perform
these checks.

• If VM entry is injecting a non-maskable interrupt (NMI) and the “virtual NMIs”
VM-execution control is 1, virtual-NMI blocking is in effect after VM entry.

• The transition causes a last-branch record to be logged if the LBR bit is set in the
IA32_DEBUGCTL MSR. This is true even for events such as debug exceptions,
which normally clear the LBR bit before delivery.

• The last-exception record MSRs (LERs) may be updated based on the setting of
the LBR bit in the IA32_DEBUGCTL MSR. Events such as debug exceptions, which
normally clear the LBR bit before they are delivered, and therefore do not
normally update the LERs, may do so as part of VM-entry event injection.

• If injection of an event encounters a nested exception that does not itself cause a
VM exit, the value of the EXT bit (bit 0) in any error code pushed on the stack is
determined as follows:

— If event being injected has interruption type external interrupt, NMI,
hardware exception, or privileged software exception and encounters a
nested exception (but does not produce a double fault), the error code for the
first such exception encountered sets the EXT bit.

— If event being injected is a software interrupt or an software exception and
encounters a nested exception (but does not produce a double fault), the
error code for the first such exception encountered clears the EXT bit.

— If event delivery encounters a nested exception and delivery of that
exception encounters another exception (but does not produce a double
fault), the error code for that exception sets the EXT bit. If a double fault is
produced, the error code for the double fault is 0000H (the EXT bit is clear).

22.5.2 VM Exits During Event Injection
An event being injected never causes a VM exit directly regardless of the settings of
the VM-execution controls. For example, setting the “NMI exiting” VM-execution
control to 1 does not cause a VM exit due to injection of an NMI.
22-22 Vol. 3

VM ENTRIES
However, the event-delivery process may lead to a VM exit:

• If the vector in the VM-entry interruption-information field identifies a task gate
in the IDT, the attempted task switch may cause a VM exit just as it would had
the injected event occurred during normal execution in VMX non-root operation
(see Section 21.6.2).

• If event delivery encounters a nested exception, a VM exit may occur depending
on the contents of the exception bitmap (see Section 21.3).

• If the “virtualize APIC accesses” VM-execution control is 1 and event delivery
generates an access to the APIC-access page, that access may cause an APIC-
access VM exit (see Section 21.2) or, if the access is a VTPR access, be treated as
specified in Section 21.5.3.

If the event-delivery process does cause a VM exit, the processor state before the
VM exit is determined just as it would be had the injected event occurred during
normal execution in VMX non-root operation. If the injected event directly accesses a
task gate that cause a VM exit or if the first nested exception encountered causes a
VM exit, information about the injected event is saved in the IDT-vectoring informa-
tion field (see Section 23.2.3).

22.6 SPECIAL FEATURES OF VM ENTRY
This section details a variety of features of VM entry. It uses the following termi-
nology: a VM entry is injecting if the valid bit (bit 31) of the VM-entry interruption
information field is set.

22.6.1 Interruptibility State
The interruptibility-state field in the guest-state area (see Table 20-3) contains bits
that control blocking by STI, blocking by MOV SS, and blocking by NMI. This field
impacts event blocking after VM entry as follows:

• If the VM entry is injecting, there is no blocking by STI or by MOV SS following
the VM entry, regardless of the contents of the interruptibility-state field.

• If the VM entry is not injecting, the following apply:

— Events are blocked by STI if and only if bit 0 in the interruptibility-state field
is 1. Such blocking is cleared after the guest executes one instruction or
incurs an exception (including a debug exception made pending by VM entry;
see Section 22.6.3).

— Events are blocked by MOV SS if and only if bit 1 in the interruptibility-state
field is 1. This may affect the treatment of pending debug exceptions; see
Section 22.6.3. Such blocking is cleared after the guest executes one
instruction or incurs an exception (including a debug exception made pending
by VM entry).
Vol. 3 22-23

VM ENTRIES
• The blocking of non-maskable interrupts (NMIs) is determined as follows:

— If the “virtual NMIs” VM-execution control is 0, NMIs are blocked if bit 3
(blocking by NMI) in the interruptibility-state field is 1. If the “NMI exiting”
VM-execution control is 0, such blocking remains in effect until IRET is
executed (even if the instruction generates a fault). If the “NMI exiting”
control is 1, such blocking remains in effect as long as the logical processor is
in VMX non-root operation.

— The following items describe the use of bit 3 (blocking by NMI) in the inter-
ruptibility-state field if the “virtual NMIs” VM-execution control is 1:

• The bit’s value does not affect the blocking of NMIs after VM entry. NMIs
are not blocked in VMX non-root operation (except for ordinary blocking
for other reasons, such as by the MOV SS instruction, the wait-for-SIPI
state, etc.)

• The bit’s value determines whether there is virtual-NMI blocking after
VM entry. If the bit is 1, virtual-NMI blocking is in effect after VM entry. If
the bit is 0, there is no virtual-NMI blocking after VM entry unless the
VM entry is injecting an NMI (see Section 22.5.1).

• Blocking of system-management interrupts (SMIs) is determined as follows:

— If the VM entry was not executed in system-management mode (SMM), SMI
blocking is unchanged by VM entry.

— If the VM entry was executed in SMM, SMIs are blocked after VM entry if and
only if the bit 2 in the interruptibility-state field is 1.

22.6.2 Activity State
The activity-state field in the guest-state area controls whether, after VM entry, the
logical processor is active or in one of the inactive states identified in Section 20.4.2.
The use of this field is determined as follows:

• If the VM entry is injecting, the logical processor is in the active state after
VM entry. While the consistency checks described in Section 22.3.1.5 on the
activity-state field do apply in this case, the contents of the activity-state field do
not determine the activity state after VM entry.

• If the VM entry is not injecting, the logical processor ends VM entry in the activity
state specified in the guest-state area. If VM entry ends with the logical
processor in an inactive activity state, the VM entry generates any special bus
cycle that is normally generated when that activity state is entered from the
active state.

• Some activity states unconditionally block certain events. The following blocking
is in effect after any VM entry that puts the processor in the indicated state:

— The active state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical
processor is in the active state and in VMX non-root operation are discarded
and do not cause VM exits.
22-24 Vol. 3

VM ENTRIES
— The HLT state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical
processor is in the HLT state and in VMX non-root operation are discarded and
do not cause VM exits.

— The shutdown state blocks external interrupts and SIPIs. External interrupts
that arrive while a logical processor is in the shutdown state and in VMX non-
root operation do not cause VM exits even if the “external-interrupt exiting”
VM-execution control is 1. SIPIs that arrive while a logical processor is in the
shutdown state and in VMX non-root operation are discarded and do not
cause VM exits.

— The wait-for-SIPI state blocks external interrupts, non-maskable interrupts
(NMIs), INIT signals, and system-management interrupts (SMIs). Such
events do not cause VM exits if they arrive while a logical processor is in the
wait-for-SIPI state and in VMX non-root operation do not cause VM exits
regardless of the settings of the pin-based VM-execution controls.

22.6.3 Delivery of Pending Debug Exceptions after VM Entry
The pending debug exceptions field in the guest-state area indicates whether there
are debug exceptions that have not yet been delivered (see Section 20.4.2). This
section describes how these are treated on VM entry.

There are no pending debug exceptions after VM entry if any of the following are
true:

• The VM entry is injecting with one of the following interruption types: external
interrupt, non-maskable interrupt (NMI), hardware exception, or privileged
software exception.

• The interruptibility-state field does not indicate blocking by MOV SS and the
VM entry is injecting with either of the following interruption type: software
interrupt or software exception.

• The VM entry is not injecting and the activity-state field indicates either
shutdown or wait-for-SIPI.

If none of the above hold, the pending debug exceptions field specifies the debug
exceptions that are pending for the guest. There are valid pending debug excep-
tions if either the BS bit (bit 14) or the enable-breakpoint bit (bit 12) is 1. If there
are valid pending debug exceptions, they are handled as follows:

• If the VM entry is not injecting, the pending debug exceptions are treated as they
would had they been encountered normally in guest execution:

— If the logical processor is not blocking such exceptions (the interruptibility-
state field indicates no blocking by MOV SS), a debug exception is delivered
after VM entry (see below).

— If the logical processor is blocking such exceptions (due to blocking by
MOV SS), the pending debug exceptions are held pending or lost as would
normally be the case.
Vol. 3 22-25

VM ENTRIES
• If the VM entry is injecting (with interruption type software interrupt or software
exception and with blocking by MOV SS), the following items apply:

— For injection of a software interrupt or of a software exception with vector 3
(#BP) or vector 4 (#OF), the pending debug exceptions are treated as they
would had they been encountered normally in guest execution if the corre-
sponding instruction (INT3 or INTO) were executed after a MOV SS that
encountered a debug trap.

— For injection of a software exception with a vector other than 3 and 4, the
pending debug exceptions may be lost or they may be delivered after
injection (see below).

If there are no valid pending debug exceptions (as defined above), no pending debug
exceptions are delivered after VM entry.

If a pending debug exception is delivered after VM entry, it has the priority of “traps
on the previous instruction” (see Section 5.9 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A). Thus, INIT signals and system-
management interrupts (SMIs) take priority of such an exception, as do VM exits
induced by the TPR shadow (see Section 22.6.6). The exception takes priority over
any pending non-maskable interrupt (NMI) or external interrupt and also over
VM exits due to the 1-settings of the “interrupt-window exiting” and “NMI-window
exiting” VM-execution controls.

A pending debug exception delivered after VM entry causes a VM exit if the bit 1
(#DB) is 1 in the exception bitmap. If it does not cause a VM exit, it updates DR6
normally.

22.6.4 Interrupt-Window Exiting
The “interrupt-window exiting” VM-execution control may cause a VM exit to occur
immediately after VM entry (see Section 21.3 for details).

The following items detail the treatment of these VM exits:

• These VM exits follow event injection if such injection is specified for VM entry.

• Non-maskable interrupts (NMIs) and higher priority events take priority over
VM exits caused by this control. VM exits caused by this control take priority over
external interrupts and lower priority events.

• VM exits caused by this control wake the logical processor if it just entered the
HLT state because of a VM entry (see Section 22.6.2). They do not occur if the
logical processor just entered the shutdown state or the wait-for-SIPI state.

22.6.5 NMI-Window Exiting
The “NMI-window exiting” VM-execution control may cause a VM exit to occur imme-
diately after VM entry (see Section 21.3 for details).
22-26 Vol. 3

VM ENTRIES
The following items detail the treatment of these VM exits:

• These VM exits follow event injection if such injection is specified for VM entry.

• Debug-trap exceptions and higher priority events take priority over VM exits
caused by this control. VM exits caused by this control take priority over non-
maskable interrupts (NMIs) and lower priority events.

• VM exits caused by this control wake the logical processor if it just entered either
the HLT state or the shutdown state because of a VM entry (see Section 22.6.2).
They do not occur if the logical processor just entered the wait-for-SIPI state.

22.6.6 VM Exits Induced by the TPR Shadow
If the “use TPR shadow” and “virtualize APIC accesses” VM-execution controls are
both 1, a VM exit occurs immediately after VM entry if the value of bits 3:0 of the TPR
threshold VM-execution control field is greater than the value of bits 7:4 in byte 128
on the virtual-APIC page (see Section 20.6.8).

The following items detail the treatment of these VM exits:

• The VM exits are not blocked if RFLAGS.IF = 0 or by the setting of bits in the
interruptibility-state field in guest-state area.

• The VM exits follow event injection if such injection is specified for VM entry.

• The VM exits have the same priority as the “trap on task switch” event (see
Section 5.9, “Priority Among Simultaneous Exceptions and Interrupts,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).
They thus have priority over those described in Section 22.6.4 and Section 22.6.5
as well as any interrupts that may be pending at the time of VM entry.

• These VM exits wake the logical processor if it just entered the HLT state as part
of a VM entry (see Section 22.6.2). They do not occur if the logical processor just
entered the shutdown state or the wait-for-SIPI state.

If such a VM exit is suppressed because the processor just entered the
shutdown state, it occurs after the delivery of any event that cause the logical
processor to leave the shutdown state while remaining in VMX non-root
operation (e.g., due to an NMI that occurs while the “NMI-exiting” VM-execution
control is 0).

• The basic exit reason is “TPR below threshold.”

22.6.7 VM Entries and Advanced Debugging Features
VM entries are not logged with last-branch records, do not produce branch-trace
messages, and do not update the branch-trace store.
Vol. 3 22-27

VM ENTRIES
22.7 VM-ENTRY FAILURES DURING OR AFTER LOADING
GUEST STATE

VM-entry failures due to the checks identified in Section 22.3.1 and failures during
the MSR loading identified in Section 22.4 are treated differently from those that
occur earlier in VM entry. In these cases, the following steps take place:

1. Information about the VM-entry failure is recorded in the VM-exit information
fields:

— Exit reason.

• Bits 15:0 of this field contain the basic exit reason. It is loaded with a
number indicating the general cause of the VM-entry failure. The
following numbers are used:

33.VM-entry failure due to invalid guest state. A VM entry failed one of
the checks identified in Section 22.3.1.

34.VM-entry failure due to MSR loading. A VM entry failed in an attempt
to load MSRs (see Section 22.4).

41.VM-entry failure due to machine check. A machine check occurred
during VM entry (see Section 22.8).

• Bit 31 is set to 1 to indicate a VM-entry failure.

• The remainder of the field (bits 30:16) is cleared.

— Exit qualification. This field is set based on the exit reason.

• VM-entry failure due to invalid guest state. In most cases, the exit quali-
fication is cleared to 0. The following non-zero values are used in the
cases indicated:

1. Not used.

2. Failure was due to a problem loading the PDPTRs (see Section
22.3.1.6).

3. Failure was due to an attempt to inject a non-maskable interrupt
(NMI) into a guest that is blocking events through the STI blocking bit
in the interruptibility-state field. Such failures are implementation-
specific (see Section 22.3.1.5).

4.Failure was due to an invalid VMCS link pointer (see Section 22.3.1.5).

VM-entry checks on guest-state fields may be performed in any order.
Thus, an indication by exit qualification of one cause does not imply that
there are not also other errors. Different processors may give different
exit qualifications for the same VMCS.

• VM-entry failure due to MSR loading. The exit qualification is loaded to
indicate which entry in the VM-entry MSR-load area caused the problem
(1 for the first entry, 2 for the second, etc.).

— All other VM-exit information fields are unmodified.
22-28 Vol. 3

VM ENTRIES
2. Processor state is loaded as would be done on a VM exit (see Section 23.5). If
this results in [CR4.PAE & CR0.PG & ~IA32_EFER.LMA] = 1, page-directory
pointers (PDPTRS) may be checked and loaded (see Section 23.5.4).

3. The state of blocking by NMI is what it was before VM entry.

4. MSRs are loaded as specified in the VM-exit MSR-load area (see Section 23.6).

Although this process resembles that of a VM exit, many steps taken during a VM exit
do not occur for these VM-entry failures:

• Most VM-exit information fields are not updated (see step 1 above).

• The valid bit in the VM-entry interruption-information field is not cleared.

• The guest-state area is not modified.

• No MSRs are saved into the VM-exit MSR-store area.

22.8 MACHINE CHECKS DURING VM ENTRY
If a machine check occurs during a VM entry, one of the following occurs:

• The machine check is handled normally. If CR4.MCE = 1, a machine-check
exception (#MC) is delivered through the IDT. If CR4.MCE = 0, the processor
goes to the shutdown state.

• A VM-entry failure occurs as described in Section 22.7. The basic exit reason is
41, for “VM-entry failure due to machine check.”

The first option is not used if the machine check occurs after any guest state has
been loaded.
Vol. 3 22-29

VM ENTRIES
22-30 Vol. 3

CHAPTER 23
VM EXITS

VM exits occur in response to certain instructions and events in VMX non-root opera-
tion. Section 21.1 through Section 21.3 detail the causes of VM exits. VM exits
perform the following operation:

1. Information about the cause of the VM exit is recorded in the VM-exit information
fields and the valid bit (bit 31) is cleared in the VM-entry interruption-information
field (Section 23.2).

2. Processor state is saved in the guest-state area (Section 23.3).

3. MSRs may be saved in the VM-exit MSR-store area (Section 23.4).

4. The following may be performed in parallel and in any order (Section 23.5):

— Processor state is loaded based in part on the host-state area and some
VM-exit controls. This step is not performed for SMM VM exits that activate
the dual-monitor treatment of SMIs and SMM. See Section 24.16.6 for
information on how processor state is loaded by such VM exits.

— Address-range monitoring is cleared.

5. MSRs may be loaded from the VM-exit MSR-load area (Section 23.6). This step is
not performed for SMM VM exits that activate the dual-monitor treatment of
SMIs and SMM.

VM exits are not logged with last-branch records, do not produce branch-trace
messages, and do not update the branch-trace store.

Section 23.1 clarifies the nature of the architectural state before a VM exit begins.
The steps described above are detailed in Section 23.2 through Section 23.6.

Section 24.16 describes the dual-monitor treatment of system-management inter-
rupts (SMIs) and system-management mode (SMM). Under this treatment, ordinary
transitions to SMM are replaced by VM exits to a separate SMM monitor. Called SMM
VM exits, these are caused by the arrival of an SMI or the execution of VMCALL in
VMX root operation. SMM VM exits differ from other VM exits in ways that are
detailed in Section 24.16.2.

23.1 ARCHITECTURAL STATE BEFORE A VM EXIT
This section describes the architectural state that exists before a VM exit, especially
for VM exits caused by events that would normally be delivered through the IDT.
Note the following:

• An exception causes a VM exit directly if the bit corresponding to that exception
is set in the exception bitmap. A non-maskable interrupt (NMI) causes a VM exit
Vol. 3 23-1

VM EXITS
directly if the “NMI exiting” VM-execution control is 1. An external interrupt
causes a VM exit directly if the “external-interrupt exiting” VM-execution control
is 1. A start-up IPI (SIPI) that arrives while a logical processor is in the wait-for-
SIPI activity state causes a VM exit directly. INIT signals that arrive while the
processor is not in the wait-for-SIPI activity state cause VM exits directly.

• An exception, NMI, external interrupt, or software interrupt causes a VM exit
indirectly if it does not do so directly but delivery of the event causes a nested
exception, double fault, task switch, or APIC access (see Section 21.2) that
causes a VM exit.

• An event results in a VM exit if it causes a VM exit (directly or indirectly).

The following bullets detail when architectural state is and is not updated in response
to VM exits:

• If an event causes a VM exit directly, it does not update architectural state as it
would have if it had it not caused the VM exit:

— A debug exception does not update DR6, DR7.GD, or IA32_DEBUGCTL.LBR.
(Information about the nature of the debug exception is saved in the exit
qualification field.)

— A page fault does not update CR2. (The linear address causing the page fault
is saved in the exit-qualification field.)

— An NMI causes subsequent NMIs to be blocked, but only after the VM exit
completes.

— An external interrupt does not acknowledge the interrupt controller and the
interrupt remains pending, unless the “acknowledge interrupt on exit”
VM-exit control is 1. In such a case, the interrupt controller is acknowledged
and the interrupt is no longer pending.

— The flags L0 – L3 in DR7 (bit 0, bit 2, bit 4, and bit 6) are not cleared when a
task switch causes a VM exit.

— If a task switch causes a VM exit, none of the following are modified by the
task switch: old task-state segment (TSS); new TSS; old TSS descriptor; new
TSS descriptor; RFLAGS.NT1; or the TR register.

— No last-exception record is made if the event that would do so directly causes
a VM exit.

— If a machine-check exception causes a VM exit directly, this does not prevent
machine-check MSRs from being updated. These are updated by the machine
check itself and not the resulting machine-check exception.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For processors that do
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers
(EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to
lower 32 bits of the indicated register.
23-2 Vol. 3

VM EXITS
— If the logical processor happens to be in an inactive state (see Section
20.4.2) and not executing instructions, some events may be blocked but
others may return the logical processor to the active state. Unblocked events
may cause VM exits.1 If an unblocked event causes a VM exit directly, a
return to the active state occurs only after the VM exit completes.2 The
VM exit generates any special bus cycle that is normally generated when the
active state is entered from that activity state.

• If an event causes a VM exit indirectly, the event does update architectural state:

— A debug exception updates DR6, DR7, and the IA32_DEBUGCTL MSR. No
debug exceptions are considered pending.

— A page fault updates CR2.

— An NMI causes subsequent NMIs to be blocked before the VM exit
commences.

— An external interrupt acknowledges the interrupt controller and the interrupt
is no longer pending.

— If the logical processor had been in an inactive state, it enters the active state
and, before the VM exit commences, generates any special bus cycle that is
normally generated when the active state is entered from that activity state.

— There is no blocking by STI or by MOV SS when the VM exit commences.

— Processor state that is normally updated as part of delivery through the IDT
(CS, RIP, SS, RSP, RFLAGS) is not modified. However, the incomplete delivery
of the event may write to the stack.

— The treatment of last-exception records is implementation dependent:

• Some processors make a last-exception record when beginning the
delivery of an event through the IDT (before it can encounter a nested
exception). Such processors perform this update even if the event
encounters a nested exception that causes a VM exit (including the case
where nested exceptions lead to a triple fault).

• Other processors delay making a last-exception record until event
delivery has reached some event handler successfully (perhaps after one
or more nested exceptions). Such processors do not update the last-
exception record if a VM exit or triple fault occurs before an event handler
is reached.

• If the “virtual NMIs” VM-execution control is 1, VM entry injects an NMI, and
delivery of the NMI causes a nested exception, double fault, task switch, or APIC

1. If a VM exit takes the processor from an inactive state resulting from execution of a specific
instruction (HLT or MWAIT), the value saved for RIP by that VM exit will reference the following
instruction.

2. An exception is made if the logical processor had been inactive due to execution of MWAIT; in
this case, it is considered to have become active before the VM exit.
Vol. 3 23-3

VM EXITS
access that causes a VM exit, virtual-NMI blocking is in effect before the VM exit
commences.

• If a VM exit results from a fault encountered during execution of IRET and the
“NMI exiting” VM-execution control is 0, any blocking by NMI is cleared before the
VM exit commences. However, the previous state of blocking by NMI may be
recorded in the VM-exit interruption-information field; see Section 23.2.2.

• If a VM exit results from a fault encountered during execution of IRET and the
“virtual NMIs” VM-execution control is 1, virtual-NMI blocking is cleared before
the VM exit commences. However, the previous state of virtual-NMI blocking may
be recorded in the VM-exit interruption-information field; see Section 23.2.2.

• Suppose that a VM exit is caused directly by an x87 FPU Floating-Point Error
(#MF) or by any of the following events if the event was unblocked due to (and
given priority over) an x87 FPU Floating-Point Error: an INIT signal, an external
interrupt, an NMI, an SMI; or a machine-check exception. In these cases, there
is no blocking by STI or by MOV SS when the VM exit commences.

• Normally, a last-branch record may be made when an event is delivered through
the IDT. However, if such an event results in a VM exit before delivery is
complete, no last-branch record is made.

• If machine-check exception results in a VM exit, processor state is suspect and
may result in suspect state being saved to the guest-state area. A VM monitor
should consult the RIPV and EIPV bits in the IA32_MCG_STATUS MSR before
resuming a guest that caused a VM exit resulting from a machine-check
exception.

• If a VM exit results from a fault encountered while executing an instruction, data
breakpoints due to that instruction may have been recognized and information
about them may be saved in the pending debug exceptions field (see Section
23.3.4).

• The following VM exits are considered to happen after an instruction is executed:

— VM exits resulting from debug traps (single-step, I/O breakpoints, and data
breakpoints).

— VM exits resulting from debug exceptions whose recognition was delayed by
blocking by MOV SS.

— VM exits resulting from some machine-check exceptions.

— Trap-like VM exits due to execution of MOV to CR8 when the “CR8-load
exiting” VM-execution control is 0 and the “use TPR shadow” VM-execution
control is 1. (Such VM exits can occur only from 64-bit mode and thus only on
processors that support Intel 64 architecture.)

— VM exits caused by TPR-shadow updates (see Section 21.5.3.3) that result
from APIC accesses as part of instruction execution.

For these VM exits, the instruction’s modifications to architectural state complete
before the VM exit occurs. Such modifications include those to the logical
processor’s interruptibility state (see Table 20-3). If there had been blocking by
23-4 Vol. 3

VM EXITS
MOV SS, POP SS, or STI before the instruction executed, such blocking is no
longer in effect.

23.2 RECORDING VM-EXIT INFORMATION AND UPDATING
CONTROLS

VM exits begin by recording information about the nature of and reason for the
VM exit in the VM-exit information fields. Section 23.2.1 to Section 23.2.4 detail the
use of these fields.

In addition to updating the VM-exit information fields, the valid bit (bit 31) is cleared
in the VM-entry interruption-information field.

23.2.1 Basic VM-Exit Information
Section 20.9.1 defines the basic VM-exit information fields. The following items detail
their use.

• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. It is loaded with a number
indicating the general cause of the VM exit. Appendix I lists the numbers used
and their meaning.

— The remainder of the field (bits 31:16) is cleared on every VM exit.

• Exit qualification. This field is saved for VM exits due to the following causes:
debug exceptions; page-fault exceptions; start-up IPIs (SIPIs); system-
management interrupts (SMIs) that arrive immediately after the retirement of
I/O instructions; task switches; INVLPG; VMCLEAR; VMPTRLD; VMPTRST;
VMREAD; VMWRITE; VMXON; control-register accesses; MOV DR; I/O instruc-
tions; MWAIT; and accesses to the APIC-access page (see Section 21.2). For all
other VM exits, this field is cleared. The following items provide details:

— For debug exceptions, the exit qualification contains information about the
debug exception. The information has the format given in Table 23-1.

Table 23-1. Exit Qualification for Debug Exceptions

Bit Position(s) Contents

3:0 B3 – B0. When set, each of these bits indicates that the corresponding
breakpoint condition was met. Any of these bits may be set even if its
corresponding enabling bit in DR7 is not set.

12:4 Reserved (cleared to 0).
Vol. 3 23-5

VM EXITS
— For page-fault exceptions, the exit qualification contains the linear address
that caused the page fault. On processors that support Intel 64 architecture,
bits 63:32 are cleared if the logical processor was not in 64-bit mode before
the VM exit.

— Start-up IPI (SIPI). The SIPI vector information is stored in bits 7:0 of the
exit qualification. Bits 63:8 are cleared to 0.

— Task switch. Details about the reason for the VM exit are encoded as shown in
Table 23-2.

— For INVLPG, the exit qualification contains the linear-address operand of the
instruction.

• On processors that support Intel 64 architecture, bits 63:32 are cleared if
the logical processor was not in 64-bit mode before the VM exit.

13 BD. When set, this bit indicates that the cause of the debug exception is
“debug register access detected.”

14 BS. When set, this bit indicates that the cause of the debug exception is
either the execution of a single instruction (if RFLAGS.TF = 1 and
IA32_DEBUGCTL.BTF = 0) or a taken branch (if
RFLAGS.TF = DEBUGCTL.BTF = 1).

63:15 Reserved (cleared to 0). Bits 63:32 exist only on processors that
support Intel 64 architecture.

Table 23-2. Exit Qualification for Task Switch

Bit Position(s) Contents

15:0 Selector of task-state segment (TSS) to which the guest attempted to switch

29:16 Reserved (cleared to 0)

31:30 Source of task switch initiation:

0: CALL instruction
1: IRET instruction
2: JMP instruction
3: Task gate in IDT

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel
64 architecture.

Table 23-1. Exit Qualification for Debug Exceptions (Contd.)

Bit Position(s) Contents
23-6 Vol. 3

VM EXITS
• If the INVLPG source operand specifies an unusable segment, the linear
address specified in the exit qualification will match the linear address
that the INVLPG would have used if no VM exit occurred. Note that this
address is not architecturally defined and may be implementation-
specific.

— VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, VMXON. The exit quali-
fication receives the value of the instruction’s displacement field, which is
sign-extended to 64 bits if necessary (32 bits on processors that do not
support Intel 64 architecture). If the instruction has no displacement (for
example, has a register operand), zero is stored into the exit qualification.

On processors that support Intel 64 architecture, an exception is made for
RIP-relative addressing (used only in 64-bit mode). Such addressing causes
an instruction to use an address that is the sum of the displacement field
and the value of RIP that references the following instruction. In this case,
the exit qualification is loaded with the sum of the displacement field and
the appropriate RIP value.

In all cases, bits of this field beyond the instruction’s address size are
undefined. For example, suppose that the address-size field in the VM-exit
instruction-information field (see Section 20.9.4 and Section 23.2.4) reports
an n-bit address size. Then bits 63:n (bits 31:n on processors that do not
support Intel 64 architecture) of the instruction displacement are undefined.

— For control-register accesses, the exit qualification contains information
about the access and has the format given in Table 23-3.

Table 23-3. Exit Qualification for Control-Register Accesses

Bit Positions Contents

3:0 Number of control register (0 for CLTS and LMSW). Bit 3 is always 0 on
processors that do not support Intel 64 architecture as they do not support CR8.

5:4 Access type:

0 = MOV to CR
1 = MOV from CR
2 = CLTS
3 = LMSW

6 LMSW operand type:

0 = register
1 = memory

For CLTS and MOV CR, cleared to 0

7 Reserved (cleared to 0)
Vol. 3 23-7

VM EXITS
— For MOV DR, the exit qualification contains information about the instruction
and has the format given in Table 23-4.

11:8 For MOV CR, the general-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support
Intel 64 architecture)

For CLTS and LMSW, cleared to 0

15:12 Reserved (cleared to 0)

31:16 For LMSW, the LMSW source data

For CLTS and MOV CR, cleared to 0

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel
64 architecture.

Table 23-4. Exit Qualification for MOV DR

Bit Position(s) Contents

2:0 Number of debug register

3 Reserved (cleared to 0)

4 Direction of access (0 = MOV to DR; 1 = MOV from DR)

7:5 Reserved (cleared to 0)

Table 23-3. Exit Qualification for Control-Register Accesses (Contd.)

Bit Positions Contents
23-8 Vol. 3

VM EXITS
— For I/O instructions, the exit qualification contains information about the
instruction and has the format given in Table 23-5.

11:8 General-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8 –15 = R8 – R15, respectively

63:12 Reserved (cleared to 0)

Table 23-5. Exit Qualification for I/O Instructions

Bit Position(s) Contents

2:0 Size of access:

0 = 1-byte
1 = 2-byte
3 = 4-byte

Other values not used

3 Direction of the attempted access (0 = OUT, 1 = IN)

4 String instruction (0 = not string; 1 = string)

5 REP prefixed (0 = not REP; 1 = REP)

6 Operand encoding (0 = DX, 1 = immediate)

15:7 Reserved (cleared to 0)

31:16 Port number (as specified in the I/O instruction)

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel
64 architecture.

Table 23-4. Exit Qualification for MOV DR (Contd.)

Bit Position(s) Contents
Vol. 3 23-9

VM EXITS
— MWAIT. A value that indicates whether address-range monitoring hardware
was armed. The exit qualification is set to either 0 (if address-range
monitoring hardware is not armed) or 1 (if address-range monitoring
hardware is armed).

— For APIC-access VM exits resulting from linear accesses to the APIC-access
page (see Section 21.2.1), the exit qualification contains information about
the instruction and has the format given in Table 23-6.1

Such VM exits that set bits 13:12 of the exit qualification to 00b (data read
during instruction execution) or 01b (data write during instruction execution)
set bit 12—which distinguishes data read from data write—to that which
would have been stored in bit 1—W/R—of the page-fault error code had the
access caused a page fault instead of an APIC-access VM exit. This implies
the following:

• For APIC-access VM exits caused by the CLFLUSH instruction, the access
type is “data read during instruction execution.”

• For APIC-access VM exits caused by the ENTER instruction, the access
type is “data write during instruction execution.”

• For APIC-access VM exits caused by the MASKMOVQ and MASKMOVDQU
instructions, the access type is “data write during instruction execution.”

• For APIC-access VM exits caused by the MONITOR instruction, the access
type is “data read during instruction execution.”

See Section 21.2.1.3 for further discussion of these instructions and APIC-
access VM exits.

Table 23-6. Exit Qualification for APIC-Access VM Exits from Linear Accesses

Bit Position(s) Contents

11:0 Offset of access within the APIC page

13:12 Access type:

0 = data read during instruction execution
1 = data write during instruction execution
2 = instruction fetch
3 = access (read or write) during event delivery

63:14 Reserved (cleared to 0). Bits 63:32 exist only on processors that support
Intel 64 architecture.

1. The exit qualification is undefined if the access was part of the logging of a branch record or a
precise-event-based-sampling (PEBS) record to the DS save area. It is recommended that soft-
ware configure the paging structures so that no address in the DS save area translates to an
address on the APIC-access page.
23-10 Vol. 3

VM EXITS
For APIC-access VM exits resulting from physical accesses, the APIC-access
page (see Section 21.2.2), the exit qualification is undefined.

23.2.2 Information for VM Exits Due to Vectored Events
Section 20.9.2 defines fields containing information for VM exits due to the following
events: exceptions (including those generated by the instructions INT3, INTO,
BOUND, and UD2); external interrupts that occur while the “acknowledge interrupt
on exit” VM-exit control is 1; and non-maskable interrupts (NMIs). Such VM exits
include those that occur on an attempt at a task switch that causes an exception
before generating the VM exit due to the task switch that causes the VM exit.

The following items detail the use of these fields:

• VM-exit interruption information (format given in Table 20-13). The following
items detail how this field is established for VM exits due to these events:

— For an exception, bits 7:0 receive the exception vector (at most 31). For an
NMI, bits 7:0 are set to 2. For an external interrupt, bits 7:0 receive the
interrupt number.

— Bits 10:8 are set to 0 (external interrupt), 2 (non-maskable interrupt), 3
(hardware exception), or 6 (software exception). Hardware exceptions
comprise all exceptions except breakpoint exceptions (#BP; generated by
INT3) and overflow exceptions (#OF; generated by INTO); these are
software exceptions. Note that BOUND range exceeded exceptions (#BR;
generated by BOUND) and invalid opcode exceptions (#UD) generated by
UD2 are hardware exceptions.

— Bit 11 is set to 1 if the VM exit is caused by a hardware exception that would
have delivered an error code on the stack. If bit 11 is set to 1, the error code
is placed in the VM-exit interruption error code (see below).

— Bit 12 is undefined in any of the following cases:

• If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs”
VM-execution control is 0.

• If the VM exit sets the valid bit in the IDT-vectoring information field (see
Section 23.2.3).

• If the VM exit is due to a double fault (the interruption type is hardware
exception and the vector is 8).

Otherwise, bit 12 is defined as follows:

• If the “virtual NMIs” VM-execution control is 0, the VM exit is due to a
fault on the IRET instruction, and blocking by NMI (see Table 20-3) was in
effect before execution of IRET, bit 12 is set to 1.
Vol. 3 23-11

VM EXITS
• If the “virtual NMIs” VM-execution control is 1, the VM exit is due to a
fault on the IRET instruction, and virtual-NMI blocking was in effect
before execution of IRET, bit 12 is set to 1.

• For all other relevant VM exits, bit 12 is cleared to 0.

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.

For other VM exits (including those due to external interrupts when the
“acknowledge interrupt on exit” VM-exit control is 0), the field is marked invalid
(by clearing bit 31) and the remainder of the field is undefined.

• VM-exit interruption error code.

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the
VM-exit interruption-information field, this field receives the error code that
would have been pushed on the stack had the event causing the VM exit been
delivered normally through the IDT. The EXT bit is set in this field exactly
when it would be set normally. For exceptions that occur during the delivery
of double fault (if the IDT-vectoring information field indicates a double fault),
the EXT bit is set to 1, assuming that (1) that the exception would produce an
error code normally (if not incident to double-fault delivery) and (2) that the
error code uses the EXT bit (not for page faults, which use a different format).

— For other VM exits, the value of this field is undefined.

23.2.3 Information for VM Exits During Event Delivery
Section 20.9.3 defined fields containing information for VM exits that occur while
delivering an event through the IDT and as a result of either of the following cases:

• A fault occurs during event delivery and causes a VM exit (because the bit
associated with the fault is set to 1 in the exception bitmap).1

• A task switch is invoked through a task gate in the IDT. Note that the VM exit
occurs due to the task switch only after the initial checks of the task switch pass
(see Section 21.6.2).

• Event delivery causes an APIC-access VM exit (see Section 21.2).

Note that these fields are used for VM exits that occur during delivery of events
injected as part of VM entry (see Section 22.5.2).

1. This includes the case in which a VM exit occurs while delivering a software interrupt (INT n)
through the 16-bit IVT (interrupt vector table) that is used in virtual-8086 mode with virtual-
machine extensions (if RFLAGS.VM = CR4.VME = 1).
23-12 Vol. 3

VM EXITS
A VM exit is not considered to occur during event delivery in any of the following
circumstances:

• The original event causes the VM exit directly (for example, because the original
event is a non-maskable interrupt (NMI) and the “NMI exiting” VM-execution
control is 1).

• The original event results in a double-fault exception that causes the VM exit
directly.

• The VM exit occurred as a result of fetching the first instruction of the handler
invoked by the event delivery.

• The VM exit is caused by a triple fault.

The following items detail the use of these fields:

• IDT-vectoring information (format given in Table 20-14). The following items
detail how this field is established for VM exits that occur during event delivery:

— If the VM exit occurred during delivery of an exception, bits 7:0 receive the
exception vector (at most 31). If the VM exit occurred during delivery of an
NMI, bits 7:0 are set to 2. If the VM exit occurred during delivery of an
external interrupt, bits 7:0 receive the interrupt number.

— Bits 10:8 are set to indicate the type of event that was being delivered when
the VM exit occurred: 0 (external interrupt), 2 (non-maskable interrupt), 3
(hardware exception), 4 (software interrupt), 5 (privileged software
interrupt), or 6 (software exception).

Hardware exceptions comprise all exceptions except breakpoint exceptions
(#BP; generated by INT3) and overflow exceptions (#OF; generated by
INTO); these are software exceptions. Note that BOUND range exceeded
exceptions (#BR; generated by BOUND) and invalid opcode exceptions
(#UD) generated by UD2 are hardware exceptions.

Bits 10:8 may indicate privileged software interrupt if such an event was
injected as part of VM entry.

— Bit 11 is set to 1 if the VM exit occurred during delivery of a hardware
exception that would have delivered an error code on the stack. If bit 11 is
set to 1, the error code is placed in the IDT-vectoring error code (see below).

— Bit 12 is undefined.

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.

For other VM exits, the field is marked invalid (by clearing bit 31) and the
remainder of the field is undefined.

• IDT-vectoring error code.

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the
IDT-vectoring information field, this field receives the error code that would
Vol. 3 23-13

VM EXITS
have been pushed on the stack by the event that was being delivered through
the IDT at the time of the VM exit. The EXT bit is set in this field when it would
be set normally.

— For other VM exits, the value of this field is undefined.

23.2.4 Information for VM Exits Due to Instruction Execution
Section 20.9.4 defined fields containing information for VM exits that occur due to
instruction execution. (The VM-exit instruction length is also used for VM exits that
occur during the delivery of a software interrupt or software exception.) The
following items detail their use.

• VM-exit instruction length. This field is used in the following cases:

— For fault-like VM exits due to attempts to execute one of the following
instructions that cause VM exits unconditionally (see Section 21.1.2) or
based on the settings of VM-execution controls (see Section 21.1.3): CLTS,
CPUID, HLT, IN, INS INVD, INVLPG, LMSW, MONITOR, MOV CR, MOV DR,
MWAIT, OUT, OUTS, PAUSE, RDMSR, RDPMC, RDTSC, RSM, VMCALL,
VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, VMRESUME,
VMWRITE, VMXOFF, VMXON, and WRMSR.1

— For VM exits due to software exceptions (those generated by executions of
INT3 or INTO).

— For VM exits due to faults encountered during delivery of a software
interrupt, privileged software exception, or software exception.

— For VM exits due to attempts to effect a task switch via instruction execution.
These are VM exits that produce an exit reason indicating task switch and
either of the following:

• An exit qualification indicating execution of CALL, IRET, or JMP
instruction.

• An exit qualification indicating a task gate in the IDT and an IDT-vectoring
information field indicating that the task gate was encountered during
delivery of a software interrupt, privileged software exception, or
software exception.

— For APIC-access VM exits resulting from linear accesses (see Section 21.2.1)
and encountered during delivery of a software interrupt, privileged software
exception, or software exception.2

1. This item applies only to fault-like VM exits. It does not apply to trap-like VM exits following exe-
cutions of the MOV to CR8 instruction when the “use TPR shadow” VM-execution control is 1.

2. The VM-exit instruction-length field is not defined following APIC-access VM exits resulting from
physical accesses (see Section 21.2.2) even if encountered during delivery of a software inter-
rupt, privileged software exception, or software exception.
23-14 Vol. 3

VM EXITS
In all the above cases, this field receives the length in bytes (1–15) of the
instruction (including any instruction prefixes) whose execution led to the
VM exit (see the next paragraph for one exception).

The cases of VM exits encountered during delivery of a software interrupt,
privileged software exception, or software exception include those encountered
during delivery of events injected as part of VM entry (see Section 22.5.2). If the
original event was injected as part of VM entry, this field receives the value of the
VM-entry instruction length.

All VM exits other than those listed in the above items leave this field undefined.

• Guest linear address. For VM exits due to some instructions, this field receives
the linear address of one of the instruction operands.

— VM exits due to attempts to execute LMSW with a memory operand. In these
cases, this field receives the linear address of that operand. On processors
that support Intel 64 architecture, bits 63:32 are cleared if the logical
processor was not in 64-bit mode before the VM exit.

— VM exits due to attempts to execute INS or OUTS for which the relevant
segment (ES for INS; DS for OUTS unless overridden by an instruction prefix)
is usable. The field receives the value of the linear address generated by
ES:(E)DI (for INS) or segment:(E)SI (for OUTS; the default segment is DS
but can be overridden by a segment override prefix). (If the relevant
segment is not usable, the value is undefined.) On processors that support
Intel 64 architecture, bits 63:32 are cleared if the logical processor was not in
64-bit mode before the VM exit.

— For all other VM exits, the field is undefined.

• VM-exit instruction information.

— For VM exits due to attempts to execute VMCLEAR, VMPTRLD, VMPTRST,
VMREAD, VMWRITE, or VMXON, this field receives information about the
instruction that caused the VM exit and has the format is given in Table 23-7.

Table 23-7. Format of the VM-Exit Instruction-Information Field as Used for
VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, and VMXON

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for register instructions (bit 10 is set) or for memory instructions with
no index register (bit 10 is clear and bit 22 is set).

2 Reserved (cleared to 0)
Vol. 3 23-15

VM EXITS
6:3 Reg1:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel
64 architecture)

Undefined for memory instructions (bit 10 is clear).

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used. Undefined for register instructions (bit 10 is set).

10 Mem/Reg (0 = memory; 1 = register)

Note that VMCLEAR, VMPTRLD, VMPTRST, and VMXON are always memory
instructions and thus clear this bit.

14:11 Reserved (cleared to 0)

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values unused.

Undefined for register instructions (bit 10 is set).

21:18 IndexReg (encoded as Reg1 above)

Undefined if bit 22 is set or undefined.

22 IndexReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

Table 23-7. Format of the VM-Exit Instruction-Information Field as Used for
VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, and VMXON (Contd.)

Bit Position(s) Content
23-16 Vol. 3

VM EXITS
— For VM exits due to attempts to execute INS or OUTS on some processors,
this field receives information about the instruction that caused the VM exit
and has the format is given in Table 23-8.1

26:23 BaseReg (encoded as Reg1 above)

Undefined if bit 27 is set or undefined.

27 BaseReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

31:28 Reg2 (same encoding as Reg1 above)

Undefined on VM exits due to VMCLEAR, VMPTRLD, VMPTRST, and VMXON.

Table 23-8. Format of the VM-Exit Instruction-Information Field as Used for INS and
OUTS

Bit Position(s) Content

1:0 Undefined.

2 Reserved (cleared to 0).

6:3 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Undefined.

14:11 Reserved (cleared to 0)

1. Whether the processor provides this information on these VM exits can be determined by con-
sulting the VMX capability MSR IA32_VMX_BASIC (see Appendix G.1).

Table 23-7. Format of the VM-Exit Instruction-Information Field as Used for
VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, and VMXON (Contd.)

Bit Position(s) Content
Vol. 3 23-17

VM EXITS
— For all other VM exits, the field is undefined.

• I/O RCX, I/O RSI, I/O RDI, I/O RIP. These fields are undefined except for
SMM VM exits due to system-management interrupts (SMIs) that arrive
immediately after retirement of I/O instructions. See Section 24.16.2.3.

23.3 SAVING GUEST STATE
Each field in the guest-state area of the VMCS (see Section 20.4) is written with the
corresponding component of processor state. On processors that support Intel 64
architecture, the full values of each natural-width field (see Section 20.10.2) is saved
regardless of the mode of the logical processor before and after the VM exit.

In general, the state saved is that which was in the logical processor at the time the
VM exit commences. See Section 23.1 for a discussion of which architectural updates
occur at that time.

Section 23.3.1 through Section 23.3.4 provide details for how certain components of
processor state are saved. These sections reference VMCS fields that correspond to
processor state. Unless otherwise stated, these references are to fields in the guest-
state area.

23.3.1 Saving Control Registers, Debug Registers, and MSRs
The contents of CR0, CR3, CR4, DR7, and the IA32_DEBUGCTL,
IA32_SYSENTER_CS, IA32_SYSENTER_ESP, and IA32_SYSENTER_EIP MSRs are
saved into the corresponding fields. Bits 63:32 of the IA32_SYSENTER_CS MSR are
not saved. On processors that do not support Intel 64 architecture, bits 63:32 of the
IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are not saved.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values unused.

Undefined for INS.

31:18 Undefined.

Table 23-8. Format of the VM-Exit Instruction-Information Field as Used for INS and
OUTS (Contd.)

Bit Position(s) Content
23-18 Vol. 3

VM EXITS
The value of the SMBASE field is undefined after all VM exits except SMM VM exits.
See Section 24.16.2.

23.3.2 Saving Segment Registers and Descriptor-Table Registers
For each segment register (CS, SS, DS, ES, FS, GS, LDTR, or TR), the values saved
for the base-address, segment-limit, and access rights are based on whether the
register was unusable (see Section 20.4.1) before the VM exit:

• If the register was unusable, the values saved into the following fields are
undefined: (1) base address; (2) segment limit; and (3) bits 7:0 and bits 15:12
in the access-rights field. The following exceptions apply:

— CS.

• The base-address and segment-limit fields are saved.

• The L, D, and G bits are saved in the access-rights field.

— SS.

• DPL is saved in the access-rights field.

• On processors that support Intel 64 architecture, bits 63:32 of the value
saved for the base address are always zero.

— DS and ES. On processors that support Intel 64 architecture, bits 63:32 of
the values saved for the base addresses are always zero.

— FS and GS. The base-address field is saved.

— LDTR. The value saved for the base address is always canonical.

• If the register was not unusable, the values saved into the following fields are
those which were in the register before the VM exit: (1) base address;
(2) segment limit; and (3) bits 7:0 and bits 15:12 in access rights.

• Bits 31:17 and 11:8 in the access-rights field are always cleared. Bit 16 is set to
1 if and only if the segment is unusable.

The contents of the GDTR and IDTR registers are saved into the corresponding base-
address and limit fields.

23.3.3 Saving RIP, RSP, and RFLAGS
The contents of the RIP, RSP, and RFLAGS registers are saved as follows:

• The value saved in the RIP field is determined by the nature and cause of the
VM exit:

— If the VM exit occurs due to by an attempt to execute an instruction that
causes VM exits unconditionally or that has been configured to cause a
VM exit via the VM-execution controls, the value saved references that
instruction.
Vol. 3 23-19

VM EXITS
— If the VM exit is caused by an occurrence of an INIT signal, a start-up IPI
(SIPI), or system-management interrupt (SMI), the value saved is that which
was in RIP before the event occurred.

— If the VM exit occurs due to the 1-setting of either the “interrupt-window
exiting” VM-execution control or the “NMI-window exiting” VM-execution
control, the value saved is that which would be in the register had the VM exit
not occurred.

— If the VM exit is due to an external interrupt, non-maskable interrupt (NMI),
or hardware exception (as defined in Section 23.2.2), the value saved is the
return pointer that would have been saved (either on the stack had the event
been delivered through a trap or interrupt gate,1 or into the old task-state
segment had the event been delivered through a task gate).

— If the VM exits is due to a triple fault, the value saved is the return pointer
that would have been saved (either on the stack had the event been delivered
through a trap or interrupt gate,1 or into the old task-state segment had the
event been delivered through a task gate) had delivery of the double fault not
encountered the nested exception that caused the triple fault.

— If the VM exit is due to a software exception (due to an execution of INT3 or
INTO), the value saved references the INT3 or INTO instruction that caused
that exception.

— Suppose that the VM exit is due to a task switch that was caused by execution
of CALL, IRET, or JMP or by execution of a software interrupt (INT n) or
software exception (due to execution of INT3 or INTO) that encountered a
task gate in the IDT. The value saved references the instruction that caused
the task switch (CALL, IRET, JMP, INT n, INT3, or INTO).

— Suppose that the VM exit is due to a task switch that was caused by a task
gate in the IDT that was encountered for any reason except the direct access
by a software interrupt or software exception. The value saved is that which
would have been saved in the old task-state segment had the task switch
completed normally.

— If the VM exit is due to a MOV to CR8 that reduced the value of the TPR
shadow2 below that of TPR threshold VM-execution control field, the value
saved references the instruction following the MOV to CR8. (Such VM exits
can occur only from 64-bit mode and thus only on processors that support
Intel 64 architecture.)

— If the VM exit was caused by a TPR-shadow update (see Section 21.5.3.3)
that results from an APIC access as part of instruction execution, the value

1. The reference here is to the full value of RIP before any truncation that would occur had the
stack width been only 32 bits or 16 bits.

2. The TPR shadow is bits 7:4 of the byte at offset 128 of the virtual-APIC page (see Section
20.6.8).
23-20 Vol. 3

VM EXITS
saved references the instruction following the one whose execution caused
the VTPR access.

• The contents of the RSP register are saved into the RSP field.

• With the exception of the RF (bit 16), the contents of the RFLAGS register is
saved into the RFLAGS field. The RF is saved as follows:

— If the VM exit is caused directly by an event that would normally be delivered
through the IDT, the value saved is that which would appear in the saved
RFLAGS image (either that which would be saved on the stack had the event
been delivered through a trap or interrupt gate1 or into the old task-state
segment had the event been delivered through a task gate) had the event
been delivered through the IDT. See below for VM exits due to task switches
caused by task gates in the IDT.

— If the VM exit is caused by a triple fault, the value saved is that which the
logical processor would have in RF in the RFLAGS register had the triple fault
taken the logical processor to the shutdown state.

— If the VM exit is caused by a task switch (including one caused by a task gate
in the IDT), the value saved is that which would have been saved in the
RFLAGS image in the old task-state segment (TSS) had the task switch
completed normally without exception.

— If the VM exit is caused by an attempt to execute an instruction that uncondi-
tionally causes VM exits or one that was configured to do with a VM-execution
control, the value saved is 0.2

— For APIC-access VM exits, the value saved is determined based on bits 13:12
(access type) in the exit qualification (see Section 23.2.1):

• 0 (data read during instruction execution), 1 (data write during
instruction execution), or 2 (instruction fetch): the value saved as 1.

• 3 (access during event delivery): the value saved is the value that would
have appeared in the saved RFLAGS image had the event been delivered
through the IDT.

— For all other VM exits, the value saved is the value RFLAGS.RF had before the
VM exit occurred.

1. The reference here is to the full value of RFLAGS before any truncation that would occur had the
stack width been only 32 bits or 16 bits.

2. This is true even if RFLAGS.RF was 1 before the instruction was executed. If, in response to such
a VM exit, a VM monitor re-enters the guest to re-execute the instruction that caused the
VM exit (for example, after clearing the VM-execution control that caused the VM exit), the
instruction may encounter a code breakpoint that has already been processed. A VM monitor can
avoid this by setting the guest value of RFLAGS.RF to 1 before resuming guest software.
Vol. 3 23-21

VM EXITS
23.3.4 Saving Non-Register State
Information corresponding to guest non-register state is saved as follows:

• The activity-state field is saved with the logical processor’s activity state before
the VM exit.1 See Section 23.1 for details of how events leading to a VM exit may
affect the activity state.

• The interruptibility-state field is saved to reflect the logical processor’s interrupt-
ibility before the VM exit. See Section 23.1 for details of how events leading to a
VM exit may affect this state. VM exits that end outside system-management
mode (SMM) save bit 2 (blocking by SMI) as 0 regardless of the state of such
blocking before the VM exit.

Bit 3 (blocking by NMI) is treated specially if the “virtual NMIs” VM-execution
control is 1. In this case, the value saved for this field does not indicate the
blocking of NMIs but rather the state of virtual-NMI blocking.

• The pending debug exceptions field is saved as clear for all VM exits except the
following:

— A VM exit caused by an INIT signal, a machine-check exception, or a system-
management interrupt (SMI), or VM exit with basic exit reason “TPR below
threshold.”

— VM exits that are not caused by debug exceptions and that occur while there
is MOV-SS blocking of debug exceptions.

For VM exits that do not clear the field, the value saved is determined as follows:

— Each of bits 3:0 may be set if it corresponds to a matched breakpoint. This
may be true even if the corresponding breakpoint is not enabled in DR7.

— Suppose that a VM exit is due to an INIT signal, a machine-check exception,
or an SMI; or that a VM exit has basic exit reason “TPR below threshold.” In
this case, the value saved sets bits corresponding to the causes of any debug
exceptions that were pending at the time of the VM exit. If an INIT signal,
machine check, or SMI occurs immediately after VM entry, the value saved
may match that which was loaded on VM entry (see Section 22.6.3).
Otherwise, the following items apply:

• Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched
data or I/O breakpoint that was enabled in DR7. Bit 12 is also set if it had
been set on VM entry, causing there to be valid pending debug exceptions
(see Section 22.6.3) and the VM exit occurred before those exceptions
were either delivered or lost. In other cases, bit 12 is cleared to 0.

• Bit 14 (BS) is set if RFLAGS.TF = 1 in either of the following cases:

• IA32_DEBUGCTL.BTF = 0 and the cause of a pending debug
exception was the execution of a single instruction.

1. If this activity state was an inactive state resulting from execution of a specific instruction (HLT
or MWAIT), the value saved for RIP by that VM exit will reference the following instruction.
23-22 Vol. 3

VM EXITS
• IA32_DEBUGCTL.BTF = 1 and the cause of a pending debug
exception was a taken branch.

— Suppose that a VM exit is due to another reason (but not a debug exception)
and occurs while there is MOV-SS blocking of debug exceptions. In this case,
the value saved sets bits corresponding to the causes of any debug
exceptions that were pending at the time of the VM exit. If the VM exit occurs
immediately after VM entry (no instructions were executed in VMX non-root
operation), the value saved may match that which was loaded on VM entry
(see Section 22.6.3). Otherwise, the following items apply:

• Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched
data or I/O breakpoint that was enabled in DR7. Bit 12 is also set if it had
been set on VM entry, causing there to be valid pending debug exceptions
(see Section 22.6.3) and the VM exit occurred before those exceptions
were either delivered or lost. In other cases, bit 12 is cleared to 0.

• The setting of bit 14 (BS) is implementation-specific. However, it is not
set if RFLAGS.TF = 0 or IA32_DEBUGCTL.BTF = 1.

— The reserved bits in the field are cleared.

23.4 SAVING MSRS
After processor state is saved to the guest-state area, values of MSRs may be stored
into the VM-exit MSR-store area (see Section 20.7.2). Specifically each entry in that
area (up to the number specified in the VM-exit MSR-store count) is processed in
order by storing the value of the MSR indexed by bits 31:0 (as they would be read by
RDMSR) into bits 127:64. Processing of an entry fails in either of the following cases:

• The value of bits 31:0 indicates an MSR that can be read only in system-
management mode (SMM) and the VM exit will not end in SMM.

• The value of bits 31:0 indicates an MSR that cannot be saved on VM exits for
model-specific reasons. A processor may prevent certain MSRs (based on the
value of bits 31:0) from being stored on VM exits, even if they can normally be
read by RDMSR. Such model-specific behavior is documented in Appendix B.

• Bits 63:32 of the entry are not all 0.

• An attempt to read the MSR indexed by bits 31:0 would cause a general-
protection exception if executed via RDMSR with CPL = 0.

A VMX abort occurs if processing fails for any entry. See Section 23.7.
Vol. 3 23-23

VM EXITS
23.5 LOADING HOST STATE
Processor state is updated on VM exits in the following ways:

• Some state is loaded from or otherwise determined by the contents of the host-
state area.

• Some state is determined by VM-exit controls.

• Some state is established in the same way on every VM exit.

• The page-directory pointers are loaded based on the values of certain control
registers.

This loading may be performed in any order.

On processors that support Intel 64 architecture, the full values of each 64-bit field
loaded (for example, the base address for GDTR) is loaded regardless of the mode of
the logical processor before and after the VM exit.

The loading of host state is detailed in Section 23.5.1 to Section 23.5.5. These
sections reference VMCS fields that correspond to processor state. Unless otherwise
stated, these references are to fields in the host-state area.

In addition to loading host state, VM exits clear address-range monitoring (Section
23.5.6).

After the state loading described in this section, VM exits may load MSRs from the
VM-exit MSR-load area (see Section 23.6). This loading occurs only after the state
loading described in this section.

23.5.1 Loading Host Control Registers, Debug Registers, MSRs
VM exits load new values for controls registers, debug registers, and some MSRs:

• CR0, CR3, and CR4 are loaded from the CR0 field, the CR3 field, and the CR4
field, respectively, with the following exceptions:

— The following bits are not modified:

• For CR0, ET, CD, NW; bits 63:32 (on processors that support Intel 64
architecture), 28:19, 17, and 15:6; and any bits that are fixed in VMX
operation (see Section 19.8).1

• For CR3, bits 63:52 and bits in the range 51:32 beyond the processor’s
physical-address width (they are cleared to 0).2 (This item applies only to
processors that support Intel 64 architecture.)

1. Note that bits 28:19, 17, and 15:6 of CR0 and CR0.ET are unchanged by executions of MOV to
CR0. CR0.ET is always 1 and the other bits are always 0.

2. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
23-24 Vol. 3

VM EXITS
• For CR4, any bits that are fixed in VMX operation (see Section 19.8).

— CR4.PAE is set to 1 if the “host address-space size” VM-exit control is 1.

• DR7 is set to 400H.

• The following MSRs are established as follows:

— The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.

— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field.
Since that field has only 32 bits, bits 63:32 of the MSR are cleared to 0.

— IA32_SYSENTER_ESP MSR and IA32_SYSENTER_EIP MSR are loaded from
the IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field, respec-
tively. On processors that do not support Intel 64 architecture, these fields
have only 32 bits; bits 63:32 of the MSRs are cleared to 0.

— The following are performed on processors that support Intel 64 architecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields
for FS and GS, respectively (see Section 23.5.2).

• The LMA and LME bits in the IA32_EFER MSR are each loaded with the
setting of the “host address-space size” VM-exit control.

With the exception of FS.base and GS.base, any of these MSRs is subsequently
overwritten if it appears in the VM-exit MSR-load area. See Section 23.6.

If any of CR3[63:5] (CR3[31:5] on processors that do not support Intel 64 architec-
ture), CR4.PAE, CR4.PSE, or IA32_EFER.LMA is changing, the TLBs are updated so
that, after VM exit, the logical processor does not use translations that were cached
before the transition. This is not necessary for changes that would not affect paging
due to the settings of other bits (for example, changes to CR4.PSE if CR4.PAE was 1
before and after the transition).

23.5.2 Loading Host Segment and Descriptor-Table Registers
Each of the registers CS, SS, DS, ES, FS, GS, and TR is loaded as follows (see below
for the treatment of LDTR):

• The selector is loaded from the selector field. The segment is unusable if its
selector is loaded with zero. Note that the checks specified Section 22.3.1.2 limit
the selector values that may be loaded. In particular, CS and TR are never loaded
with zero and are thus never unusable. SS can be loaded with zero only on
processors that support Intel 64 architecture and only if the VM exit is to 64-bit
mode (64-bit mode allows use of segments marked unusable).

• The base address is set as follows:

— CS. Cleared to zero.

— SS, DS, and ES. Undefined if the segment is unusable; otherwise, cleared to
zero.
Vol. 3 23-25

VM EXITS
— FS and GS. Undefined (but, on processors that support Intel 64 architecture,
canonical) if the segment is unusable and the VM exit is not to 64-bit mode;
otherwise, loaded from the base-address field. Note that, on processors that
support Intel 64 architecture, the values loaded for base addresses for FS and
GS are also manifest in the FS.base and GS.base MSRs.

— TR. Loaded from the host-state area.

• The segment limit is set as follows:

— CS. Set to FFFFFFFFH (corresponding to a descriptor limit of FFFFFH and a G-
bit setting of 1).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set
to FFFFFFFFH.

— TR. Set to 00000067H.

• The type field and S bit are set as follows:

— CS. Type set to 11 and S set to 1 (execute/read, accessed, non-conforming
code segment).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise,
type set to 3 and S set to 1 (read/write, accessed, expand-up data segment).

— TR. Type set to 11 and S set to 0 (busy 32-bit task-state segment).

• The DPL is set as follows:

— CS, SS, and TR. Set to 0. The current privilege level (CPL) will be 0 after the
VM exit completes.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to
0.

• The P bit is set as follows:

— CS, TR. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set
to 1.

• On processors that support Intel 64 architecture, CS.L is loaded with the setting
of the “host address-space size” VM-exit control. Because this control is also
loaded into IA32_EFER.LMA (see Section 23.5.1), no VM exit is ever to compati-
bility mode (which requires IA32_EFER.LMA = 1 and CS.L = 0).

• D/B.

— CS. Loaded with the inverse of the setting of the “host address-space size”
VM-exit control. For example, if that control is 0, indicating a 32-bit guest,
CS.D/B is set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set
to 1.

— TR. Set to 0.
23-26 Vol. 3

VM EXITS
• G.

— CS. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set
to 1.

— TR. Set to 0.

The host-state area does not contain a selector field for LDTR. LDTR is established as
follows on all VM exits: the selector is cleared to 0000H, the segment is marked
unusable and is otherwise undefined (although the base address is always canon-
ical).

The base addresses for GDTR and IDTR are loaded from the GDTR base-address field
and the IDTR base-address field, respectively. The GDTR and IDTR limits are each set
to FFFFH.

23.5.3 Loading Host RIP, RSP, and RFLAGS
RIP and RSP are loaded from the RIP field and the RSP field, respectively. RFLAGS is
cleared, except bit 1, which is always set.

23.5.4 Checking and Loading Host Page-Directory Pointers
If bit 5 in CR4 (CR4.PAE) is 1, the logical processor uses the physical-address
extension (PAE). If, in addition, IA32_EFER.LMA is 0, the logical processor uses PAE
paging. See Section 3.8 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A.1 When in PAE paging is in use, the physical address in
CR3 references a table of page-directory pointers (PDPTRs). A MOV to CR3 when
PAE paging is in use checks the validity of these pointers and, if they are valid, loads
them into the processor (into internal, non-architectural registers).

A VM exit is to a VMM that uses PAE paging if (1) bit 5 (corresponding to CR4.PAE) is
set in the CR4 field in the host-state area of the VMCS; and (2) the “host address-
space size” VM-exit control is 0. Such a VM exit may check the validity of the PDPTRs
referenced by the CR3 field in the host-state area of the VMCS. Such a VM exit must
check their validity if either (1) PAE paging was not in use before the VM exit; or
(2) the value of CR3 is changing as a result of the VM exit. A VM exit to a VMM that
does not use PAE paging must not check the validity of the PDPTRs.

A VM exit that checks the validity of the PDPTRs uses the same checks that are used
when CR3 is loaded with MOV to CR3 when PAE paging is in use. If MOV to CR3 would
cause a general-protection exception due to the PDPTRs that would be loaded (e.g.,

1. On processors that support Intel 64 architecture, the physical-address extension may support
more than 36 physical-address bits. Software can determine a processor’s physical-address
width by executing CPUID with 80000008H in EAX. The physical-address width is returned in
bits 7:0 of EAX.
Vol. 3 23-27

VM EXITS
because a reserved bit is set), a VMX abort occurs (see Section 23.7). If a VM exit to
a VMM that uses PAE does not cause a VMX abort, the PDPTRs are loaded into the
processor as would MOV to CR3, using the value of CR3 being load by the VM exit.

23.5.5 Updating Non-Register State
VM exits affect the non-register state of a logical processor as follows:

• A logical processor is always in the active state after a VM exit.

• Event blocking is affected as follows:

— There is no blocking by STI or by MOV SS after a VM exit.

— VM exits caused directly by non-maskable interrupts (NMIs) cause blocking
by NMI (see Table 20-3). Other VM exits do not affect blocking by NMI. (See
Section 23.1 for the case in which an NMI causes a VM exit indirectly.)

• There are no pending debug exceptions after a VM exit.

23.5.6 Clearing Address-Range Monitoring
The Intel 64 and IA-32 architectures allow software to monitor a specified address
range using the MONITOR and MWAIT instructions. See Section 7.11.4 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. VM exits clear
any address-range monitoring that may be in effect.

23.6 LOADING MSRS
VM exits may load MSRs from the VM-exit MSR-load area (see Section 20.7.2).
Specifically each entry in that area (up to the number specified in the VM-exit MSR-
load count) is processed in order by loading the MSR indexed by bits 31:0 with the
contents of bits 127:64 as they would be written by WRMSR.

Processing of an entry fails in any of the following cases:

• The value of bits 31:0 is either C0000100H (the IA32_FS_BASE MSR) or
C0000101H (the IA32_GS_BASE MSR).

• The value of bits 31:0 indicates an MSR that can be read only in system-
management mode (SMM) and the VM exit will not end in SMM.
(IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)

• The value of bits 31:0 indicates an MSR that cannot be loaded on VM exits for
model-specific reasons. A processor may prevent loading of certain MSRs even if
they can normally be written by WRMSR. Such model-specific behavior is
documented in Appendix B.

• Bits 63:32 are not all 0.
23-28 Vol. 3

VM EXITS
• An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry
would cause a general-protection exception if executed via WRMSR with
CPL = 0.1

If processing fails for any entry, a VMX abort occurs. See Section 23.7.

If any MSR is being loaded in such a way that would architecturally require a TLB
flush, the TLBs are updated so that, after VM exit, the logical processor does not use
any translations that were cached before the transition.

23.7 VMX ABORTS
A problem encountered during a VM exit leads to a VMX abort. A VMX abort takes a
logical processor into a shutdown state as described below.

A VMX abort does not modify the VMCS data in the VMCS region of any active VMCS.
The contents of these data are thus suspect after the VMX abort.

On a VMX abort, a logical processor saves a nonzero 32-bit VMX-abort indicator field
at byte offset 4 in the VMCS region of the VMCS whose misconfiguration caused the
failure (see Section 20.2). The following values are used:

1. There was a failure in saving guest MSRs (see Section 23.4).

2. Host checking of the page-directory pointers (PDPTRs) failed (see Section
23.5.4).

3. The current VMCS has been corrupted (through writes to the corresponding
VMCS region) in such a way that the logical processor cannot complete the
VM exit properly.

4. There was a failure on loading host MSRs (see Section 23.6).

5. There was a machine check during VM exit (see Section 23.8).

Some of these causes correspond to failures during the loading of state from the
host-state area. Because the loading of such state may be done in any order (see
Section 23.5) a VM exit that might lead to a VMX abort for multiple reasons (for
example, the current VMCS may be corrupt and the host PDPTRs might not be prop-
erly configured). In such cases, the VMX-abort indicator could correspond to any one
of those reasons.

A logical processor never reads the VMX-abort indicator in a VMCS region and writes
it only with one of the non-zero values mentioned above. The VMX-abort indicator
allows software on one logical processor to diagnose the VMX-abort on another. For

1. Note the following about processors that support Intel 64 architecture. If CR0.PG = 1, WRMSR to
the IA32_EFER MSR causes a general-protection exception if it would modify the LME bit. Since
CR0.PG is always 1 in VMX operation, the IA32_EFER MSR should not be included in the VM-exit
MSR-load area for the purpose of modifying the LME bit.
Vol. 3 23-29

VM EXITS
this reason, it is recommended that software running in VMX root operation zero the
VMX-abort indicator in the VMCS region of any VMCS that it uses.

After saving the VMX-abort indicator, the logical processor experiencing a VMX abort
issues a special bus cycle (to notify the chipset) and enters the VMX-abort shut-
down state. RESET is the only event that wakes a logical processor from the VMX-
abort shutdown state. The following events do not affect a logical processor in this
state: machine checks; INIT signals; external interrupts; non-maskable interrupts
(NMIs); start-up IPIs (SIPIs); and system-management interrupts (SMIs).

23.8 MACHINE CHECK DURING VM EXIT
If a machine check occurs during VM exit, one of the following occurs:

• The machine check is handled normally. If CR4.MCE = 1, a machine-check
exception (#MC) delivered through the guest IDT. If CR4.MCE = 0, the processor
goes to the shutdown state.

• A VMX abort is generated (see Section 23.7). The logical processor blocks events
as done normally in VMX abort. The VMX abort indicator is 5, for “machine check
during VM exit.”

The first option is not used if the machine check occurs after any host state has been
loaded.
23-30 Vol. 3

CHAPTER 24
SYSTEM MANAGEMENT

This chapter describes aspects of IA-64 and IA-32 architecture used in system
management mode (SMM).

SMM provides an alternate operating environment that can be used to monitor and
manage various system resources for more efficient energy usage, to control system
hardware, and/or to run proprietary code. It was introduced into the IA-32 architec-
ture in the Intel386 SL processor (a mobile specialized version of the Intel386
processor). It is also available in the Pentium M, Pentium 4, Intel Xeon, P6 family, and
Pentium and Intel486 processors (beginning with the enhanced versions of the
Intel486 SL and Intel486 processors).

24.1 SYSTEM MANAGEMENT MODE OVERVIEW
SMM is a special-purpose operating mode provided for handling system-wide func-
tions like power management, system hardware control, or proprietary OEM-
designed code. It is intended for use only by system firmware, not by applications
software or general-purpose systems software. The main benefit of SMM is that it
offers a distinct and easily isolated processor environment that operates transpar-
ently to the operating system or executive and software applications.

When SMM is invoked through a system management interrupt (SMI), the processor
saves the current state of the processor (the processor’s context), then switches to a
separate operating environment contained in system management RAM (SMRAM).
While in SMM, the processor executes SMI handler code to perform operations such
as powering down unused disk drives or monitors, executing proprietary code, or
placing the whole system in a suspended state. When the SMI handler has completed
its operations, it executes a resume (RSM) instruction. This instruction causes the
processor to reload the saved context of the processor, switch back to protected or
real mode, and resume executing the interrupted application or operating-system
program or task.

The following SMM mechanisms make it transparent to applications programs and
operating systems:

• The only way to enter SMM is by means of an SMI.

• The processor executes SMM code in a separate address space (SMRAM) that can
be made inaccessible from the other operating modes.

• Upon entering SMM, the processor saves the context of the interrupted program
or task.
Vol. 3 24-1

SYSTEM MANAGEMENT
• All interrupts normally handled by the operating system are disabled upon entry
into SMM.

• The RSM instruction can be executed only in SMM.

SMM is similar to real-address mode in that there are no privilege levels or address
mapping. An SMM program can address up to 4 GBytes of memory and can execute
all I/O and applicable system instructions. See Section 24.5 for more information
about the SMM execution environment.

NOTES
The physical address extension (PAE) mechanism introduced in the
P6 family processors is not supported when a processor is in SMM.

The IA-32e mode address-translation mechanism is not supported in
SMM. See Section 3.10 of Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A.

24.1.1 System Management Mode and VMX Operation
Traditionally, SMM services system management interrupts and then resumes
program execution (back to the software stack consisting of executive and applica-
tion software; see Section 24.2 through Section 24.14).

A virtual machine monitor (VMM) using VMX can act as a host to multiple virtual
machines and each virtual machine can support its own software stack of executive
and application software. On processors that support VMX, virtual-machine exten-
sions may use system-management interrupts (SMIs) and system-management
mode (SMM) in one of two ways:

• Default treatment. System firmware handles SMIs. The processor saves archi-
tectural states and critical states relevant to VMX operation upon entering SMM.
When the firmware completes servicing SMIs, it uses RSM to resume VMX
operation.

• Dual-monitor treatment. Two VM monitors collaborate to control the servicing
of SMIs: one VMM operates outside of SMM to provide basic virtualization in
support for guests; the other VMM operates inside SMM (while in VMX operation)
to support system-management functions. The former is referred to as
executive monitor, the latter SMM monitor.1

The default treatment is described in Section 24.15, “Default Treatment of SMIs and
SMM with VMX”. Dual-monitor treatment of SMM is described in Section 24.16,
“Dual-Monitor Treatment of SMIs and SMM”.

1. The dual-monitor treatment may not be supported by all processors. Software should consult the
VMX capability MSR IA32_VMX_BASIC (see Appendix G.1) to determine whether it is supported.
24-2 Vol. 3

SYSTEM MANAGEMENT
24.2 SYSTEM MANAGEMENT INTERRUPT (SMI)
The only way to enter SMM is by signaling an SMI through the SMI# pin on the
processor or through an SMI message received through the APIC bus. The SMI is a
nonmaskable external interrupt that operates independently from the processor’s
interrupt- and exception-handling mechanism and the local APIC. The SMI takes
precedence over an NMI and a maskable interrupt. SMM is non-reentrant; that is, the
SMI is disabled while the processor is in SMM.

NOTES
In the Pentium 4, Intel Xeon, and P6 family processors, when a
processor that is designated as an application processor during an MP
initialization sequence is waiting for a startup IPI (SIPI), it is in a
mode where SMIs are masked. However if a SMI is received while an
application processor is in the wait for SIPI mode, the SMI will be
pended. The processor then responds on receipt of a SIPI by
immediately servicing the pended SMI and going into SMM before
handling the SIPI.

An SMI may be blocked for one macroinstruction following an STI,
MOVSS or POPSS.

24.3 SWITCHING BETWEEN SMM AND THE OTHER
PROCESSOR OPERATING MODES

Figure 2-3 shows how the processor moves between SMM and the other processor
operating modes (protected, real-address, and virtual-8086). Signaling an SMI while
the processor is in real-address, protected, or virtual-8086 modes always causes the
processor to switch to SMM. Upon execution of the RSM instruction, the processor
always returns to the mode it was in when the SMI occurred.

24.3.1 Entering SMM
The processor always handles an SMI on an architecturally defined “interruptible”
point in program execution (which is commonly at an IA-32 architecture instruction
boundary). When the processor receives an SMI, it waits for all instructions to retire
and for all stores to complete. The processor then saves its current context in SMRAM
(see Section 24.4), enters SMM, and begins to execute the SMI handler.

Upon entering SMM, the processor signals external hardware that SMM handling has
begun. The signaling mechanism used is implementation dependent. For the P6
family processors, an SMI acknowledge transaction is generated on the system bus
and the multiplexed status signal EXF4 is asserted each time a bus transaction is
generated while the processor is in SMM. For the Pentium and Intel486 processors,
the SMIACT# pin is asserted.
Vol. 3 24-3

SYSTEM MANAGEMENT
An SMI has a greater priority than debug exceptions and external interrupts. Thus, if
an NMI, maskable hardware interrupt, or a debug exception occurs at an instruction
boundary along with an SMI, only the SMI is handled. Subsequent SMI requests are
not acknowledged while the processor is in SMM. The first SMI interrupt request that
occurs while the processor is in SMM (that is, after SMM has been acknowledged to
external hardware) is latched and serviced when the processor exits SMM with the
RSM instruction. The processor will latch only one SMI while in SMM.

See Section 24.5 for a detailed description of the execution environment when in
SMM.

24.3.2 Exiting From SMM
The only way to exit SMM is to execute the RSM instruction. The RSM instruction is
only available to the SMI handler; if the processor is not in SMM, attempts to execute
the RSM instruction result in an invalid-opcode exception (#UD) being generated.

The RSM instruction restores the processor’s context by loading the state save image
from SMRAM back into the processor’s registers. The processor then returns an
SMIACK transaction on the system bus and returns program control back to the
interrupted program.

Upon successful completion of the RSM instruction, the processor signals external
hardware that SMM has been exited. For the P6 family processors, an SMI acknowl-
edge transaction is generated on the system bus and the multiplexed status signal
EXF4 is no longer generated on bus cycles. For the Pentium and Intel486 processors,
the SMIACT# pin is deserted.

If the processor detects invalid state information saved in the SMRAM, it enters the
shutdown state and generates a special bus cycle to indicate it has entered shutdown
state. Shutdown happens only in the following situations:

• A reserved bit in control register CR4 is set to 1 on a write to CR4. This error
should not happen unless SMI handler code modifies reserved areas of the
SMRAM saved state map (see Section 24.4.1). Note that CR4 is saved in the state
map in a reserved location and cannot be read or modified in its saved state.

• An illegal combination of bits is written to control register CR0, in particular PG
set to 1 and PE set to 0, or NW set to 1 and CD set to 0.

• (For the Pentium and Intel486 processors only.) If the address stored in the
SMBASE register when an RSM instruction is executed is not aligned on a
32-KByte boundary. This restriction does not apply to the P6 family processors.

In the shutdown state, Intel processors stop executing instructions until a RESET#,
INIT# or NMI# is asserted. While Pentium family processors recognize the SMI#
signal in shutdown state, P6 family and Intel486 processors do not. Intel does not
support using SMI# to recover from shutdown states for any processor family; the
response of processors in this circumstance is not well defined. On Pentium 4 and
later processors, shutdown will inhibit INTR and A20M but will not change any of the
24-4 Vol. 3

SYSTEM MANAGEMENT
other inhibits. On these processors, NMIs will be inhibited if no action is taken in the
SMM handler to uninhibit them (see Section 24.8).

If the processor is in the HALT state when the SMI is received, the processor handles
the return from SMM slightly differently (see Section 24.11). Also, the SMBASE
address can be changed on a return from SMM (see Section 24.12).

24.4 SMRAM
While in SMM, the processor executes code and stores data in the SMRAM space. The
SMRAM space is mapped to the physical address space of the processor and can be
up to 4 GBytes in size. The processor uses this space to save the context of the
processor and to store the SMI handler code, data and stack. It can also be used to
store system management information (such as the system configuration and
specific information about powered-down devices) and OEM-specific information.

The default SMRAM size is 64 KBytes beginning at a base physical address in physical
memory called the SMBASE (see Figure 24-1). The SMBASE default value following a
hardware reset is 30000H. The processor looks for the first instruction of the SMI
handler at the address [SMBASE + 8000H]. It stores the processor’s state in the area
from [SMBASE + FE00H] to [SMBASE + FFFFH]. See Section 24.4.1 for a description
of the mapping of the state save area.

The system logic is minimally required to decode the physical address range for the
SMRAM from [SMBASE + 8000H] to [SMBASE + FFFFH]. A larger area can be
decoded if needed. The size of this SMRAM can be between 32 KBytes and 4 GBytes.

The location of the SMRAM can be changed by changing the SMBASE value (see
Section 24.12). It should be noted that all processors in a multiple-processor system
are initialized with the same SMBASE value (30000H). Initialization software must
sequentially place each processor in SMM and change its SMBASE so that it does not
overlap those of other processors.

The actual physical location of the SMRAM can be in system memory or in a separate
RAM memory. The processor generates an SMI acknowledge transaction (P6 family
processors) or asserts the SMIACT# pin (Pentium and Intel486 processors) when the
processor receives an SMI (see Section 24.3.1).

System logic can use the SMI acknowledge transaction or the assertion of the
SMIACT# pin to decode accesses to the SMRAM and redirect them (if desired) to
specific SMRAM memory. If a separate RAM memory is used for SMRAM, system logic
should provide a programmable method of mapping the SMRAM into system memory
space when the processor is not in SMM. This mechanism will enable start-up proce-
dures to initialize the SMRAM space (that is, load the SMI handler) before executing
the SMI handler during SMM.
Vol. 3 24-5

SYSTEM MANAGEMENT
24.4.1 SMRAM State Save Map
When an IA-32 processor that does not support Intel 64 architecture initially enters
SMM, it writes its state to the state save area of the SMRAM. The state save area
begins at [SMBASE + 8000H + 7FFFH] and extends down to [SMBASE + 8000H +
7E00H]. Table 24-1 shows the state save map. The offset in column 1 is relative to
the SMBASE value plus 8000H. Reserved spaces should not be used by software.

Some of the registers in the SMRAM state save area (marked YES in column 3) may
be read and changed by the SMI handler, with the changed values restored to the
processor registers by the RSM instruction. Some register images are read-only, and
must not be modified (modifying these registers will result in unpredictable
behavior). An SMI handler should not rely on any values stored in an area that is
marked as reserved.

Figure 24-1. SMRAM Usage

Table 24-1. SMRAM State Save Map

Offset
(Added to SMBASE +

8000H)

Register Writable?

7FFCH CR0 No

7FF8H CR3 No

7FF4H EFLAGS Yes

7FF0H EIP Yes

7FECH EDI Yes

7FE8H ESI Yes

7FE4H EBP Yes

7FE0H ESP Yes

Start of State Save Area
SMBASE + FFFFH

SMBASE

SMBASE + 8000H

SMRAM

SMI Handler Entry Point
24-6 Vol. 3

SYSTEM MANAGEMENT
The following registers are saved (but not readable) and restored upon exiting SMM:

• Control register CR4. (This register is cleared to all 0s while in SMM).

• The hidden segment descriptor information stored in segment registers CS, DS,
ES, FS, GS, and SS.

7FDCH EBX Yes

7FD8H EDX Yes

7FD4H ECX Yes

7FD0H EAX Yes

7FCCH DR6 No

7FC8H DR7 No

7FC4H TR1 No

7FC0H Reserved No

7FBCH GS1 No

7FB8H FS1 No

7FB4H DS1 No

7FB0H SS1 No

7FACH CS1 No

7FA8H ES1 No

7FA4H I/O State Field, see Section 24.7 No

7FA0H I/O Memory Address Field, see Section 24.7 No

7F9FH-7F03H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) Yes

7EF7H - 7E00H Reserved No

NOTE:
1. The two most significant bytes are reserved.

Table 24-1. SMRAM State Save Map (Contd.)

Offset
(Added to SMBASE +

8000H)

Register Writable?
Vol. 3 24-7

SYSTEM MANAGEMENT
If an SMI request is issued for the purpose of powering down the processor, the
values of all reserved locations in the SMM state save must be saved to nonvolatile
memory.

The following state is not automatically saved and restored following an SMI and the
RSM instruction, respectively:

• Debug registers DR0 through DR3.

• The x87 FPU registers.

• The MTRRs.

• Control register CR2.

• The model-specific registers (for the P6 family and Pentium processors) or test
registers TR3 through TR7 (for the Pentium and Intel486 processors).

• The state of the trap controller.

• The machine-check architecture registers.

• The APIC internal interrupt state (ISR, IRR, etc.).

• The microcode update state.

If an SMI is used to power down the processor, a power-on reset will be required
before returning to SMM, which will reset much of this state back to its default
values. So an SMI handler that is going to trigger power down should first read these
registers listed above directly, and save them (along with the rest of RAM) to nonvol-
atile storage. After the power-on reset, the continuation of the SMI handler should
restore these values, along with the rest of the system's state. Anytime the SMI
handler changes these registers in the processor, it must also save and restore them.

NOTES
A small subset of the MSRs (such as, the time-stamp counter and
performance-monitoring counters) are not arbitrarily writable and
therefore cannot be saved and restored. SMM-based power-down
and restoration should only be performed with operating systems
that do not use or rely on the values of these registers.

Operating system developers should be aware of this fact and insure
that their operating-system assisted power-down and restoration
software is immune to unexpected changes in these register values.

24.4.1.1 SMRAM State Save Map and Intel 64 Architecture
When the processor initially enters SMM, it writes its state to the state save area of
the SMRAM. The state save area on an IA-32 processor that supports Intel 64 archi-
tecture begins at [SMBASE + 8000H + 7FFFH] and extends to [SMBASE + 8000H +
7C00H].

Intel 64 architecture is supported in an IA-32 processor if the processor reports
CPUID.80000001:EDX[29] = 1. The layout of the SMRAM state save map is shown in
Table 24-2.
24-8 Vol. 3

SYSTEM MANAGEMENT
Table 24-2. ISMRAM State Save Map for Intel 64 Architecture

Offset
(Added to SMBASE +

8000H)

Register Writable?

7FF8H CR0 No

7FF0H CR3 No

7FE8H RFLAGS Yes

7FE0H IA32_EFER Yes

7FD8H RIP Yes

7FD0H DR6 No

7FC8H DR7 No

7FC4H TR SEL1 No

7FC0H LDTR SEL1 No

7FBCH GS SEL1 No

7FB8H FS SEL1 No

7FB4H DS SEL1 No

7FB0H SS SEL1 No

7FACH CS SEL1 No

7FA8H ES SEL1 No

7FA4H IO_MISC No

7F9CH IO_MEM_ADDR No

7F94H RDI Yes

7F8CH RSI Yes

7F84H RBP Yes

7F7CH RSP Yes

7F74H RBX Yes

7F6CH RDX Yes

7F64H RCX Yes

7F5CH RAX Yes

7F54H R8 Yes

7F4CH R9 Yes

7F44H R10 Yes

7F3CH R11 Yes
Vol. 3 24-9

SYSTEM MANAGEMENT
7F34H R12 Yes

7F2CH R13 Yes

7F24H R14 Yes

7F1CH R15 Yes

7F1BH-7F04H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) Yes

7EF7H - 7EA8H Reserved No

7EA4H LDT Info No

7EA0H LDT Limit No

7E9CH LDT Base (lower 32 bits) No

7E98H IDT Limit No

7E94H IDT Base (lower 32 bits) No

7E90H GDT Limit No

7E8CH GDT Base (lower 32 bits) No

7E8BH - 7E44H Reserved No

7E40H CR4 No

7E3FH - 7DF0H Reserved No

7DE8H IO_EIP Yes

7DE7H - 7DDCH Reserved No

7DD8H IDT Base (Upper 32 bits) No

7DD4H LDT Base (Upper 32 bits) No

7DD0H GDT Base (Upper 32 bits) No

7DCFH - 7C00H Reserved No

NOTE:
1. The two most significant bytes are reserved.

Table 24-2. ISMRAM State Save Map for Intel 64 Architecture (Contd.)

Offset
(Added to SMBASE +

8000H)

Register Writable?
24-10 Vol. 3

SYSTEM MANAGEMENT
24.4.2 SMRAM Caching
An IA-32 processor does not automatically write back and invalidate its caches before
entering SMM or before exiting SMM. Because of this behavior, care must be taken in
the placement of the SMRAM in system memory and in the caching of the SMRAM to
prevent cache incoherence when switching back and forth between SMM and
protected mode operation. Either of the following three methods of locating the
SMRAM in system memory will guarantee cache coherency:

• Place the SRAM in a dedicated section of system memory that the operating
system and applications are prevented from accessing. Here, the SRAM can be
designated as cacheable (WB, WT, or WC) for optimum processor performance,
without risking cache incoherence when entering or exiting SMM.

• Place the SRAM in a section of memory that overlaps an area used by the
operating system (such as the video memory), but designate the SMRAM as
uncacheable (UC). This method prevents cache access when in SMM to maintain
cache coherency, but the use of uncacheable memory reduces the performance
of SMM code.

• Place the SRAM in a section of system memory that overlaps an area used by the
operating system and/or application code, but explicitly flush (write back and
invalidate) the caches upon entering and exiting SMM mode. This method
maintains cache coherency, but the incurs the overhead of two complete cache
flushes.

For Pentium 4, Intel Xeon, and P6 family processors, a combination of the first two
methods of locating the SMRAM is recommended. Here the SMRAM is split between
an overlapping and a dedicated region of memory. Upon entering SMM, the SMRAM
space that is accessed overlaps video memory (typically located in low memory).
This SMRAM section is designated as UC memory. The initial SMM code then jumps to
a second SMRAM section that is located in a dedicated region of system memory
(typically in high memory). This SMRAM section can be cached for optimum
processor performance.

For systems that explicitly flush the caches upon entering SMM (the third method
described above), the cache flush can be accomplished by asserting the FLUSH# pin
at the same time as the request to enter SMM (generally initiated by asserting the
SMI# pin). The priorities of the FLUSH# and SMI# pins are such that the FLUSH# is
serviced first. To guarantee this behavior, the processor requires that the following
constraints on the interaction of FLUSH# and SMI# be met. In a system where the
FLUSH# and SMI# pins are synchronous and the set up and hold times are met, then
the FLUSH# and SMI# pins may be asserted in the same clock. In asynchronous
systems, the FLUSH# pin must be asserted at least one clock before the SMI# pin to
guarantee that the FLUSH# pin is serviced first.

Upon leaving SMM (for systems that explicitly flush the caches), the WBINVD instruc-
tion should be executed prior to leaving SMM to flush the caches.
Vol. 3 24-11

SYSTEM MANAGEMENT
NOTES
In systems based on the Pentium processor that use the FLUSH# pin
to write back and invalidate cache contents before entering SMM, the
processor will prefetch at least one cache line in between when the
Flush Acknowledge cycle is run and the subsequent recognition of
SMI# and the assertion of SMIACT#.

It is the obligation of the system to ensure that these lines are not
cached by returning KEN# inactive to the Pentium processor.

24.5 SMI HANDLER EXECUTION ENVIRONMENT
After saving the current context of the processor, the processor initializes its core
registers to the values shown in Table 24-3. Upon entering SMM, the PE and PG flags
in control register CR0 are cleared, which places the processor is in an environment
similar to real-address mode. The differences between the SMM execution environ-
ment and the real-address mode execution environment are as follows:

• The addressable SMRAM address space ranges from 0 to FFFFFFFFH (4 GBytes).
(The physical address extension (enabled with the PAE flag in control register
CR4) is not supported in SMM.)

• The normal 64-KByte segment limit for real-address mode is increased to
4 GBytes.

• The default operand and address sizes are set to 16 bits, which restricts the
addressable SMRAM address space to the 1-MByte real-address mode limit for
native real-address-mode code. However, operand-size and address-size
override prefixes can be used to access the address space beyond the 1-MByte.

Table 24-3. Processor Register Initialization in SMM

Register Contents

General-purpose registers Undefined

EFLAGS 00000002H

EIP 00008000H

CS selector SMM Base shifted right 4 bits (default 3000H)

CS base SMM Base (default 30000H)

DS, ES, FS, GS, SS Selectors 0000H

DS, ES, FS, GS, SS Bases 000000000H

DS, ES, FS, GS, SS Limits 0FFFFFFFFH

CR0 PE, EM, TS, and PG flags set to 0; others unmodified

CR4 Cleared to zero

DR6 Undefined

DR7 00000400H
24-12 Vol. 3

SYSTEM MANAGEMENT
• Near jumps and calls can be made to anywhere in the 4-GByte address space if a
32-bit operand-size override prefix is used. Due to the real-address-mode style
of base-address formation, a far call or jump cannot transfer control to a
segment with a base address of more than 20 bits (1 MByte). However, since the
segment limit in SMM is 4 GBytes, offsets into a segment that go beyond the
1-MByte limit are allowed when using 32-bit operand-size override prefixes. Any
program control transfer that does not have a 32-bit operand-size override prefix
truncates the EIP value to the 16 low-order bits.

• Data and the stack can be located anywhere in the 4-GByte address space, but
can be accessed only with a 32-bit address-size override if they are located above
1 MByte. As with the code segment, the base address for a data or stack segment
cannot be more than 20 bits.

The value in segment register CS is automatically set to the default of 30000H for the
SMBASE shifted 4 bits to the right; that is, 3000H. The EIP register is set to 8000H.
When the EIP value is added to shifted CS value (the SMBASE), the resulting linear
address points to the first instruction of the SMI handler.

The other segment registers (DS, SS, ES, FS, and GS) are cleared to 0 and their
segment limits are set to 4 GBytes. In this state, the SMRAM address space may be
treated as a single flat 4-GByte linear address space. If a segment register is loaded
with a 16-bit value, that value is then shifted left by 4 bits and loaded into the
segment base (hidden part of the segment register). The limits and attributes are not
modified.

Maskable hardware interrupts, exceptions, NMI interrupts, SMI interrupts, A20M
interrupts, single-step traps, breakpoint traps, and INIT operations are inhibited
when the processor enters SMM. Maskable hardware interrupts, exceptions, single-
step traps, and breakpoint traps can be enabled in SMM if the SMM execution envi-
ronment provides and initializes an interrupt table and the necessary interrupt and
exception handlers (see Section 24.6).

24.6 EXCEPTIONS AND INTERRUPTS WITHIN SMM
When the processor enters SMM, all hardware interrupts are disabled in the following
manner:

• The IF flag in the EFLAGS register is cleared, which inhibits maskable hardware
interrupts from being generated.

• The TF flag in the EFLAGS register is cleared, which disables single-step traps.

• Debug register DR7 is cleared, which disables breakpoint traps. (This action
prevents a debugger from accidentally breaking into an SMM handler if a debug
breakpoint is set in normal address space that overlays code or data in SMRAM.)

• NMI, SMI, and A20M interrupts are blocked by internal SMM logic. (See Section
24.8 for more information about how NMIs are handled in SMM.)
Vol. 3 24-13

SYSTEM MANAGEMENT
Software-invoked interrupts and exceptions can still occur, and maskable hardware
interrupts can be enabled by setting the IF flag. Intel recommends that SMM code be
written in so that it does not invoke software interrupts (with the INT n, INTO, INT 3,
or BOUND instructions) or generate exceptions.

If the SMM handler requires interrupt and exception handling, an SMM interrupt table
and the necessary exception and interrupt handlers must be created and initialized
from within SMM. Until the interrupt table is correctly initialized (using the LIDT
instruction), exceptions and software interrupts will result in unpredictable processor
behavior.

The following restrictions apply when designing SMM interrupt and exception-
handling facilities:

• The interrupt table should be located at linear address 0 and must contain real-
address mode style interrupt vectors (4 bytes containing CS and IP).

• Due to the real-address mode style of base address formation, an interrupt or
exception cannot transfer control to a segment with a base address of more that
20 bits.

• An interrupt or exception cannot transfer control to a segment offset of more
than 16 bits (64 KBytes).

• When an exception or interrupt occurs, only the 16 least-significant bits of the
return address (EIP) are pushed onto the stack. If the offset of the interrupted
procedure is greater than 64 KBytes, it is not possible for the interrupt/exception
handler to return control to that procedure. (One solution to this problem is for a
handler to adjust the return address on the stack.)

• The SMBASE relocation feature affects the way the processor will return from an
interrupt or exception generated while the SMI handler is executing. For
example, if the SMBASE is relocated to above 1 MByte, but the exception
handlers are below 1 MByte, a normal return to the SMI handler is not possible.
One solution is to provide the exception handler with a mechanism for calculating
a return address above 1 MByte from the 16-bit return address on the stack, then
use a 32-bit far call to return to the interrupted procedure.

• If an SMI handler needs access to the debug trap facilities, it must insure that an
SMM accessible debug handler is available and save the current contents of
debug registers DR0 through DR3 (for later restoration). Debug registers DR0
through DR3 and DR7 must then be initialized with the appropriate values.

• If an SMI handler needs access to the single-step mechanism, it must insure that
an SMM accessible single-step handler is available, and then set the TF flag in the
EFLAGS register.

• If the SMI design requires the processor to respond to maskable hardware
interrupts or software-generated interrupts while in SMM, it must ensure that
SMM accessible interrupt handlers are available and then set the IF flag in the
EFLAGS register (using the STI instruction). Software interrupts are not blocked
upon entry to SMM, so they do not need to be enabled.
24-14 Vol. 3

SYSTEM MANAGEMENT
24.7 MANAGING SYNCHRONOUS AND ASYNCHRONOUS
SYSTEM MANAGEMENT INTERRUPTS

When coding for a multiprocessor system or a system with Intel HT Technology, it
was not always possible for an SMI handler to distinguish between a synchronous
SMI (triggered during an I/O instruction) and an asynchronous SMI. To facilitate the
discrimination of these two events, incremental state information has been added to
the SMM state save map.

Processors that have an SMM revision ID of 30004H or higher have the incremental
state information described below.

24.7.1 I/O State Implementation
Within the extended SMM state save map, a bit (IO_SMI) is provided that is set only
when an SMI is either taken immediately after a successful I/O instruction or is taken
after a successful iteration of a REP I/O instruction (note that the successful notion
pertains to the processor point of view; not necessarily to the corresponding platform
function). When set, the IO_SMI bit provides a strong indication that the corre-
sponding SMI was synchronous. In this case, the SMM State Save Map also supplies
the port address of the I/O operation. The IO_SMI bit and the I/O Port Address may
be used in conjunction with the information logged by the platform to confirm that
the SMI was indeed synchronous.

Note that the IO_SMI bit by itself is a strong indication, not a guarantee, that the SMI
is synchronous. This is because an asynchronous SMI might coincidentally be taken
after an I/O instruction. In such a case, the IO_SMI bit would still be set in the SMM
state save map.

Information characterizing the I/O instruction is saved in two locations in the SMM
State Save Map (Table 24-4). Note that the IO_SMI bit also serves as a valid bit for
the rest of the I/O information fields. The contents of these I/O information fields are
not defined when the IO_SMI bit is not set.

Table 24-4. I/O Instruction Information in the SMM State Save Map
State (SMM Rev. ID: 30004H or
higher)

Format

31 16 15 8 7 4 3 1 0

I/0 State Field

SMRAM offset 7FA4

I/O
 Port

Reserved

I/O
 Type

I/O
 Length

IO
_SM

I

31 0

I/O Memory Address Field

SMRAM offset 7FA0

I/O Memory Address
Vol. 3 24-15

SYSTEM MANAGEMENT
When IO_SMI is set, the other fields may be interpreted as follows:

• I/O length:

• 001 – Byte

• 010 – Word

• 100 – Dword

• I/O instruction type (Table 24-5)

24.8 NMI HANDLING WHILE IN SMM
NMI interrupts are blocked upon entry to the SMI handler. If an NMI request occurs
during the SMI handler, it is latched and serviced after the processor exits SMM. Only
one NMI request will be latched during the SMI handler. If an NMI request is pending
when the processor executes the RSM instruction, the NMI is serviced before the next
instruction of the interrupted code sequence. This assumes that NMIs were not
blocked before the SMI occurred. If NMIs were blocked before the SMI occurred, they
are blocked after execution of RSM.

Although NMI requests are blocked when the processor enters SMM, they may be
enabled through software by executing an IRET/IRETD instruction. If the SMM
handler requires the use of NMI interrupts, it should invoke a dummy interrupt
service routine for the purpose of executing an IRET/IRETD instruction. Once an
IRET/IRETD instruction is executed, NMI interrupt requests are serviced in the same
“real mode” manner in which they are handled outside of SMM.

A special case can occur if an SMI handler nests inside an NMI handler and then
another NMI occurs. During NMI interrupt handling, NMI interrupts are disabled, so
normally NMI interrupts are serviced and completed with an IRET instruction one at
a time. When the processor enters SMM while executing an NMI handler, the
processor saves the SMRAM state save map but does not save the attribute to keep
NMI interrupts disabled. Potentially, an NMI could be latched (while in SMM or upon

Table 24-5. I/O Instruction Type Encodings
Instruction Encoding

IN Immediate 1001

IN DX 0001

OUT Immediate 1000

OUT DX 0000

INS 0011

OUTS 0010

REP INS 0111

REP OUTS 0110
24-16 Vol. 3

SYSTEM MANAGEMENT
exit) and serviced upon exit of SMM even though the previous NMI handler has still
not completed. One or more NMIs could thus be nested inside the first NMI handler.
The NMI interrupt handler should take this possibility into consideration.

Also, for the Pentium processor, exceptions that invoke a trap or fault handler will
enable NMI interrupts from inside of SMM. This behavior is implementation specific
for the Pentium processor and is not part the IA-32 architecture.

24.9 SAVING THE X87 FPU STATE WHILE IN SMM
In some instances (for example prior to powering down system memory when
entering a 0-volt suspend state), it is necessary to save the state of the x87 FPU
while in SMM. Care should be taken when performing this operation to insure that
relevant x87 FPU state information is not lost. The safest way to perform this task is
to place the processor in 32-bit protected mode before saving the x87 FPU state. The
reason for this is as follows.

The FSAVE instruction saves the x87 FPU context in any of four different formats,
depending on which mode the processor is in when FSAVE is executed (see Chapter
8, “Programming with the x87 FPU”, in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1). When in SMM, by default, the 16-bit real-
address mode format is used. If an SMI interrupt occurs while the processor is in a
mode other than 16-bit real-address mode, FSAVE and FRSTOR will be unable to
save and restore all the relevant x87 FPU information, and this situation may result
in a malfunction when the interrupted program is resumed. To avoid this problem,
the processor should be in 32-bit protected mode when executing the FSAVE and
FRSTOR instructions.

The following guidelines should be used when going into protected mode from an SMI
handler to save and restore the x87 FPU state:

• Use the CPUID instruction to insure that the processor contains an x87 FPU.

• Create a 32-bit code segment in SMRAM space that contains procedures or
routines to save and restore the x87 FPU using the FSAVE and FRSTOR instruc-
tions, respectively. A GDT with an appropriate code-segment descriptor (D bit is
set to 1) for the 32-bit code segment must also be placed in SMRAM.

• Write a procedure or routine that can be called by the SMI handler to save and
restore the x87 FPU state. This procedure should do the following:

— Place the processor in 32-bit protected mode as describe in Section 9.9.1 in
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

— Execute a far JMP to the 32-bit code segment that contains the x87 FPU save
and restore procedures.

— Place the processor back in 16-bit real-address mode before returning to the
SMI handler (see Section 9.9.2 in Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A).
Vol. 3 24-17

SYSTEM MANAGEMENT
The SMI handler may continue to execute in protected mode after the x87 FPU state
has been saved and return safely to the interrupted program from protected mode.
However, it is recommended that the handler execute primarily in 16- or 32-bit real-
address mode.

24.10 SMM REVISION IDENTIFIER
The SMM revision identifier field is used to indicate the version of SMM and the SMM
extensions that are supported by the processor (see Figure 24-2). The SMM revision
identifier is written during SMM entry and can be examined in SMRAM space at offset
7EFCH. The lower word of the SMM revision identifier refers to the version of the base
SMM architecture.

The upper word of the SMM revision identifier refers to the extensions available. If
the I/O instruction restart flag (bit 16) is set, the processor supports the I/O instruc-
tion restart (see Section 24.13); if the SMBASE relocation flag (bit 17) is set, SMRAM
base address relocation is supported (see Section 24.12).

24.11 AUTO HALT RESTART
If the processor is in a HALT state (due to the prior execution of a HLT instruction)
when it receives an SMI, the processor records the fact in the auto HALT restart flag
in the saved processor state (see Figure 24-3). (This flag is located at offset 7F02H
and bit 0 in the state save area of the SMRAM.)

If the processor sets the auto HALT restart flag upon entering SMM (indicating that
the SMI occurred when the processor was in the HALT state), the SMI handler has
two options:

• It can leave the auto HALT restart flag set, which instructs the RSM instruction to
return program control to the HLT instruction. This option in effect causes the

Figure 24-2. SMM Revision Identifier

SMM Revision Identifier

I/O Instruction Restart
SMBASE Relocation

Register Offset
7EFCH
31 0

Reserved

18 17 16 15
24-18 Vol. 3

SYSTEM MANAGEMENT
processor to re-enter the HALT state after handling the SMI. (This is the default
operation.)

• It can clear the auto HALT restart flag, with instructs the RSM instruction to
return program control to the instruction following the HLT instruction.

These options are summarized in Table 24-6. Note that if the processor was not in a
HALT state when the SMI was received (the auto HALT restart flag is cleared), setting
the flag to 1 will cause unpredictable behavior when the RSM instruction is executed.

If the HLT instruction is restarted, the processor will generate a memory access to
fetch the HLT instruction (if it is not in the internal cache), and execute a HLT bus
transaction. This behavior results in multiple HLT bus transactions for the same HLT
instruction.

24.11.1 Executing the HLT Instruction in SMM
The HLT instruction should not be executed during SMM, unless interrupts have been
enabled by setting the IF flag in the EFLAGS register. If the processor is halted in
SMM, the only event that can remove the processor from this state is a maskable
hardware interrupt or a hardware reset.

Figure 24-3. Auto HALT Restart Field

Table 24-6. Auto HALT Restart Flag Values

Value of Flag
After Entry to
SMM

Value of Flag
When Exiting SMM

Action of Processor When Exiting SMM

0

0

1

1

0

1

0

1

Returns to next instruction in interrupted program or task.

Unpredictable.

Returns to next instruction after HLT instruction.

Returns to HALT state.

Auto HALT Restart

015
Reserved Register Offset

7F02H

1

Vol. 3 24-19

SYSTEM MANAGEMENT
24.12 SMBASE RELOCATION
The default base address for the SMRAM is 30000H. This value is contained in an
internal processor register called the SMBASE register. The operating system or
executive can relocate the SMRAM by setting the SMBASE field in the saved state
map (at offset 7EF8H) to a new value (see Figure 24-4). The RSM instruction reloads
the internal SMBASE register with the value in the SMBASE field each time it exits
SMM. All subsequent SMI requests will use the new SMBASE value to find the starting
address for the SMI handler (at SMBASE + 8000H) and the SMRAM state save area
(from SMBASE + FE00H to SMBASE + FFFFH). (The processor resets the value in its
internal SMBASE register to 30000H on a RESET, but does not change it on an INIT.)

In multiple-processor systems, initialization software must adjust the SMBASE value
for each processor so that the SMRAM state save areas for each processor do not
overlap. (For Pentium and Intel486 processors, the SMBASE values must be aligned
on a 32-KByte boundary or the processor will enter shutdown state during the execu-
tion of a RSM instruction.)

If the SMBASE relocation flag in the SMM revision identifier field is set, it indicates the
ability to relocate the SMBASE (see Section 24.10).

24.12.1 Relocating SMRAM to an Address Above 1 MByte
In SMM, the segment base registers can only be updated by changing the value in the
segment registers. The segment registers contain only 16 bits, which allows only 20
bits to be used for a segment base address (the segment register is shifted left 4 bits
to determine the segment base address). If SMRAM is relocated to an address above
1 MByte, software operating in real-address mode can no longer initialize the
segment registers to point to the SMRAM base address (SMBASE).

The SMRAM can still be accessed by using 32-bit address-size override prefixes to
generate an offset to the correct address. For example, if the SMBASE has been relo-
cated to FFFFFFH (immediately below the 16-MByte boundary) and the DS, ES, FS,
and GS registers are still initialized to 0H, data in SMRAM can be accessed by using
32-bit displacement registers, as in the following example:

mov esi,00FFxxxxH; 64K segment immediately below 16M
mov ax,ds:[esi]

Figure 24-4. SMBASE Relocation Field

031

SMM Base Register Offset
7EF8H
24-20 Vol. 3

SYSTEM MANAGEMENT
A stack located above the 1-MByte boundary can be accessed in the same manner.

24.13 I/O INSTRUCTION RESTART
If the I/O instruction restart flag in the SMM revision identifier field is set (see Section
24.10), the I/O instruction restart mechanism is present on the processor. This
mechanism allows an interrupted I/O instruction to be re-executed upon returning
from SMM mode. For example, if an I/O instruction is used to access a powered-down
I/O device, a chip set supporting this device can intercept the access and respond by
asserting SMI#. This action invokes the SMI handler to power-up the device. Upon
returning from the SMI handler, the I/O instruction restart mechanism can be used to
re-execute the I/O instruction that caused the SMI.

The I/O instruction restart field (at offset 7F00H in the SMM state-save area, see
Figure 24-5) controls I/O instruction restart. When an RSM instruction is executed, if
this field contains the value FFH, then the EIP register is modified to point to the I/O
instruction that received the SMI request. The processor will then automatically re-
execute the I/O instruction that the SMI trapped. (The processor saves the necessary
machine state to insure that re-execution of the instruction is handled coherently.)

If the I/O instruction restart field contains the value 00H when the RSM instruction is
executed, then the processor begins program execution with the instruction following
the I/O instruction. (When a repeat prefix is being used, the next instruction may be
the next I/O instruction in the repeat loop.) Not re-executing the interrupted I/O
instruction is the default behavior; the processor automatically initializes the I/O
instruction restart field to 00H upon entering SMM. Table 24-7 summarizes the states
of the I/O instruction restart field.

Note that the I/O instruction restart mechanism does not indicate the cause of the
SMI. It is the responsibility of the SMI handler to examine the state of the processor
to determine the cause of the SMI and to determine if an I/O instruction was inter-

Figure 24-5. I/O Instruction Restart Field

Table 24-7. I/O Instruction Restart Field Values

Value of Flag After
Entry to SMM

Value of Flag When
Exiting SMM

Action of Processor When Exiting SMM

00H

00H

00H

FFH

Does not re-execute trapped I/O instruction.

Re-executes trapped I/O instruction.

015

I/O Instruction Restart Field Register Offset
7F00H
Vol. 3 24-21

SYSTEM MANAGEMENT
rupted and should be restarted upon exiting SMM. If an SMI interrupt is signaled on
a non-I/O instruction boundary, setting the I/O instruction restart field to FFH prior to
executing the RSM instruction will likely result in a program error.

24.13.1 Back-to-Back SMI Interrupts When I/O Instruction Restart Is
Being Used

If an SMI interrupt is signaled while the processor is servicing an SMI interrupt that
occurred on an I/O instruction boundary, the processor will service the new SMI
request before restarting the originally interrupted I/O instruction. If the I/O instruc-
tion restart field is set to FFH prior to returning from the second SMI handler, the EIP
will point to an address different from the originally interrupted I/O instruction, which
will likely lead to a program error. To avoid this situation, the SMI handler must be
able to recognize the occurrence of back-to-back SMI interrupts when I/O instruction
restart is being used and insure that the handler sets the I/O instruction restart field
to 00H prior to returning from the second invocation of the SMI handler.

24.14 SMM MULTIPLE-PROCESSOR CONSIDERATIONS
The following should be noted when designing multiple-processor systems:

• Any processor in a multiprocessor system can respond to an SMM.

• Each processor needs its own SMRAM space. This space can be in system
memory or in a separate RAM.

• The SMRAMs for different processors can be overlapped in the same memory
space. The only stipulation is that each processor needs its own state save area
and its own dynamic data storage area. (Also, for the Pentium and Intel486
processors, the SMBASE address must be located on a 32-KByte boundary.) Code
and static data can be shared among processors. Overlapping SMRAM spaces can
be done more efficiently with the P6 family processors because they do not
require that the SMBASE address be on a 32-KByte boundary.

• The SMI handler will need to initialize the SMBASE for each processor.

• Processors can respond to local SMIs through their SMI# pins or to SMIs received
through the APIC interface. The APIC interface can distribute SMIs to different
processors.

• Two or more processors can be executing in SMM at the same time.

• When operating Pentium processors in dual processing (DP) mode, the SMIACT#
pin is driven only by the MRM processor and should be sampled with ADS#. For
additional details, see Chapter 14 of the Pentium Processor Family User’s Manual,
Volume 1.

SMM is not re-entrant, because the SMRAM State Save Map is fixed relative to the
SMBASE. If there is a need to support two or more processors in SMM mode at the
24-22 Vol. 3

SYSTEM MANAGEMENT
same time then each processor should have dedicated SMRAM spaces. This can be
done by using the SMBASE Relocation feature (see Section 24.12).

24.15 DEFAULT TREATMENT OF SMIS AND SMM WITH VMX
Under the default treatment, the interactions of VMX with SMIs and SMM are few.
This section details those interactions.

24.15.1 Default Treatment of SMI Delivery
Ordinary SMI delivery saves processor state into SMRAM and then loads state based
on architectural definitions. Under the default treatment, processors that support
VMX operation perform SMI delivery as follows:

Enter SMM;
save the following internal to the processor:

CR4.VMXE
an indication of whether the logical processor was in VMX operation (root or non-root)

IF the logical processor is in VMX operation
THEN

save current VMCS pointer internal to the processor;
leave VMX operation;
save VMX-critical state defined below;

FI;
CR4.VMXE ← 0;
perform ordinary SMI delivery:

save processor state in SMRAM;
set processor state to standard SMM values;1

The pseudocode above makes reference to the saving of VMX-critical state. This
state consists of the following: (1) SS.DPL (the current privilege level);
(2) RFLAGS.VM2; (3) the state of blocking by STI and by MOV SS (see Table 20-3 in
Section 20.4.2); and (4) the state of virtual-NMI blocking (only if the processor is in
VMX non-root operation and the “virtual NMIs” VM-execution control is 1). These
data may be saved internal to the processor or in the VMCS region of the current
VMCS. Note that processors that do not support SMI recognition while there is
blocking by STI or by MOV SS need not save the state of such blocking.

1. This causes the logical processor to block INIT signals, NMIs, and SMIs.

2. Section 24.15 and Section 24.16 use the notation RAX, RIP, RSP, RFLAGS, etc. for processor reg-
isters because most processors that support VMX operation also support Intel 64 architecture.
For processors that do not support Intel 64 architecture, this notation refers to the 32-bit forms
of these registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to
refer specifically to the lower 32 bits of the register.
Vol. 3 24-23

SYSTEM MANAGEMENT
Because SMI delivery causes a logical processor to leave VMX operation, all the
controls associated with VMX non-root operation are disabled in SMM and thus
cannot cause VM exits.

24.15.2 Default Treatment of RSM
Ordinary execution of RSM restores processor state from SMRAM. Under the default
treatment, processors that support VMX operation perform RSM as follows:

IF VMXE = 1 in CR4 image in SMRAM
THEN fail and enter shutdown state;
ELSE

restore state normally from SMRAM;
CR4.VMXE ← value stored internally;
IF internal storage indicates that the logical processor
had been in VMX operation (root or non-root)

THEN
enter VMX operation (root or non-root);
restore VMX-critical state as defined in Section 24.15.1;
set CR0.PE, CR0.NE, and CR0.PG to 1;
IF RFLAGS.VM = 0

THEN
CS.RPL ← SS.DPL;
SS.RPL ← SS.DPL;

FI;
restore current VMCS pointer;

FI;
Leave SMM;
IF logical processor will be in VMX operation after RSM

THEN block A20M and leave A20M mode;
FI;

FI;

RSM unblocks SMIs. It restores the state of blocking by NMI (see Table 20-3 in
Section 20.4.2) as follows:

• If the RSM is not to VMX non-root operation or if the “virtual NMIs” VM-execution
control will be 0, the state of NMI blocking is restored normally.

• If the RSM is to VMX non-root operation and the “virtual NMIs” VM-execution
control will be 1, NMIs are not blocked after RSM. The state of virtual-NMI
blocking is restored as part of VMX-critical state.

INIT signals are blocked after RSM if and only if the logical processor will be in VMX
root operation.
24-24 Vol. 3

SYSTEM MANAGEMENT
If RSM returns a logical processor to VMX non-root operation, it re-establishes the
controls associated with the current VMCS. If the “interrupt-window exiting”
VM-execution control is 1, a VM exit occurs immediately after RSM if the enabling
conditions apply. The same is true for the “NMI-window exiting” VM-execution
control. Such VM exits occur with their normal priority. See Section 21.3.

24.15.3 Protection of CR4.VMXE in SMM
Under the default treatment, CR4.VMXE is treated as a reserved bit while a logical
processor is in SMM. Any attempt by software running in SMM to set this bit causes a
general-protection exception. In addition, software cannot use VMX instructions or
enter VMX operation while in SMM.

24.16 DUAL-MONITOR TREATMENT OF SMIs AND SMM
Dual-monitor treatment is activated through the cooperation of the executive
monitor (the VMM that operates outside of SMM to provide basic virtualization) and
the SMM monitor (the VMM that operates inside SMM—while in VMX operation—to
support system-management functions). Control is transferred to the SMM monitor
through VM exits; VM entries are used to return from SMM.

The dual-monitor treatment may not be supported by all processors. Software should
consult the VMX capability MSR IA32_VMX_BASIC (see Appendix G.1) to determine
whether it is supported.

24.16.1 Dual-Monitor Treatment Overview
The dual-monitor treatment uses an executive monitor and an SMM monitor. Transi-
tions from the executive monitor or its guests to the SMM monitor are called SMM
VM exits and are discussed in Section 24.16.2. SMM VM exits are caused by SMIs as
well as executions of VMCALL in VMX root operation. The latter allow the executive
monitor to call the SMM monitor for service.

The SMM monitor runs in VMX root operation and uses VMX instructions to establish
a VMCS and perform VM entries to its own guests. This is done all inside SMM (see
Section 24.16.3). The SMM monitor returns from SMM, not by using the RSM instruc-
tion, but by using a VM entry that returns from SMM. Such VM entries are described
in Section 24.16.4.

Initially, there is no SMM monitor and the default treatment (Section 24.15) is used.
The dual-monitor treatment is not used until it is enabled and activated. The steps to
do this are described in Section 24.16.5 and Section 24.16.6.

It is not possible to leave VMX operation under the dual-monitor treatment; VMXOFF
will fail if executed. The dual-monitor treatment must be deactivated first. The SMM
monitor deactivates dual-monitor treatment using a VM entry that returns from SMM
Vol. 3 24-25

SYSTEM MANAGEMENT
with the “deactivate dual-monitor treatment” VM-entry control set to 1 (see Section
24.16.7).

The executive monitor configures any VMCS that it uses for VM exits to the executive
monitor. SMM VM exits, which transfer control to the SMM monitor, use a different
VMCS. Under the dual-monitor treatment, each logical processor uses a separate
VMCS called the SMM-transfer VMCS. When the dual-monitor treatment is active,
the logical processor maintains another VMCS pointer called the SMM-transfer
VMCS pointer. The SMM-transfer VMCS pointer is established when the dual-
monitor treatment is activated.

24.16.2 SMM VM Exits
An SMM VM exit is a VM exit that begins outside SMM and that ends in SMM.

Unlike other VM exits, SMM VM exits can begin in VMX root operation. SMM VM exits
result from the arrival of an SMI outside SMM or from execution of VMCALL in VMX
root operation outside SMM. Execution of VMCALL in VMX root operation causes an
SMM VM exit only if the valid bit is set in the IA32_SMM_MONITOR_CTL MSR (see
Section 24.16.5).

Execution of VMCALL in VMX root operation causes an SMM VM exit even under the
default treatment. This SMM VM exit activates the dual-monitor treatment (see
Section 24.16.6).

Differences between SMM VM exits and other VM exits are detailed in Sections
24.16.2.1 through 24.16.2.5. Differences between SMM VM exits that activate the
dual-monitor treatment and other SMM VM exits are described in Section 24.16.6.

24.16.2.1 Architectural State Before a VM Exit
System-management interrupts (SMIs) that cause SMM VM exits always do so
directly. They do not save state to SMRAM as they do under the default treatment.

24.16.2.2 Updating the Current-VMCS and Executive-VMCS Pointers
SMM VM exits begin by performing the following steps:

1. The executive-VMCS pointer field in the SMM-transfer VMCS is loaded as follows:

— If the SMM VM exit commenced in VMX non-root operation, it receives the
current-VMCS pointer.

— If the SMM VM exit commenced in VMX root operation, it receives the VMXON
pointer.

2. The current-VMCS pointer is loaded with the value of the SMM-transfer VMCS
pointer.
24-26 Vol. 3

SYSTEM MANAGEMENT
The last step ensures that the current VMCS is the SMM-transfer VMCS. State is
saved into the guest-state area of that VMCS. The VM-exit controls and host-state
area of that VMCS determine how the VM exit operates.

24.16.2.3 Recording VM-Exit Information
SMM VM exits differ from other VM exit with regard to the way they record VM-exit
information. The differences follow.

• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. The field is loaded with
the reason for the SMM VM exit: I/O SMI (an SMI arrived immediately after
retirement of an I/O instruction), other SMI, or VMCALL. See Appendix I,
“VMX Basic Exit Reasons”.

— SMM VM exits are the only VM exits that may occur in VMX root operation.
Because the SMM monitor may need to know whether it was invoked from
VMX root or VMX non-root operation, this information is stored in bit 29 of the
exit-reason field (see Table 20-12 in Section 20.9.1). The bit is set by SMM
VM exits from VMX root operation.

— Bits 28:16 and bits 31:30 are clear.

• Exit qualification. For an SMM VM exit due an SMI that arrives immediately
after the retirement of an I/O instruction, the exit qualification contains
information about the I/O instruction that retired immediately before the SMI.It
has the format given in Table 24-8.

Table 24-8. Exit Qualification for SMIs That Arrive Immediately
After the Retirement of an I/O Instruction

Bit Position(s) Contents

2:0 Size of access:

0 = 1-byte
1 = 2-byte
3 = 4-byte

Other values not used.

3 Direction of the attempted access (0 = OUT, 1 = IN)

4 String instruction (0 = not string; 1 = string)

5 REP prefixed (0 = not REP; 1 = REP)

6 Operand encoding (0 = DX, 1 = immediate)

15:7 Reserved (cleared to 0)
Vol. 3 24-27

SYSTEM MANAGEMENT
• Guest linear address. This field is used for VM exits due to SMIs that arrive
immediately after the retirement of an INS or OUTS instruction for which the
relevant segment (ES for INS; DS for OUTS unless overridden by an instruction
prefix) is usable. The field receives the value of the linear address generated by
ES:(E)DI (for INS) or segment:(E)SI (for OUTS; the default segment is DS but
can be overridden by a segment override prefix) at the time the instruction
started. If the relevant segment is not usable, the value is undefined. On
processors that support Intel 64 architecture, bits 63:32 are clear if the logical
processor was not in 64-bit mode before the VM exit.

• I/O RCX, I/O RSI, I/O RDI, and I/O RIP. For an SMM VM exit due an SMI
that arrives immediately after the retirement of an I/O instruction, these fields
receive the values that were in RCX, RSI, RDI, and RIP, respectively, before the
I/O instruction executed. Thus, the value saved for I/O RIP addresses the I/O
instruction.

24.16.2.4 Saving Guest State
SMM VM exits save the contents of the SMBASE register into the corresponding field
in the guest-state area.

24.16.2.5 Updating Non-Register State
SMM VM exits affect the non-register state of a logical processor as follows:

• SMM VM exits cause non-maskable interrupts (NMIs) to be blocked; they may be
unblocked through execution of IRET or through a VM entry (depending on the
value loaded for the interruptibility state and the setting of the “virtual NMIs”
VM-execution control).

• SMM VM exits cause SMIs to be blocked; they may be unblocked by a VM entry
that returns from SMM (see Section 24.16.4).

24.16.3 Operation of an SMM Monitor
Once invoked, an SMM monitor is in VMX root operation and can use VMX instructions
to configure VMCSs and to cause VM entries to virtual machines supported by those

31:16 Port number (as specified in the I/O instruction)

63:32 Reserved (cleared to 0). These bits exist only on processors
that support Intel 64 architecture.

Table 24-8. Exit Qualification for SMIs That Arrive Immediately
After the Retirement of an I/O Instruction (Contd.)

Bit Position(s) Contents
24-28 Vol. 3

SYSTEM MANAGEMENT
structures. As noted in Section 24.16.1, the VMXOFF instruction cannot be used
under the dual-monitor treatment and thus cannot be used by an SMM monitor.

The RSM instruction also cannot be used under the dual-monitor treatment. As noted
in Section 21.1.3, it causes a VM exit if executed in SMM in VMX non-root operation.
If executed in VMX root operation, it causes an invalid-opcode exception. SMM
monitor uses VM entries to return from SMM (see Section 24.16.4).

24.16.4 VM Entries that Return from SMM
The SMM monitor returns from SMM using a VM entry with the “entry to SMM”
VM-entry control clear. VM entries that return from SMM reverse the effects of an
SMM VM exit (see Section 24.16.2).

VM entries that return from SMM may differ from other VM entries in that they do not
necessarily enter VMX non-root operation. If the executive-VMCS pointer field in the
current VMCS contains the VMXON pointer, the logical processor remains in VMX root
operation after VM entry.

For differences between VM entries that return from SMM and other VM entries see
Sections 24.16.4.1 through 24.16.4.8.

24.16.4.1 Checks on the Executive-VMCS Pointer Field
VM entries that return from SMM perform the following checks on the executive-
VMCS pointer field in the current VMCS:

• Bits 11:0 must be 0.

• On processors that support Intel 64 architecture, the pointer must not set any
bits beyond the processor’s physical-address width.1 On processors that do not
support Intel 64 architecture, it must not set any bits in the range 63:32.

• The 32 bits located in memory referenced by the physical address in the pointer
must contain the processor’s VMCS revision identifier (see Section 20.2).

The checks above are performed before the checks described in Section 24.16.4.2
and before any of the following checks:

• If the “deactivate dual-monitor treatment” VM-entry control is 0, the launch state
of the executive VMCS (the VMCS referenced by the executive-VMCS pointer
field) must be launched (see Section 20.11).

• If the “deactivate dual-monitor treatment” VM-entry control is 1, the executive-
VMCS pointer field must contain the VMXON pointer (see Section 24.16.7).2

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

2. An SMM monitor can determine the VMXON pointer by reading the executive-VMCS pointer field
in the current VMCS after the SMM VM exit that activates the dual-monitor treatment.
Vol. 3 24-29

SYSTEM MANAGEMENT
24.16.4.2 Checks on VM-Execution Control Fields
VM entries that return from SMM differ from other VM entries with regard to the
checks performed on the VM-execution control fields specified in Section 22.2.1.1.
They do not apply the checks to the current VMCS. Instead, VM-entry behavior
depends on whether the executive-VMCS pointer field contains the VMXON pointer:4

• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry
remains in VMX root operation), the checks are not performed at all.

• If the executive-VMCS pointer field does not contain the VMXON pointer (the
VM entry enters VMX non-root operation), the checks are performed on the
VM-execution control fields in the executive VMCS (the VMCS referenced by the
executive-VMCS pointer field in the current VMCS). These checks are performed
after checking the executive-VMCS pointer field itself (for proper alignment).

24.16.4.3 Checks on Guest Non-Register State
For VM entries that return from SMM, the activity-state field must not indicate the
wait-for-SIPI state if the executive-VMCS pointer field contains the VMXON pointer
(the VM entry is to VMX root operation).

Section 22.3.1.5 includes the following check on the interruptibility-state field: bit 3
(blocking by NMI) must be 0 if the “virtual NMIs” VM-execution control is 1, the valid
bit (bit 31) in the VM-entry interruption-information field is 1, and the interruption
type (bits 10:8) in that field has value 2 (indicating NMI). VM entries that return from
SMM modify this check based on whether the executive-VMCS pointer field contains
the VMXON pointer:1

• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry
remains in VMX root operation), this check is not performed at all.

• If the executive-VMCS pointer field does not contain the VMXON pointer (the
VM entry enters VMX non-root operation), this check is performed based on the
setting of the “virtual NMIs” VM-execution control in the executive VMCS (the
VMCS referenced by the executive-VMCS pointer field in the current VMCS).

24.16.4.4 Loading Guest State
VM entries that return from SMM load the SMBASE register from the SMBASE field.

1. An SMM monitor can determine the VMXON pointer by reading the executive-VMCS pointer field
in the current VMCS after the SMM VM exit that activates the dual-monitor treatment.
24-30 Vol. 3

SYSTEM MANAGEMENT
24.16.4.5 Updating the Current-VMCS and SMM-Transfer VMCS Pointers
Successful VM entries (returning from SMM) load the SMM-transfer VMCS pointer
with the current-VMCS pointer. Following this, they load the current-VMCS pointer
from a field in the current VMCS:

• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry
remains in VMX root operation), the current-VMCS pointer is loaded from the
VMCS-link pointer field.

• If the executive-VMCS pointer field does not contain the VMXON pointer (the
VM entry enters VMX non-root operation), the current-VMCS pointer is loaded
with the value of the executive-VMCS pointer field.

If the VM entry successfully enters VMX non-root operation, the VM-execution
controls in effect after the VM entry are those from the new current VMCS. This
includes any structures external to the VMCS referenced by VM-execution control
fields.

The updating of these VMCS pointers occurs before event injection. Event injection is
determined, however, by the VM-entry control fields in the VMCS that was current
when the VM entry commenced.

24.16.4.6 VM Exits Induced by VM Entry
Section 22.5.2 describes how the event-delivery process invoked by event injection
may lead to a VM exit. Section 22.6.3 to Section 22.6.6 describe other situations that
may cause a VM exit to occur immediately after a VM entry.

Whether these VM exits occur is determined by the VM-execution control fields in the
current VMCS. For VM entries that return from SMM, they can occur only if the exec-
utive-VMCS pointer field does not contain the VMXON pointer (the VM entry enters
VMX non-root operation).

In this case, determination is based on the VM-execution control fields in the VMCS
that is current after the VM entry. This is the VMCS referenced by the value of the
executive-VMCS pointer field at the time of the VM entry (see Section 24.16.4.5).
This VMCS also controls the delivery of such VM exits. Thus, VM exits induced by a
VM entry returning from SMM are to the executive monitor and not to the SMM
monitor.

24.16.4.7 SMI Blocking
VM entries that return from SMM determine the blocking of system-management
interrupts (SMIs) as follows:

• If the “deactivate dual-monitor treatment” VM-entry control is 0, SMIs are
blocked after VM entry if and only if the bit 2 in the interruptibility-state field is 1.

• If the “deactivate dual-monitor treatment” VM-entry control is 1, SMIs are
unblocked by VM entry.
Vol. 3 24-31

SYSTEM MANAGEMENT
VM entries that return from SMM and that do not deactivate the dual-monitor treat-
ment may leave SMIs blocked. This feature exists to allow an SMM monitor to invoke
functionality outside of SMM without unblocking SMIs.

24.16.4.8 Failures of VM Entries That Return from SMM
Section 22.7 describes the treatment of VM entries that fail during or after loading
guest state. Such failures record information in the VM-exit information fields and
load processor state as would be done on a VM exit. The VMCS used is the one that
was current before the VM entry commenced. Control is thus transferred to the SMM
monitor and the logical processor remains in SMM.

24.16.5 Enabling the Dual-Monitor Treatment
Code and data for the SMM monitor reside in a region of SMRAM called the monitor
segment (MSEG). Code running in SMM determines the location of MSEG and estab-
lishes its content. This code is also responsible for enabling the dual-monitor treat-
ment.

SMM code enables the dual-monitor treatment and determines the location of MSEG
by writing to IA32_SMM_MONITOR_CTL MSR (index 9BH). The MSR has the following
format:

• Bit 0 is the register’s valid bit. The SMM monitor may be invoked using VMCALL
only if this bit is 1. Because VMCALL is used to activate the dual-monitor
treatment (see Section 24.16.6), the dual-monitor treatment cannot be
activated if the bit is 0. This bit is cleared when the logical processor is reset.

• Bits 11:1 are reserved.

• Bits 31:12 contain a value that, when shifted right 12 bits, is the physical address
of MSEG (the MSEG base address).

• Bits 63:32 are reserved.

The following items detail use of this MSR:

• The IA32_SMM_MONITOR_CTL MSR is supported only on processors that support
the dual-monitor treatment.1 On other processors, accesses to the MSR using
RDMSR or WRMSR generate a general-protection fault (#GP(0)).

• A write to the IA32_SMM_MONITOR_CTL MSR using WRMSR generates a
general-protection fault (#GP(0)) if executed outside of SMM or if an attempt is
made to set any reserved bit. An attempt to write to IA32_SMM_MONITOR_CTL
MSR fails if made as part of a VM exit that does not end in SMM or part of a
VM entry that does not begin in SMM.

1. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix G.1) to deter-
mine whether the dual-monitor treatment is supported.
24-32 Vol. 3

SYSTEM MANAGEMENT
• Reads from IA32_SMM_MONITOR_CTL MSR using RDMSR are allowed any time
RDMSR is allowed. The MSR may be read as part of any VM exit.

• The dual-monitor treatment can be activated only if the valid bit in the MSR is set
to 1.

The 32 bytes located at the MSEG base address are called the MSEG header. The
format of the MSEG header is given in Table 24-9 (each field is 32 bits).

To ensure proper behavior in VMX operation, software should maintain the MSEG
header in writeback cacheable memory. Future implementations may allow or
require a different memory type.1 Software should consult the VMX capability MSR
IA32_VMX_BASIC (see Appendix G.1).

SMM code should enable the dual-monitor treatment (by setting the valid bit in
IA32_SMM_MONITOR_CTL MSR) only after establishing the content of the MSEG
header as follows:

• Bytes 3:0 contain the MSEG revision identifier. Different processors may use
different MSEG revision identifiers. These identifiers enable software to avoid
using an MSEG header formatted for one processor on a processor that uses a
different format. Software can discover the MSEG revision identifier that a
processor uses by reading the VMX capability MSR IA32_VMX_MISC (see
Appendix G.5).

Table 24-9. Format of MSEG Header

Byte Offset Field

0 MSEG-header revision identifier

4 SMM-monitor features

8 GDTR limit

12 GDTR base offset

16 CS selector

20 EIP offset

24 ESP offset

28 CR3 offset

1. Alternatively, software may map the MSEG header with the UC memory type; this may be neces-
sary, depending on how memory is organized. Doing so is strongly discouraged unless necessary
as it will cause the performance of transitions using those structures to suffer significantly. In
addition, the processor will continue to use the memory type reported in the VMX capability MSR
IA32_VMX_BASIC with exceptions noted in Appendix G.1.
Vol. 3 24-33

SYSTEM MANAGEMENT
• Bytes 7:4 contain the SMM-monitor features field. Bits 31:1 of this field are
reserved and must be zero. Bit 0 of the field is the IA-32e mode SMM feature
bit.1 It indicates whether the logical processor will be in IA-32e mode after the
SMM monitor is activated (see Section 24.16.6).

• Bytes 31:8 contain fields that determine how processor state is loaded when the
SMM monitor is activated (see Section 24.16.6.4). SMM code should establish
these fields so that activating of the SMM monitor invokes the SMM monitor’s
initialization code.

24.16.6 Activating the Dual-Monitor Treatment
The dual-monitor treatment may be enabled by SMM code as described in Section
24.16.5. The dual-monitor treatment is activated only if it is enabled and only by the
executive monitor. The executive monitor activates the dual-monitor treatment by
executing VMCALL in VMX root operation.

When VMCALL activates the dual-monitor treatment, it causes an SMM VM exit.
Differences between this SMM VM exit and other SMM VM exits are discussed in
Sections 24.16.6.1 through 24.16.6.5. See also “VMCALL—Call to VM Monitor” in
Chapter 5 of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B.

24.16.6.1 Initial Checks
An execution of VMCALL attempts to activate the dual-monitor treatment if (1) the
processor supports the dual-monitor treatment;2 (2) the logical processor is in VMX
root operation; (3) the logical processor is outside SMM and the valid bit is set in the
IA32_SMM_MONITOR_CTL MSR; (4) the logical processor is not in virtual-8086
mode and not in compatibility mode; (5) CPL = 0; and (6) the dual-monitor treat-
ment is not active.

The VMCS that manages SMM VM exit caused by this VMCALL is the current VMCS
established by the executive monitor. The VMCALL performs the following checks on
the current VMCS in the order indicated:

1. There must be a current VMCS pointer.

2. The launch state of the current VMCS must be clear.

1. Note that use of IA-32e mode address-translation mechanism is not currently supported in SMM.
Thus, setting the IA-32e mode SMM feature bit to 1 is not currently supported. See note in
Section 24.1.

2. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix G.1) to deter-
mine whether the dual-monitor treatment is supported.
24-34 Vol. 3

SYSTEM MANAGEMENT
3. The VM-exit control fields must be valid:

— Reserved bits in the VM-exit controls must be set properly. Software may
consult the VMX capability MSR IA32_VMX_EXIT_CTLS to determine the
proper settings (see Appendix G.3).

— The following checks are performed for the VM-exit MSR-store address if the
VM-exit MSR-store count field is non-zero:

• The lower 4 bits of the VM-exit MSR-store address must be 0. On
processors that support Intel 64 architecture, the address should not set
any bits beyond the processor’s physical-address width.1 On processors
that do not support Intel 64 architecture, the address should not set any
bits in the range 63:32.

• On processors that support Intel 64 architecture, the address of the last
byte in the VM-exit MSR-store area should not set any bits beyond the
processor’s physical-address width. On processors that do not support
Intel 64 architecture, the address of the last byte in the VM-exit MSR-
store area should not set any bits in the range 63:32. The address of this
last byte is VM-exit MSR-store address + (MSR count * 16) – 1. (The
arithmetic used for the computation uses more bits than the processor’s
physical-address width.)

If any of these checks fail, subsequent checks are skipped and VMCALL fails. If all
these checks succeed, the logical processor uses the IA32_SMM_MONITOR_CTL MSR
to determine the base address of MSEG. The following checks are performed in the
order indicated:

1. The logical processor reads the 32 bits at the base of MSEG and compares them
to the processor’s MSEG revision identifier.

2. The logical processor reads the SMM-monitor features field:

— Bit 0 of the field is the IA-32e mode SMM feature bit, and it indicates whether
the logical processor will be in IA-32e mode after the SMM monitor is
activated.

• If the VMCALL is executed on a processor that does not support Intel 64
architecture, the IA-32e mode SMM feature bit must be 0.

• If the VMCALL is executed in 64-bit mode, the IA-32e mode SMM feature
bit must be 1.

— Bits 31:1 of this field are currently reserved and must be zero.

If any of these checks fail, subsequent checks are skipped and the VMCALL fails.

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
Vol. 3 24-35

SYSTEM MANAGEMENT
24.16.6.2 MSEG Checking
SMM VM exits that activate the dual-monitor treatment check the following before
updating the current-VMCS pointer and the executive-VMCS pointer field (see
Section 24.16.2.2):

• The 32 bits at the MSEG base address (used as a physical address) must contain
the processor’s MSEG revision identifier.

• Bits 31:1 of the SMM-monitor features field in the MSEG header (see Table 24-9)
must be 0. Bit 0 of the field (the IA-32e mode SMM feature bit) must be 0 if the
processor does not support Intel 64 architecture.

If either of these checks fail, execution of VMCALL fails.

24.16.6.3 Updating the Current-VMCS and Executive-VMCS Pointers
Before performing the steps in Section 24.16.2.2, SMM VM exits that activate the
dual-monitor treatment begin by loading the SMM-transfer VMCS pointer with the
value of the current-VMCS pointer.

24.16.6.4 Loading Host State
The VMCS that is current during an SMM VM exit that activates the dual-monitor
treatment was established by the executive monitor. It does not contain the VM-exit
controls and host state required to initialize the SMM monitor. For this reason, such
SMM VM exits do not load processor state as described in Section 23.5. Instead,
state is set to fixed values or loaded based on the content of the MSEG header (see
Table 24-9):

• CR0 is set to as follows:

— PG, NE, ET, MP, and PE are all set to 1.

— CD and NW are left unchanged.

— All other bits are cleared to 0.

• CR3 is set as follows:

— Bits 63:32 are cleared on processors that supports IA-32e mode.

— Bits 31:12 are set to bits 31:12 of the sum of the MSEG base address and the
CR3-offset field in the MSEG header.

— Bits 11:5 and bits 2:0 are cleared (the corresponding bits in the CR3-offset
field in the MSEG header are ignored).

— Bits 4:3 are set to bits 4:3 of the CR3-offset field in the MSEG header.

• CR4 is set as follows:

— MCE and PGE are cleared.

— PAE is set to the value of the IA-32e mode SMM feature bit.
24-36 Vol. 3

SYSTEM MANAGEMENT
— If the IA-32e mode SMM feature bit is clear, PSE is set to 1 if supported by the
processor; if the bit is set, PSE is cleared.

— All other bits are unchanged.

• DR7 is set to 400H.

• The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.

• The registers CS, SS, DS, ES, FS, and GS are loaded as follows:

— All registers are usable.

— CS.selector is loaded from the corresponding fields in the MSEG header (the
high 16 bits are ignored), with bits 2:0 cleared to 0. If the result is 0000H,
CS.selector is set to 0008H.

— The selectors for SS, DS, ES, FS, and GS are set to CS.selector+0008H. If the
result is 0000H (if the CS selector was 0xFFF8), these selectors are instead
set to 0008H.

— The base addresses of all registers are cleared to zero.

— The segment limits for all registers are set to FFFFFFFFH.

— The AR bytes for the registers are set as follows:

• CS.Type is set to 11 (execute/read, accessed, non-conforming code
segment).

• For SS, DS, FS, and GS, the Type is set to 3 (read/write, accessed,
expand-up data segment).

• The S bits for all registers are set to 1.

• The DPL for each register is set to 0.

• The P bits for all registers are set to 1.

• On processors that support Intel 64 architecture, CS.L is loaded with the
value of the IA-32e mode SMM feature bit.

• CS.D is loaded with the inverse of the value of the IA-32e mode SMM
feature bit.

• For each of SS, DS, FS, and GS, the D/B bit is set to 1.

• The G bits for all registers are set to 1.

• LDTR is unusable. The LDTR selector is cleared to 0000H, and the register is
otherwise undefined (although the base address is always canonical)

• GDTR.base is set to the sum of the MSEG base address and the GDTR base-offset
field in the MSEG header (bits 63:32 are always cleared on processors that
supports IA-32e mode). GDTR.limit is set to the corresponding field in the MSEG
header (the high 16 bits are ignored).

• IDTR.base is unchanged. IDTR.limit is cleared to 0000H.
Vol. 3 24-37

SYSTEM MANAGEMENT
• RIP is set to the sum of the MSEG base address and the value of the RIP-offset
field in the MSEG header (bits 63:32 are always cleared on logical processors
that support IA-32e mode).

• RSP is set to the sum of the MSEG base address and the value of the RSP-offset
field in the MSEG header (bits 63:32 are always cleared on logical processor that
supports IA-32e mode).

• RFLAGS is cleared, except bit 1, which is always set.

• The logical processor is left in the active state.

• Event blocking after the SMM VM exit is as follows:

— There is no blocking by STI or by MOV SS.

— There is blocking by non-maskable interrupts (NMIs) and by SMIs.

• There are no pending debug exceptions after the SMM VM exit.

• For processors that support IA-32e mode, the IA32_EFER MSR is modified so that
LME and LMA both contain the value of the IA-32e mode SMM feature bit.

If any of CR3[63:5], CR4.PAE, CR4.PSE, or IA32_EFER.LMA is changing, the TLBs are
updated so that, after VM exit, the logical processor does not use translations that
were cached before the transition. This is not necessary for changes that would not
affect paging due to the settings of other bits (for example, changes to CR4.PSE if
IA32_EFER.LMA was 1 before and after the transition).

24.16.6.5 Loading MSRs
The VM-exit MSR-load area is not used by SMM VM exits that activate the dual-
monitor treatment. No MSRs are loaded from that area.

24.16.7 Deactivating the Dual-Monitor Treatment
An SMM monitor may deactivate the dual monitor treatment and return the
processor to default treatment of SMIs and SMM (see Section 24.15). It does this by
executing a VM entry with the “deactivate dual-monitor treatment” VM-entry control
set to 1.

As noted in Section 22.2.1.3 and Section 24.16.4.1, an attempt to deactivate the
dual-monitor treatment fails in the following situations: (1) the processor is not in
SMM; (2) the “entry to SMM” VM-entry control is 1; or (3) the executive-VMCS
pointer does not contain the VMXON pointer (the VM entry is to VMX non-root oper-
ation).

As noted in Section 24.16.4.7, VM entries that deactivate the dual-monitor treat-
ment ignore the SMI bit in the interruptibility-state field of the guest-state area.
Instead, such a VM entry unconditionally unmasks SMIs.
24-38 Vol. 3

CHAPTER 25
VIRTUAL-MACHINE MONITOR PROGRAMMING

CONSIDERATIONS

25.1 VMX SYSTEM PROGRAMMING OVERVIEW
The Virtual Machine Monitor (VMM) is a software class used to manage virtual
machines (VM). This chapter describes programming considerations for VMMs.

Each VM behaves like a complete physical machine and can run operating system
(OS) and applications. The VMM software layer runs at the most privileged level and
has complete ownership of the underlying system hardware. The VMM controls
creation of a VM, transfers control to a VM, and manages situations that can cause
transitions between the guest VMs and host VMM. The VMM allows the VMs to share
the underlying hardware and yet provides isolation between the VMs. The guest soft-
ware executing in a VM is unaware of any transitions that might have occurred
between the VM and its host.

25.2 SUPPORTING PROCESSOR OPERATING MODES IN
GUEST ENVIRONMENTS

Typically, VMMs transfer control to a VM using VMX transitions referred to as VM
entries. The boundary conditions that define what a VM is allowed to execute in isola-
tion are specified in a virtual-machine control structure (VMCS).

As noted in Section 19.8, processors may fix certain bits in CR0 and CR4 to specific
values and not support other values. The first processors to support VMX operation
require that CR0.PE and CR0.PG be 1 in VMX operation. Thus, a VM entry is allowed
only to guests with paging enabled that are in protected mode or in virtual-8086
mode. Guest execution in other processor operating modes need to be specially
handled by the VMM.

One example of such a condition is guest execution in real-mode. A VMM could
support guest real-mode execution using at least two approaches:

• By using a fast instruction set emulator in the VMM.
Vol. 3 25-1

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
• By using the similarity between real-mode and virtual-8086 mode to support
real-mode guest execution in a virtual-8086 container. The virtual-8086
container may be implemented as a virtual-8086 container task within a monitor
that emulates real-mode guest state and instructions, or by running the guest VM
as the virtual-8086 container (by entering the guest with RFLAGS.VM1 set).
Attempts by real-mode code to access privileged state outside the virtual-8086
container would trap to the VMM and would also need to be emulated.

Another example of such a condition is guest execution in protected mode with
paging disabled. A VMM could support such guest execution by using “identity” page
tables to emulate unpaged protected mode.

25.2.1 Emulating Guest Execution
In certain conditions, VMMs may resort to using a virtual-8086 container to support
guest execution in operating modes not supported by VMX. But for other conditions,
VMMs may need to resort to emulating guest execution.

These are example conditions that require guest emulation in the VMM:

• Programming conditions that are not allowed by the VMX consistency checks.
Examples of this include transient conditions introduced when switching between
real-mode and protected mode (where some segment may not be consistent with
the operating mode).

• Conditions of guest task switching. Task switches always cause VM exits. To
correctly advance the guest state, the monitor needs to emulate the guest task-
switching behavior.

• When a SMM monitor is configured, conditions where the SMRAM is relocated to
an address above 1 MByte (HSEG).

• When executing SMM code in a guest container by an SMM monitor. SMM
processor operation allows address space ranges from 0-4 GBytes compared to
the 1 MByte address space in real-mode operation. Also, the 64-KByte segment
limit of real-mode is increased to 4 GBytes in SMM).

25.3 MANAGING VMCS REGIONS AND POINTERS
A VMM must observe necessary procedures when working with a VMCS, the associ-
ated VMCS pointer, and the VMCS region. It must also not assume the state of persis-
tency for VMCS regions in memory or cache.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For processors that do
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers
(EAX, EIP, ESP, EFLAGS, etc.).
25-2 Vol. 3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
Before entering VMX operation, the host VMM allocates a VMXON region. A VMM can
host several virtual machines and have many VMCSs active under its management.
A unique VMCS region is required for each virtual machine; a VMXON region is
required for the VMM itself.

A VMM determines the VMCS region size by reading IA32_VMX_BASIC MSR; it
creates VMCS regions of this size using a 4-KByte-aligned area of physical memory.
Each VMCS region needs to be initialized with a VMCS revision identifier (at byte
offset 0) identical to the revision reported by the processor in the VMX capability
MSR.

NOTE
Software must not read or write directly to the VMCS data region as
the format is not architecturally defined. Consequently, we
recommend that the VMM remove any linear-address mappings to
VMCS regions before loading.

System software does not need to do special preparation to the VMXON region before
entering into VMX operation. The address of the VMXON region for the VMM is
provided as an operand to VMXON instruction. Once in VMX root operation, the VMM
needs to prepare data fields in the VMCS that control the execution of a VM upon a
VM entry. The VMM can make a VMCS the current VMCS by using the VMPTRLD
instruction. VMCS data fields must be read or written only through VMREAD and
VMWRITE commands respectively.

Every component of the VMCS is identified by a 32-bit encoding that is provided as
an operand to VMREAD and VMWRITE. Appendix H provides the encodings. A VMM
must properly initialize all fields in a VMCS before using the current VMCS for VM
entry.

A VMCS is referred to as a controlling VMCS if it is the current VMCS on a logical
processor in VMX non-root operation. A current VMCS for controlling a logical
processor in VMX non-root operation may be referred to as a working VMCS if the
logical processor is not in VMX non-root operation. The relationship of active, current
(i.e. working) and controlling VMCS during VMX operation is shown in Figure 25-1.

The VMX capability MSR IA32_VMX_BASIC reports the memory type used by the
processor for accessing a VMCS or any data structures referenced through pointers in
the VMCS. Software must maintain the VMCS structures in cache-coherent memory.
Software must always map the regions hosting the I/O bitmaps, MSR bitmaps, VM-
exit MSR-store area, VM-exit MSR-load area, and VM-entry MSR-load area to the
write-back (WB) memory type. Mapping these regions to uncacheable (UC) memory
type is supported, but strongly discouraged due to negative impact on performance.
Vol. 3 25-3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
Figure 25-1. VMX Transitions and States of VMCS in a Logical Processor

(a) VMX Operation and VMX Transitions

(b) State of VMCS and VMX Operation

Processor
Operation

VMXON

VM Entry VM Entry VM Entry VM Entry

VM Exit VM Exit
VM Exit

VM Exit

VMXOFF

Outside
VMX

Operation

VMX Root
Operation

VMX
Non-Root
Operation

Legend:

Legend:
Invalid
VMCS

Current
VMCS Active VMCS Controlling

VMCS

VMCS B

VMCS A

VMXOFF

VMClear A

VMPtrld A

VMLaunch B

VM Exit

VMResume B

VM Exit
VMClear A

VMLaunch A

VM Exit

VMResume A

VM Exit

VMPtrLd B

VMPtrLd A

VMClear B

OM19042
25-4 Vol. 3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
25.4 USING VMX INSTRUCTIONS
VMX instructions are allowed only in VMX root operation. An attempt to execute a
VMX instruction in VMX non-root operation causes a VM exit.

Processors perform various checks while executing any VMX instruction. They follow
well-defined error handling on failures. VMX instruction execution failures detected
before loading of a guest state are handled by the processor as follows:

• If the working-VMCS is not valid, the instruction fails by setting RFLAGS.CF = 1.

• If the working-VMCS pointer is valid, RFLAGS.ZF is set to value 1 and the proper
error-code is saved in the VM-instruction error field of the working-VMCS.

Software is required to check RFLAGS.CF and RFLAGS.ZF to determine the success or
failure of VMX instruction executions.

After a VM-entry instruction (VMRESUME or VMLAUNCH) successfully completes the
general checks and checks on VMX controls and the host-state area (see Section
22.2), any errors encountered while loading of guest-state (due to bad guest-state or
bad MSR loading) causes the processor to load state from the host-state area of the
working VMCS as if a VM exit had occurred (see Section 25.7).

This failure behavior differs from that of VM exits in that no guest-state is saved to
the guest-state area. A VMM can detect its VM-exit handler was invoked by such a
failure by checking bit 31 (for 1) in the exit reason field of the working VMCS and
further identify the failure by using the exit qualification field.

25.5 VMM SETUP & TEAR DOWN
VMMs need to ensure that the processor is running in protected mode with paging
before entering VMX operation. The following list describes the minimal steps
required to enter VMX root operation with a VMM running at CPL = 0.

• Check VMX support in processor using CPUID.

• Determine the VMX capabilities supported by the processor through the VMX
capability MSRs. See Appendix G.

• Create a VMXON region in non-pageable memory of a size specified by
IA32_VMX_BASIC MSR and aligned to a 4-KByte boundary. Software should read
the capability MSRs to determine width of the physical addresses that may be
used for the VMXON region and ensure the entire VMXON region can be
addressed by addresses with that width. Also, software must ensure that the
VMXON region is hosted in cache-coherent memory.

• Initialize the version identifier in the VMXON region (the first 32 bits) with the
VMCS revision identifier reported by capability MSRs.

• Ensure the current processor operating mode meets the required CR0 fixed bits
(CR0.PE = 1, CR0.PG = 1). Other required CR0 fixed bits can be detected
through the IA32_VMX_CR0_FIXED0 and IA32_VMX_CR0_FIXED1 MSRs.
Vol. 3 25-5

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
• Enable VMX operation by setting CR4.VMXE = 1. Ensure the resultant CR4 value
supports all the CR4 fixed bits reported in the IA32_VMX_CR4_FIXED0 and
IA32_VMX_CR4_FIXED1 MSRs.

• Ensure that the IA32_FEATURE_CONTROL MSR (MSR index 3AH) has been
properly programmed and that its lock bit is set (Bit 0 = 1). This MSR is generally
configured by the BIOS using WRMSR.

• Execute VMXON with the physical address of the VMXON region as the operand.
Check successful execution of VMXON by checking if RFLAGS.CF = 0.

Upon successful execution of the steps above, the processor is in VMX root operation.

A VMM executing in VMX root operation and CPL = 0 leaves VMX operation by
executing VMXOFF and verifies successful execution by checking if RFLAGS.CF = 0
and RFLAGS.ZF = 0.

If an SMM monitor (see Section 24.16) has been configured to service SMIs while in
VMX operation, the SMM monitor needs to be torn down before the executive monitor
(see Section 24.16.7) can leave VMX operation. VMXOFF fails for the executive
monitor (a VMM that entered VMX operation by way of issuing VMXON) if SMM
monitor is configured.

25.6 PREPARATION AND LAUNCHING A VIRTUAL
MACHINE

The following list describes the minimal steps required by the VMM to set up and
launch a guest VM.

• Create a VMCS region in non-pageable memory of size specified by the VMX
capability MSR IA32_VMX_BASIC and aligned to 4-KBytes. Software should read
the capability MSRs to determine width of the physical addresses that may be
used for a VMCS region and ensure the entire VMCS region can be addressed by
addresses with that width. The term “guest-VMCS address” refers to the physical
address of the new VMCS region for the following steps.

• Initialize the version identifier in the VMCS (first 32 bits) with the VMCS revision
identifier reported by the VMX capability MSR IA32_VMX_BASIC.

• Execute the VMCLEAR instruction by supplying the guest-VMCS address. This will
initialize the new VMCS region in memory and set the launch state of the VMCS
to “clear”. This action also invalidates the working-VMCS pointer register to
FFFFFFFF_FFFFFFFFH. Software should verify successful execution of VMCLEAR
by checking if RFLAGS.CF = 0 and RFLAGS.ZF = 0.

• Execute the VMPTRLD instruction by supplying the guest-VMCS address. This
initializes the working-VMCS pointer with the new VMCS region’s physical
address.

• Issue a sequence of VMWRITEs to initialize various host-state area fields in the
working VMCS. The initialization sets up the context and entry-points to the VMM
25-6 Vol. 3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
upon subsequent VM exits from the guest. Host-state fields include control
registers (CR0, CR3 and CR4), selector fields for the segment registers (CS, SS,
DS, ES, FS, GS and TR), and base-address fields (for FS, GS, TR, GDTR and IDTR;
RSP, RIP and the MSRs that control fast system calls).

Chapter 22 describes the host-state consistency checking done by the processor
for VM entries. The VMM is required to set up host-state that comply with these
consistency checks. For example, VMX requires the host-area to have a task
register (TR) selector with TI and RPL fields set to 0 and pointing to a valid TSS.

• Use VMWRITEs to set up the various VM-exit control fields, VM-entry control
fields, and VM-execution control fields in the VMCS. Care should be taken to
make sure the settings of individual fields match the allowed 0 and 1 settings for
the respective controls as reported by the VMX capability MSRs (see Appendix G).
Any settings inconsistent with the settings reported by the capability MSRs will
cause VM entries to fail.

• Use VMWRITE to initialize various guest-state area fields in the working VMCS.
This sets up the context and entry-point for guest execution upon VM entry.
Chapter 22 describes the guest-state loading and checking done by the processor
for VM entries to protected and virtual-8086 guest execution.

• The VMM is required to set up guest-state that complies with these consistency
checks:

— If the VMM design requires the initial VM launch to cause guest software
(typically the guest virtual BIOS) execution from the guest’s reset vector, it
may need to initialize the guest execution state to reflect the state of a
physical processor at power-on reset (described in Chapter 9, Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A).

— The VMM may need to initialize additional guest execution state that is not
captured in the VMCS guest-state area by loading them directly on the
respective processor registers. Examples include general purpose registers,
the CR2 control register, debug registers, floating point registers and so forth.
VMM may support lazy loading of FPU, MMX, SSE, and SSE2 states with
CR0.TS = 1 (described in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A).

• Execute VMLAUNCH to launch the guest VM. If VMLAUNCH fails due to any
consistency checks before guest-state loading, RFLAGS.CF or RFLAGS.ZF will be
set and the VM-instruction error field (see Section 20.9.5) will contain the error-
code. If guest-state consistency checks fail upon guest-state loading, the
processor loads state from the host-state area as if a VM exit had occurred (see
Section 25.6).

VMLAUNCH updates the controlling-VMCS pointer with the working-VMCS pointer
and saves the old value of controlling-VMCS as the parent pointer. In addition, the
launch state of the guest VMCS is changed to “launched” from “clear”. Any
programmed exit conditions will cause the guest to VM exit to the VMM. The VMM
should execute VMRESUME instruction for subsequent VM entries to guests in a
“launched” state.
Vol. 3 25-7

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
25.7 HANDLING OF VM EXITS
This section provides examples of software steps involved in a VMM’s handling of VM-
exit conditions:

• Determine the exit reason through a VMREAD of the exit-reason field in the
working-VMCS. Appendix I describes exit reasons and their encodings.

• VMREAD the exit-qualification from the VMCS if the exit-reason field provides a
valid qualification. The exit-qualification field provides additional details on the
VM-exit condition. For example, in case of page faults, the exit-qualification field
provides the guest linear address that caused the page fault.

• Depending on the exit reason, fetch other relevant fields from the VMCS.
Appendix I lists the various exit reasons.

• Handle the VM-exit condition appropriately in the VMM. This may involve the
VMM emulating one or more guest instructions, programming the underlying
host hardware resources, and then re-entering the VM to continue execution.

25.7.1 Handling VM Exits Due to Exceptions
As noted in Section 21.3, an exception causes a VM exit if the bit corresponding to
the exception’s vector is set in the exception bitmap. (For page faults, the error code
also determines whether a VM exit occurs.) This section provide some guidelines of
how a VMM might handle such exceptions.

Exceptions result when a logical processor encounters an unusual condition that soft-
ware may not have expected. When guest software encounters an exception, it may
be the case that the condition was caused by the guest software. For example, a
guest application may attempt to access a page that is restricted to supervisor
access. Alternatively, the condition causing the exception may have been established
by the VMM. For example, a guest OS may attempt to access a page that the VMM
has chosen to make not present.

When the condition causing an exception was established by guest software, the
VMM may choose to reflect the exception to guest software. When the condition was
established by the VMM itself, the VMM may choose to resume guest software after
removing the condition.

25.7.1.1 Reflecting Exceptions to Guest Software
If the VMM determines that a VM exit was caused by an exception due to a condition
established by guest software, it may reflect that exception to guest software. The
VMM would cause the exception to be delivered to guest software, where it can be
handled as it would be if the guest were running on a physical machine. This section
describes how that may be done.

In general, the VMM can deliver the exception to guest software using VM-entry
event injection as described in Section 22.5. The VMM can copy (using VMREAD and
25-8 Vol. 3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
VMWRITE) the contents of the VM-exit interruption-information field (which is valid,
since the VM exit was caused by an exception) to the VM-entry interruption-informa-
tion field (which, if valid, will cause the exception to be delivered as part of the next
VM entry). The VMM would also copy the contents of the VM-exit interruption error-
code field to the VM-entry exception error-code field; this need not be done if bit 11
(error code valid) is clear in the VM-exit interruption-information field. After this, the
VMM can execute VMRESUME.

The following items provide details that may qualify the general approach:

• Care should be taken to ensure that reserved bits 30:12 in the VM-entry inter-
ruption-information field are 0. In particular, some VM exits may set bit 12 in the
VM-exit interruption-information field to indicate NMI unblocking due to IRET. If
this bit is copied as 1 into the VM-entry interruption-information field, the next
VM entry will fail because that bit should be 0.

• Bit 31 (valid) of the IDT-vectoring information field indicates, if set, that the
exception causing the VM exit occurred while another event was being delivered
to guest software. If this is the case, it may not be appropriate simply to reflect
that exception to guest software. To provide proper virtualization of the exception
architecture, a VMM should handle nested events as a physical processor would.
Processor handling is described in Chapter 5, “Interrupt 8—Double Fault
Exception (#DF)” in Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

— The VMM should reflect the exception causing the VM exit to guest software
in any of the following cases:

• The value of bits 10:8 (interruption type) of the IDT-vectoring
information field is anything other than 3 (hardware exception).

• The value of bits 7:0 (vector) of the IDT-vectoring information field
indicates a benign exception (1, 2, 3, 4, 5, 6, 7, 9, 16, 17, 18, or 19).

• The value of bits 7:0 (vector) of the VM-exit interruption-information field
indicates a benign exception.

• The value of bits 7:0 of the IDT-vectoring information field indicates a
contributory exception (0, 10, 11, 12, or 13) and the value of bits 7:0 of
the VM-exit interruption-information field indicates a page fault (14).

— If the value of bits 10:8 of the IDT-vectoring information field is 3 (hardware
exception), the VMM should reflect a double-fault exception to guest software
in any of the following cases:

• The value of bits 7:0 of the IDT-vectoring information field and the value
of bits 7:0 of the VM-exit interruption-information field each indicates a
contributory exception.

• The value of bits 7:0 of the IDT-vectoring information field indicates a
page fault and the value of bits 7:0 of the VM-exit interruption-
information field indicates either a contributory exception or a page fault.
Vol. 3 25-9

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
A VMM can reflect a double-fault exception to guest software by setting the
VM-entry interruption-information and VM-entry exception error-code fields
as follows:

• Set bits 7:0 (vector) of the VM-entry interruption-information field to 8
(#DF).

• Set bits 10:8 (interruption type) of the VM-entry interruption-information
field to 3 (hardware exception).

• Set bit 11 (deliver error code) of the VM-entry interruption-information
field to 1.

• Clear bits 30:12 (reserved) of VM-entry interruption-information field.

• Set bit 31 (valid) of VM-entry interruption-information field.

• Set the VM-entry exception error-code field to zero.

— If the value of bits 10:8 of the IDT-vectoring information field is 3 (hardware
exception) and the value of bits 7:0 is 8 (#DF), guest software would have
encountered a triple fault. Event injection should not be used in this case. The
VMM may choose to terminate the guest, or it might choose to enter the
guest in the shutdown activity state.

25.7.1.2 Resuming Guest Software after Handling an Exception
If the VMM determines that a VM exit was caused by an exception due to a condition
established by the VMM itself, it may choose to resume guest software after
removing the condition. The approach for removing the condition may be specific to
the VMM’s software architecture. and algorithms This section describes how guest
software may be resumed after removing the condition.

In general, the VMM can resume guest software simply by executing VMRESUME. The
following items provide details of cases that may require special handling:

• If the “NMI exiting” VM-execution control is 0, bit 12 of the VM-exit interruption-
information field indicates that the VM exit was due to a fault encountered during
an execution of the IRET instruction that unblocked non-maskable interrupts
(NMIs). In particular, it provides this indication if the following are both true:

— Bit 31 (valid) in the IDT-vectoring information field is 0.

— The value of bits 7:0 (vector) of the VM-exit interruption-information field is
not 8 (the VM exit is not due to a double-fault exception).

If both are true and bit 12 of the VM-exit interruption-information field is 1, NMIs
were blocked before guest software executed the IRET instruction that caused
the fault that caused the VM exit. The VMM should set bit 3 (blocking by NMI) in
the interruptibility-state field (using VMREAD and VMWRITE) before resuming
guest software.

• If the “virtual NMIs” VM-execution control is 1, bit 12 of the VM-exit interruption-
information field indicates that the VM exit was due to a fault encountered during
25-10 Vol. 3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
an execution of the IRET instruction that removed virtual-NMI blocking. In
particular, it provides this indication if the following are both true:

— Bit 31 (valid) in the IDT-vectoring information field is 0.

— The value of bits 7:0 (vector) of the VM-exit interruption-information field is
not 8 (the VM exit is not due to a double-fault exception).

If both are true and bit 12 of the VM-exit interruption-information field is 1, there
was virtual-NMI blocking before guest software executed the IRET instruction
that caused the fault that caused the VM exit. The VMM should set bit 3 (blocking
by NMI) in the interruptibility-state field (using VMREAD and VMWRITE) before
resuming guest software.

• Bit 31 (valid) of the IDT-vectoring information field indicates, if set, that the
exception causing the VM exit occurred while another event was being delivered
to guest software. The VMM should ensure that the other event is delivered when
guest software is resumed. It can do so using the VM-entry event injection
described in Section 22.5 and detailed in the following paragraphs:

— The VMM can copy (using VMREAD and VMWRITE) the contents of the IDT-
vectoring information field (which is presumed valid) to the VM-entry inter-
ruption-information field (which, if valid, will cause the exception to be
delivered as part of the next VM entry).

• The VMM should ensure that reserved bits 30:12 in the VM-entry inter-
ruption-information field are 0. In particular, the value of bit 12 in the IDT-
vectoring information field is undefined after all VM exits. If this bit is
copied as 1 into the VM-entry interruption-information field, the next
VM entry will fail because the bit should be 0.

• If the “virtual NMIs” VM-execution control is 1 and the value of bits 10:8
(interruption type) in the IDT-vectoring information field is 2 (indicating
NMI), the VM exit occurred during delivery of an NMI that had been
injected as part of the previous VM entry. In this case, bit 3 (blocking by
NMI) will be 1 in the interruptibility-state field in the VMCS. The VMM
should clear this bit; otherwise, the next VM entry will fail (see Section
22.3.1.5).

— The VMM can also copy the contents of the IDT-vectoring error-code field to
the VM-entry exception error-code field. This need not be done if bit 11 (error
code valid) is clear in the IDT-vectoring information field.

— The VMM can also copy the contents of the VM-exit instruction-length field to
the VM-entry instruction-length field. This need be done only if bits 10:8
(interruption type) in the IDT-vectoring information field indicate either
software interrupt, privileged software exception, or software exception.
Vol. 3 25-11

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
25.8 MULTI-PROCESSOR CONSIDERATIONS
The most common VMM design will be the symmetric VMM. This type of VMM runs the
same VMM binary on all logical processors. Like a symmetric operating system, the
symmetric VMM is written to ensure all critical data is updated by only one processor
at a time, IO devices are accessed sequentially, and so forth. Asymmetric VMM
designs are possible. For example, an asymmetric VMM may run its scheduler on one
processor and run just enough of the VMM on other processors to allow the correct
execution of guest VMs. The remainder of this section focuses on the multi-processor
considerations for a symmetric VMM.

A symmetric VMM design does not preclude asymmetry in its operations. For
example, a symmetric VMM can support asymmetric allocation of logical processor
resources to guests. Multiple logical processors can be brought into a single guest
environment to support an MP-aware guest OS. Because an active VMCS can not
control more than one logical processor simultaneously, a symmetric VMM must
make copies of its VMCS to control the VM allocated to support an MP-aware guest
OS. Care must be taken when accessing data structures shared between these
VMCSs. See Section 25.8.4.

Although it may be easier to develop a VMM that assumes a fully-symmetric view of
hardware capabilities (with all processors supporting the same processor feature
sets, including the same revision of VMX), there are advantages in developing a VMM
that comprehends different levels of VMX capability (reported by VMX capability
MSRs). One possible advantage of such an approach could be that an existing soft-
ware installation (VMM and guest software stack) could continue to run without
requiring software upgrades to the VMM, when the software installation is upgraded
to run on hardware with enhancements in the processor’s VMX capabilities. Another
advantage could be that a single software installation image, consisting of a VMM and
guests, could be deployed to multiple hardware platforms with varying VMX capabil-
ities. In such cases, the VMM could fall back to a common subset of VMX features
supported by all VMX revisions, or choose to understand the asymmetry of the VMX
capabilities and assign VMs accordingly.

This section outlines some of the considerations to keep in mind when developing an
MP-aware VMM.

25.8.1 Initialization
Before enabling VMX, an MP-aware VMM must check to make sure that all processors
in the system are compatible and support features required. This can be done by:

• Checking the CPUID on each logical processor to ensure VMX is supported and
that the overall feature set of each logical processor is compatible.

• Checking VMCS revision identifiers on each logical processor.

• Checking each of the “allowed-1” or “allowed-0” fields of the VMX capability
MSR’s on each processor.
25-12 Vol. 3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
25.8.2 Moving a VMCS Between Processors
An MP-aware VMM is free to assign any logical processor to a VM. But for perfor-
mance considerations, moving a guest VMCS to another logical processor is slower
than resuming that guest VMCS on the same logical processor. Certain VMX perfor-
mance features (such as caching of portions of the VMCS in the processor) are opti-
mized for a guest VMCS that runs on the same logical processor.

The reasons are:

• To restart a guest on the same logical processor, a VMM can use VMRESUME.
VMRESUME is expected to be faster than VMLAUNCH in general.

• To migrate a VMCS to another logical processor, a VMM must use the sequence of
VMCLEAR, VMPTRLD and VMLAUNCH.

• Operations involving VMCLEAR can impact performance negatively. See
Section 20.11.

A VMM scheduler should make an effort to schedule a guest VMCS to run on the
logical processor where it last ran. Such a scheduler might also benefit from doing
lazy VMCLEARs (that is: performing a VMCLEAR on a VMCS only when the scheduler
knows the VMCS is being moved to a new logical processor). The remainder of this
section describes the steps a VMM must take to move a VMCS from one processor to
another.

A VMM must check the VMCS revision identifier in the VMX capability MSR
IA32_VMX_BASIC to determine if the VMCS regions are identical between all logical
processors. If the VMCS regions are identical (same revision ID) the following
sequence can be used to move or copy the VMCS from one logical processor to
another:

• Perform a VMCLEAR operation on the source logical processor. This ensures that
all VMCS data that may be cached by the processor are flushed to memory.

• Copy the VMCS region from one memory location to another location. This is an
optional step assuming the VMM wishes to relocate the VMCS or move the VMCS
to another system.

• Perform a VMPTRLD of the physical address of VMCS region on the destination
processor to establish its current VMCS pointer.

If the revision identifiers are different, each field must be copied to an intermediate
structure using individual reads (VMREAD) from the source fields and writes
(VMWRITE) to destination fields. Care must be taken on fields that are hard-wired to
certain values on some processor implementations.

25.8.3 Paired Index-Data Registers
A VMM may need to virtualize hardware that is visible to software using paired index-
data registers. Paired index-data register interfaces, such as those used in PCI (CF8,
CFC), require special treatment in cases where a VM performing writes to these pairs
can be moved during execution. In this case, the index (e.g. CF8) should be part of
Vol. 3 25-13

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
the virtualized state. If the VM is moved during execution, writes to the index should
be redone so subsequent data reads/writes go to the right location.

25.8.4 External Data Structures
Certain fields in the VMCS point to external data structures (for example: the MSR
bitmap, the I/O bitmaps). If a logical processor is in VMX non-root operation, none of
the external structures referenced by that logical processor's current VMCS should be
modified by any logical processor or DMA. Before updating one of these structures,
the VMM must ensure that no logical processor whose current VMCS references the
structure is in VMX non-root operation.

If a VMM uses multiple VMCS with each VMCS using separate external structures,
and these structures must be kept synchronized, the VMM must apply the same care
to updating these structures.

25.8.5 CPUID Emulation
CPUID reports information that is used by OS and applications to detect hardware
features. It also provides multi-threading/multi-core configuration information. For
example, MP-aware OSs rely on data reported by CPUID to discover the topology of
logical processors in a platform (see Section 7.10, “Programming Considerations for
Hardware Multi-Threading Capable Processors,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A).

If a VMM is to support asymmetric allocation of logical processor resources to guest
OSs that are MP aware, then the VMM must emulate CPUID for its guests. The emula-
tion of CPUID by the VMM must ensure the guest’s view of CPUID leaves are consis-
tent with the logical processor allocation committed by the VMM to each guest OS.

25.9 32-BIT AND 64-BIT GUEST ENVIRONMENTS
For the most part, extensions provided by VMX to support virtualization are orthog-
onal to the extensions provided by Intel 64 architecture. There are considerations
that impact VMM designs. These are described in the following subsections.

25.9.1 Operating Modes of Guest Environments
For Intel 64 processors, VMX operation supports host and guest environments that
run in IA-32e mode or without IA-32e mode. VMX operation also supports host and
guest environments on IA-32 processors.

A VMM entering VMX operation while IA-32e mode is active is considered to be an
IA-32e mode host. A VMM entering VMX operation while IA-32e mode is not activated
25-14 Vol. 3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
or not available is referred to as a 32-bit VMM. The type of guest operations such
VMMs support are summarized in Table 25-1.

A VM exit may occur to an IA-32e mode guest in either 64-bit sub-mode or compati-
bility sub-mode of IA-32e mode. VMMs may resume guests in either mode. The sub-
mode in which an IA-32e mode guest resumes VMX non-root operation is determined
by the attributes of the code segment which experienced the VM exit. If CS.L = 1,
the guest is executing in 64-bit mode; if CS.L = 0, the guest is executing in compat-
ibility mode (see Section 25.9.5).

Not all of an IA-32e mode VMM must run in 64-bit mode. While some parts of an
IA-32e mode VMM must run in 64-bit mode, there are only a few restrictions
preventing a VMM from executing in compatibility mode. The most notable restriction
is that most VMX instructions cause exceptions when executed in compatibility mode.

25.9.2 Handling Widths of VMCS Fields
Individual VMCS control fields must be accessed using VMREAD or VMWRITE instruc-
tions. Outside of 64-Bit mode, VMREAD and VMWRITE operate on 32 bits of data. The
widths of VMCS control fields may vary depending on whether a processor supports
Intel 64 architecture.

Many VMCS fields are architected to extend transparently on processors supporting
Intel 64 architecture (64 bits on processors that support Intel 64 architecture, 32 bits
on processors that do not). Some VMCS fields are 64-bits wide regardless of whether
the processor supports Intel 64 architecture or is in IA-32e mode.

25.9.2.1 Natural-Width VMCS Fields
Many VMCS fields operate using natural width. Such fields return (on reads) and set
(on writes) 32-bits when operating in 32-bit mode and 64-bits when operating in
64-bit mode. For the most part, these fields return the naturally expected data
widths. The “Guest RIP” field in the VMCS guest-state area is an example of this type
of field.

25.9.2.2 64-Bit VMCS Fields
Unlike natural width fields, these fields are fixed to 64-bit width on all processors.
When in 64-bit mode, reads of these fields return 64-bit wide data and writes to

Table 25-1. Operating Modes for Host and Guest Environments
Capability Guest Operation

in IA-32e mode
Guest Operation
Not Requiring IA-32e Mode

IA-32e mode VMM Yes Yes

32-bit VMM Not supported Yes
Vol. 3 25-15

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
these fields write 64-bits. When outside of 64-bit mode, reads of these fields return
the low 32-bits and writes to these fields write the low 32-bits and zero the upper
32-bits. Should a non-IA-32e mode host require access to the upper 32-bits of these
fields, a separate VMCS encoding is used when issuing VMREAD/VMWRITE instruc-
tions.

The VMCS control field “MSR bitmap address” (which contains the physical address of
a region of memory which specifies which MSR accesses should generate VM-exits) is
an example of this type of field. Specifying encoding 00002004H to VMREAD returns
the lower 32-bits to non-IA-32e mode hosts and returns 64-bits to 64-bit hosts. The
separate encoding 00002005H returns only the upper 32-bits.

25.9.3 IA-32e Mode Hosts
An IA-32e mode host is required to support 64-bit guest environments. Because acti-
vating IA-32e mode currently requires that paging be disabled temporarily and VMX
entry requires paging to be enabled, IA-32e mode must be enabled before entering
VMX operation. For this reason, it is not possible to toggle in and out of IA-32e mode
in a VMM.

Section 25.5 describes the steps required to launch a VMM. An IA-32e mode host is
also required to set the “Host Address-Space Size” VMCS VM-exit control to 1. The
value of this control is then loaded in the IA32_EFER.LME/LMA and CS.L bits on each
VM exit. This establishes a 64-bit host environment as execution transfers to the
VMM entry point. At a minimum, the entry point is required to be in a 64-bit code
segment. Subsequently, the VMM can, if it chooses, switch to 32-bit compatibility
mode on a code-segment basis (see Section 25.9.1). Note, however, that VMX
instructions other than VMCALL are not supported in compatibility mode; they
generate an invalid opcode exception if used.

The following VMCS controls determine the value of IA32_EFER when a VM exit
occurs: the “Host Address-Space Size” control (described above), the “VM-exit MSR-
load count,” and the “VM-exit MSR-load address” (see Section 23.3). The loading of
IA32_EFER.LME/LMA and CS.L bits established by the “Host Address-Space Size”
control precede any loading of the IA32_EFER MSR due from the VM-exit MSR-load
area. If IA32_EFER is specified in the VM-exit MSR-load area, the value of the LME bit
in the load image of IA32_EFER should match the setting of the “Host Address-Space
Size” control. Otherwise the attempt to modify the LME bit (while paging is enabled)
will lead to a VMX-abort.

On the other hand, the IA32_EFER.LMA bit is always set by the processor (deter-
mined by the value of the LME bit, the CR0.PG bit, and the CR4.PAE bit) regardless of
any value specified in the load image of the IA32_EFER MSR. For these and perfor-
mance reasons, VMM writers may choose to not use the VM-exit/entry MSR-
load/save areas for IA32_EFER.

On a VMM teardown, VMX operation should be exited before deactivating IA-32e
mode if the latter is required.
25-16 Vol. 3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
25.9.4 IA-32e Mode Guests
A 32-bit guest can be launched by either IA-32e-mode hosts or non-IA-32e-mode
hosts. A 64-bit guests can only be launched by a IA-32e-mode host.

In addition to the steps outlined in Section 25.6, VMM writers need to:

• Set the “IA-32e-Mode Guest” VM-entry control to 1 in the VMCS to assure
VM-entry (VMLAUNCH or VMRESUME) will establish a 64-bit (or 32-bit
compatible) guest operating environment.

• Enable paging (CR0.PG) and PAE mode (CR4.PAE) to assure VM-entry to a 64-bit
guest will succeed.

• Ensure that the host to be in IA-32e mode (the IA32_EFER.LMA must be set to 1)
and the setting of the VM-exit “Host Address-Space Size” control bit in the VMCS
must also be set to 1.

If each of the above conditions holds true, then VM-entry will copy the value of the
VM-entry “IA-32e-Mode Guest” control bit into the guests IA32_EFER.LME bit which
will result in subsequent activation of IA-32e mode. If any of the above conditions is
false, the VM-entry will fail and load state from the host-state area of the working
VMCS as if a VM exit had occurred (see Section 22.7).

The following VMCS controls determine the value of IA32_EFER on a VM entry: the
“IA-32e-Mode Guest” VM-entry control (described above), the “VM-entry MSR-load
count,” and the “VM-entry MSR-load address” (see Section 22.4).

The loading of IA32_EFER.LME bit (described above) precedes any loading of the
IA32_EFER MSR from the VM-entry MSR-load area of the VMCS. If loading of
IA32_EFER is specified in the VM-entry MSR-load area, the value of the LME bit in the
load image should be match the setting of the “IA-32e-Mode Guest” VM-entry
control. Otherwise, the attempt to modify the LME bit (while paging is enabled)
results in a failed VM entry.

On the other hand, the IA32_EFER.LMA bit is always set by the processor (deter-
mined by the value of the LME bit, the CR0.PG bit, and the CR4.PAE bit) regardless of
any value specified in the load image of IA32_EFER. For these and performance
reasons, VMM writers may choose to not use the VM-exit/entry MSR-load/save areas
for IA32_EFER MSR.

Note that the VMM can control the processor’s architectural state when transferring
control to a VM. VMM writers may choose to launch guests in protected mode and
subsequently allow the guest to activate IA-32e mode or they may allow guests to
toggle in and out of IA-32e mode. In this case, the VMM should require VM exit on
accesses to the IA32_EFER MSR to detect changes in the operating mode and modify
the VM-entry “IA-32e-Mode Guest” control accordingly.

A VMM should save/restore the extended (full 64-bit) contents of the guest general-
purpose registers, the new general-purpose registers (R8-R15) and the SIMD regis-
ters introduced in 64-bit mode should it need to modify these upon VM exit.
Vol. 3 25-17

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
25.9.5 32-Bit Guests
To launch or resume a 32-bit guest, VMM writers can follow the steps outlined in
Section 25.6, making sure that the “IA-32e-Mode Guest” VM-entry control bit is set
to 0. Then the “IA-32e-Mode Guest” control bit is copied into the guest
IA32_EFER.LME bit, establishing IA32_EFER.LMA as 0.

25.10 HANDLING MODEL SPECIFIC REGISTERS
Model specific registers (MSR) provide a wide range of functionality. They affect
processor features, control the programming interfaces, or are used in conjunction
with specific instructions. As part of processor virtualization, a VMM may wish to
protect some or all MSR resources from direct guest access.

VMX operation provides the following features to virtualize processor MSRs.

25.10.1 Using VM-Execution Controls
Processor-based VM-execution controls provide two levels of support for handling
guest access to processor MSRs using RDMSR and WRMSR:

• MSR bitmaps: In VMX implementations that support a 1-setting (see Appendix
G) of the user-MSR-bitmaps execution control bit, MSR bitmaps can be used to
provide flexibility in managing guest MSR accesses. The MSR-bitmap-address in
the guest VMCS can be programmed by VMM to point to a bitmap region which
specifies VM-exit behavior when reading and writing individual MSRs.

MSR bitmaps form a 4-KByte region in physical memory and are required to be
aligned to a 4-KByte boundary. The first 1-KByte region manages read control of
MSRs in the range 00000000H-00001FFFH; the second 1-KByte region covers
read control of MSR addresses in the range C0000000H-C0001FFFH. The bitmaps
for write control of these MSRs are located in the 2-KByte region immediately
following the read control bitmaps. While the MSR bitmap address is part of
VMCS, the MSR bitmaps themselves are not. This implies MSR bitmaps are not
accessible through VMREAD and VMWRITE instructions but rather by using
ordinary memory writes. Also, they are not specially cached by the processor and
may be placed in normal cache-coherent memory by the VMM.

When MSR bitmap addresses are properly programmed and the use-MSR-bitmap
control (see Section 20.6.2) is set, the processor consults the associated bit in
the appropriate bitmap on guest MSR accesses to the corresponding MSR and
causes a VM exit if the bit in the bitmap is set. Otherwise, the access is permitted
to proceed. This level of protection may be utilized by VMMs to selectively allow
guest access to some MSRs while virtualizing others.

• Default MSR protection: If the use-MSR-bitmap control is not set, an attempt
by a guest to access any MSR causes a VM exit. This also occurs for any attempt
25-18 Vol. 3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
to access an MSR outside the ranges identified above (even if the use-MSR-
bitmap control is set).

VM exits due to guest MSR accesses may be identified by the VMM through VM-exit
reason codes. The MSR-read exit reason implies guest software attempted to read an
MSR protected either by default or through MSR bitmaps. The MSR-write exit reason
implies guest software attempting to write a MSR protected through the VM-execu-
tion controls. Upon VM exits caused by MSR accesses, the VMM may virtualize the
guest MSR access through emulation of RDMSR/WRMSR.

25.10.2 Using VM-Exit Controls for MSRs
If a VMM allows its guest to access MSRs directly, the VMM may need to store guest
MSR values and load host MSR values for these MSRs on VM exits. This is especially
true if the VMM uses the same MSRs while in VMX root operation.

A VMM can use the VM-exit MSR-store-address and the VM-exit MSR-store-count exit
control fields (see Section 20.7.2) to manage how MSRs are stored on VM exits. The
VM-exit MSR-store-address field contains the physical address (16-byte aligned) of
the VM-exit MSR-store area (a table of entries with 16 bytes per entry). Each table
entry specifies an MSR whose value needs to be stored on VM exits. The VM-exit
MSR-store-count contains the number of entries in the table.

Similarly the VM-exit MSR-load-address and VM-exit MSR-load-count fields point to
the location and size of the VM-exit MSR load area. The entries in the VM-exit MSR-
load area contain the host expected values of specific MSRs when a VM exit occurs.

Upon VM-exit, bits 127:64 of each entry in the VM-exit MSR-store area is updated
with the contents of the MSR indexed by bits 31:0. Also, bits 127:64 of each entry in
the VM-exit MSR-load area is updated by loading with values from bits 127:64 the
contents of the MSR indexed by bits 31:0.

25.10.3 Using VM-Entry Controls for MSRs
A VMM may require specific MSRs to be loaded explicitly on VM entries while
launching or resuming guest execution. The VM-entry MSR-load-address and
VM-entry MSR-load-count entry control fields determine how MSRs are loaded on
VM-entries. The VM-entry MSR-load-address and count fields are similar in structure
and function to the VM-exit MSR-load address and count fields, except the MSR
loading is done on VM-entries.

25.10.4 Handling Special-Case MSRs and Instructions
A number of instructions make use of designated MSRs in their operation. The VMM
may need to consider saving the states of those MSRs. Instructions that merit such
consideration include SYSENTER/SYSEXIT, SYSCALL/SYSRET, SWAPGS.
Vol. 3 25-19

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
25.10.4.1 Handling IA32_EFER MSR
The IA32_EFER MSR provides bit fields that allow system software to enable
processor features. For example: the SCE bit enables SYSCALL/SYSRET and the NXE
bit enables Execute-Disable-Bit functionality.

VMX provides hardware support to preserve the values of these bits upon a VM entry
after a VM exit, such that it does not require VMM to modify these bits in IA32_EFER.

25.10.4.2 Handling the SYSENTER and SYSEXIT Instructions
The SYSENTER and SYSEXIT instructions use three dedicated MSRs (i.e.
IA32_SYSENTER_CS, IA32_SYSENTER_ESP and IA32_SYSENTER_EIP) to manage
fast system calls. These MSRs may be utilized by both the VMM and the guest OS to
manage system calls in VMX root operation and VMX non-root operation respectively.

VMX provides special handling of these MSRs on VM exits and VM entries:

• The save-SYSENTER-MSRs VM-Exit control field can be set to 1 to save these
MSRs to guest-state area in VMCS on VM-exits.

• The load-SYSENTER-MSRs VM-exit control field allows the processor to load
these MSRs from values saved in the host-state area of the VMCS on VM-exits.

The load-SYSENTER-MSRs VM-Entry control field allows loading of the SYSENTER
MSRs from guest-state area of the VMCS on VM entries.

25.10.4.3 Handling the SYSCALL and SYSRET Instructions
The SYSCALL/SYSRET instructions are similar to SYSENTER/SYSEXIT but are
designed to operate within the context of a 64-bit flat code segment. They are avail-
able only in 64-bit mode and only when the SCE bit of the IA32_EFER MSR is set.
SYSCALL/SYSRET invocations can occur from either 32-bit compatibility mode appli-
cation code or from 64-bit application code. Three related MSR registers
(IA32_STAR, IA32_LSTAR, IA32_FMASK) are used in conjunction with fast system
calls/returns that use these instructions.

64-Bit hosts which make use of these instructions in the VMM environment will need
to save the guest state of the above registers on VM exit, load the host state, and
restore the guest state on VM entry. One possible approach is to use the VM-exit
MSR-save and MSR-load areas and the VM-entry MSR-load area defined by controls
in the VMCS. A disadvantage to this approach, however, is that the approach results
in the unconditional saving, loading, and restoring of MSR registers on each VM exit
or VM entry.

Depending on the design of the VMM, it is likely that many VM-exits will require no
fast system call support but the VMM will be burdened with the additional overhead
of saving and restoring MSRs if the VMM chooses to support fast system call
uniformly. Further, even if the host intends to support fast system calls during a
VM-exit, some of the MSR values (such as the setting of the SCE bit in IA32_EFER)
25-20 Vol. 3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
may not require modification as they may already be set to the appropriate value in
the guest.

For performance reasons, a VMM may perform lazy save, load, and restore of these
MSR values on certain VM exits when it is determined that this is acceptable. The
lazy-save-load-restore operation can be carried out “manually” using RDMSR and
WRMSR.

25.10.4.4 Handling the SWAPGS Instruction
The SWAPGS instruction is available only in 64-bit mode. It swaps the contents of
two specific MSRs (IA32_GSBASE and IA32_KERNEL_GSBASE). The IA32_GSBASE
MSR shadows the base address portion of the GS descriptor register; the
IA32_KERNEL_GSBASE MSR holds the base address of the GS segment used by the
kernel (typically it houses kernel structures). SWAPGS is intended for use with fast
system calls when in 64-bit mode to allow immediate access to kernel structures on
transition to kernel mode.

Similar to SYSCALL/SYSRET, IA-32e mode hosts which use fast system calls may
need to save, load, and restore these MSR registers on VM exit and VM entry using
the guidelines discussed in previous paragraphs.

25.10.4.5 Implementation Specific Behavior on Writing to Certain MSRs
As noted in Sections 22.4 and 23.4, a processor may prevent writing to certain MSRs
when loading guest states on VM entries or storing guest states on VM exits. This is
done to ensure consistent operation. The subset and number of MSRs subject to
restrictions are implementation specific. For initial VMX implementations, there are
two MSRs: IA32_BIOS_UPDT_TRIG and IA32_BIOS_SIGN_ID (see Appendix B).

25.10.5 Handling Accesses to Reserved MSR Addresses
Privileged software (either a VMM or a guest OS) can access a model specific register
by specifying addresses in MSR address space. VMMs, however, must prevent a guest
from accessing reserved MSR addresses in MSR address space.

Consult Appendix B for lists of supported MSRs and their usage. Use the MSR bitmap
control to cause a VM exit when a guest attempts to access a reserved MSR address.
The response to such a VM exit should be to reflect #GP(0) back to the guest.

25.11 HANDLING ACCESSES TO CONTROL REGISTERS
Bit fields in control registers (CR0, CR4) control various aspects of processor opera-
tion. The VMM must prevent guests from modifying bits in CR0 or CR4 that are
reserved at the time the VMM is written.
Vol. 3 25-21

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
Guest/host masks should be used by the VMM to cause VM exits when a guest
attempts to modify reserved bits. Read shadows should be used to ensure that the
guest always reads the reserved value (usually 0) for such bits. The VMM response to
VM exits due to attempts from a guest to modify reserved bits should be to emulate
the response which the processor would have normally produced (usually a #GP(0)).

25.12 PERFORMANCE CONSIDERATIONS
VMX provides hardware features that may be used for improving processor virtual-
ization performance. VMMs must be designed to use this support properly. The basic
idea behind most of these performance optimizations of the VMM is to reduce the
number of VM exits while executing a guest VM.

This section lists ways that VMMs can take advantage of the performance enhancing
features in VMX.

• Read Access to Control Registers. Analysis of common client workloads with
common PC operating systems in a virtual machine shows a large number of
VM-exits are caused by control register read accesses (particularly CR0). Reads
of CR0 and CR4 does not cause VM exits. Instead, they return values from the
CR0/CR4 read-shadows configured by the VMM in the guest controlling-VMCS
with the guest-expected values.

• Write Access to Control Registers. Most VMM designs require only certain bits
of the control registers to be protected from direct guest access. Write access to
CR0/CR4 registers can be reduced by defining the host-owned and guest-owned
bits in them through the CR0/CR4 host/guest masks in the VMCS. CR0/CR4 write
values by the guest are qualified with the mask bits. If they change only guest-
owned bits, they are allowed without causing VM exits. Any write that cause
changes to host-owned bits cause VM exits and need to be handled by the VMM.

• Access Rights based Page Table protection. For VMM that implement
access-rights-based page table protection, the VMCS provides a CR3 target value
list that can be consulted by the processor to determine if a VM exit is required.
Loading of CR3 with a value matching an entry in the CR3 target-list are allowed
to proceed without VM exits. The VMM can utilize the CR3 target-list to save
page-table hierarchies whose state is previously verified by the VMM.

• Page-fault handling. Another common cause for a VM exit is due to page-faults
induced by guest address remapping done through virtual memory virtualization.
VMX provides page-fault error-code mask and match fields in the VMCS to filter
VM exits due to page-faults based on their cause (reflected in the error-code).
25-22 Vol. 3

CHAPTER 26
VIRTUALIZATION OF SYSTEM RESOURCES

26.1 OVERVIEW
When a VMM is hosting multiple guest environments (VMs), it must monitor potential
interactions between software components using the same system resources. These
interactions can require the virtualization of resources. This chapter describes the
virtualization of system resources. These include: debugging facilities, address
translation, physical memory, and microcode update facilities.

26.2 VIRTUALIZATION SUPPORT FOR DEBUGGING
FACILITIES

The Intel 64 and IA-32 debugging facilities (see Chapter 18) provide breakpoint
instructions, exception conditions, register flags, debug registers, control registers
and storage buffers for functions related to debugging system and application soft-
ware. In VMX operation, a VMM can support debugging system and application soft-
ware from within virtual machines if the VMM properly virtualizes debugging
facilities. The following list describes features relevant to virtualizing these facilities.

• The VMM can program the exception-bitmap (see Section 20.6.3) to ensure it
gets control on debug functions (like breakpoint exceptions occurring while
executing guest code such as INT3 instructions). Normally, debug exceptions
modify debug registers (such as DR6, DR7, IA32_DEBUGCTL). However, if debug
exceptions cause VM exits, exiting occurs before register modification.

• The VMM may utilize the VM-entry event injection facilities described in Section
22.5 to inject debug or breakpoint exceptions to the guest. See Section 26.2.1
for a more detailed discussion.

• The MOV-DR exiting control bit in the processor-based VM-execution control field
(see Section 20.6.2) can be enabled by the VMM to cause VM exits on explicit
guest access of various processor debug registers (for example, MOV to/from
DR0-DR7). These exits would always occur on guest access of DR0-DR7 registers
regardless of the values in CPL, DR4.DE or DR7.GD. Since all guest task switches
cause VM exits, a VMM can control any indirect guest access or modification of
debug registers during guest task switches.

• Guest software access to debug-related model-specific registers (such as
IA32_DEBUGCTL MSR) can be trapped by the VMM through MSR access control
features (such as the MSR-bitmaps that are part of processor-based VM-
execution controls). See Section 25.10 for details on MSR virtualization.
Vol. 3 26-1

VIRTUALIZATION OF SYSTEM RESOURCES
• Debug registers such as DR7 and the IA32_DEBUGCTL MSR may be explicitly
modified by the guest (through MOV-DR or WRMSR instructions) or modified
implicitly by the processor as part of generating debug exceptions. The current
values of DR7 and the IA32_DEBUGCTL MSR are saved to guest-state area of
VMCS on every VM exit. Pending debug exceptions are debug exceptions that are
recognized by the processor but not yet delivered. See Section 22.6.3 for details
on pending debug exceptions.

• DR7 and the IA32-DEBUGCTL MSR are loaded from values in the guest-state area
of the VMCS on every VM entry. This allows the VMM to properly virtualize debug
registers when injecting debug exceptions to guest. Similarly, the RFLAGS1
register is loaded on every VM entry (or pushed to stack if injecting a virtual
event) from guest-state area of the VMCS. Pending debug exceptions are also
loaded from guest-state area of VMCS so that they may be delivered after VM
entry is completed.

26.2.1 Debug Exceptions
If a VMM emulates a guest instruction that would encounter a debug trap (single step
or data or I/O breakpoint), it should cause that trap to be delivered. The VMM should
not inject the debug exception using VM-entry event injection, but should set the
appropriate bits in the pending debug exceptions field. This method will give the trap
the right priority with respect to other events. (If the exception bitmap was
programmed to cause VM exits on debug exceptions, the debug trap will cause a VM
exit. At this point, the trap can be injected during VM entry with the proper priority.)

There is a valid pending debug exception if the BS bit (see Table 20-4) is set, regard-
less of the values of RFLAGS.TF or IA32_DEBUGCTL.BTF. The values of these bits do
not impact the delivery of pending debug exceptions.

VMMs should exercise care when emulating a guest write (attempted using WRMSR)
to IA32_DEBUGCTL to modify BTF if this is occurring with RFLAGS.TF = 1 and after a
MOV SS or POP SS instruction (for example: while debug exceptions are blocked).
Note the following:

• Normally, if WRMSR clears BTF while RFLAGS.TF = 1 and with debug exceptions
blocked, a single-step trap will occur after WRMSR. A VMM emulating such an
instruction should set the BS bit (see Table 20-4) in the pending debug
exceptions field before VM entry.

• Normally, if WRMSR sets BTF while RFLAGS.TF = 1 and with debug exceptions
blocked, neither a single-step trap nor a taken-branch trap can occur after
WRMSR. A VMM emulating such an instruction should clear the BS bit (see Table
20-4) in the pending debug exceptions field before VM entry.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For processors that do
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers
(EAX, EIP, ESP, EFLAGS, etc.).
26-2 Vol. 3

VIRTUALIZATION OF SYSTEM RESOURCES
26.3 MEMORY VIRTUALIZATION
VMMs must control physical memory to ensure VM isolation and to remap guest
physical addresses in host physical address space for virtualization. Memory virtual-
ization allows the VMM to enforce control of physical memory and yet support guest
OSs’ expectation to manage memory address translation.

26.3.1 Processor Operating Modes & Memory Virtualization
Memory virtualization is required to support guest execution in various processor
operating modes. This includes: protected mode with paging, protected mode with
no paging, real-mode and any other transient execution modes. VMX allows guest
operation in protected-mode with paging enabled and in virtual-8086 mode (with
paging enabled) to support guest real-mode execution. Guest execution in transient
operating modes (such as in real mode with one or more segment limits greater than
64-KByte) must be emulated by the VMM.

Since VMX operation requires processor execution in protected mode with paging
(through CR0 and CR4 fixed bits), the VMM may utilize paging structures to support
memory virtualization. To support guest real-mode execution, the VMM may estab-
lish a simple flat page table for guest linear to host physical address mapping.
Memory virtualization algorithms may also need to capture other guest operating
conditions (such as guest performing A20M# address masking) to map the resulting
20-bit effective guest physical addresses.

26.3.2 Guest & Host Physical Address Spaces
Memory virtualization provides guest software with contiguous guest physical
address space starting zero and extending to the maximum address supported by
the guest virtual processor’s physical address width. The VMM utilizes guest physical
to host physical address mapping to locate all or portions of the guest physical
address space in host memory. The VMM is responsible for the policies and algo-
rithms for this mapping which may take into account the host system physical
memory map and the virtualized physical memory map exposed to a guest by the
VMM. The memory virtualization algorithm needs to accommodate various guest
memory uses (such as: accessing DRAM, accessing memory-mapped registers of
virtual devices or core logic functions and so forth). For example:

• To support guest DRAM access, the VMM needs to map DRAM-backed guest
physical addresses to host-DRAM regions. The VMM also requires the guest to
host memory mapping to be at page granularity.

• Virtual devices (I/O devices or platform core logic) emulated by the VMM may
claim specific regions in the guest physical address space to locate memory-
mapped registers. Guest access to these virtual registers may be configured to
cause page-fault induced VM-exits by marking these regions as always not
Vol. 3 26-3

VIRTUALIZATION OF SYSTEM RESOURCES
present. The VMM may handle these VM exits by invoking appropriate virtual
device emulation code.

26.3.3 Virtualizing Virtual Memory by Brute Force
VMX provides the hardware features required to fully virtualize guest virtual memory
accesses. VMX allows the VMM to trap guest accesses to the PAT (Page Attribute
Table) MSR and the MTRR (Memory Type Range Registers). This control allows the
VMM to virtualize the specific memory type of a guest memory. The VMM may control
caching by controlling the guest CR0.CRD and CR0.NW bits, as well as by trapping
guest execution of the INVD instruction. The VMM can trap guest CR3 loads and
stores, and it may trap guest execution of INVLPG.

Because a VMM must retain control of physical memory, it must also retain control
over the processor’s address-translation mechanisms. Specifically, this means that
only the VMM can access CR3 (which contains the base of the page directory) and can
execute INVLPG (the only other instruction that directly manipulates the TLB).

At the same time that the VMM controls address translation, a guest operating
system will also expect to perform normal memory management functions. It will
access CR3, execute INVLPG, and modify (what it believes to be) page directories
and page tables. Virtualization of address translation must tolerate and support
guest attempts to control address translation.

A simple-minded way to do this would be to ensure that all guest attempts to access
address-translation hardware trap to the VMM where such operations can be properly
emulated. It must ensure that accesses to page directories and page tables also get
trapped. This may be done by protecting these in-memory structures with conven-
tional page-based protection. The VMM can do this because it can locate the page
directory because its base address is in CR3 and the VMM receives control on any
change to CR3; it can locate the page tables because their base addresses are in the
page directory.

Such a straightforward approach is not necessarily desirable. Protection of the in-
memory translation structures may be cumbersome. The VMM may maintain these
structures with different values (e.g., different page base addresses) than guest soft-
ware. This means that there must be traps on guest attempt to read these structures
and that the VMM must maintain, in auxiliary data structures, the values to return to
these reads. There must also be traps on modifications to these structures even if the
translations they effect are never used. All this implies considerable overhead that
should be avoided.

26.3.4 Alternate Approach to Memory Virtualization
Guest software is allowed to freely modify the guest page-table hierarchy without
causing traps to the VMM. Because of this, the active page-table hierarchy might not
always be consistent with the guest hierarchy. Any potential problems arising from
26-4 Vol. 3

VIRTUALIZATION OF SYSTEM RESOURCES
inconsistencies can be solved using techniques analogous to those used by the
processor and its TLB.

This section describes an alternative approach that allows guest software to freely
access page directories and page tables. Traps occur on CR3 accesses and executions
of INVLPG. They also occur when necessary to ensure that guest modifications to the
translation structures actually take effect. The software mechanisms to support this
approach are collectively called virtual TLB. This is because they emulate the func-
tionality of the processor’s physical translation look-aside buffer (TLB).

The basic idea behind the virtual TLB is similar to that behind the processor TLB.
While the page-table hierarchy defines the relationship between physical to linear
address, it does not directly control the address translation of each memory access.
Instead, translation is controlled by the TLB, which is occasionally filled by the
processor with translations derived from the page-table hierarchy. With a virtual TLB,
the page-table hierarchy established by guest software (specifically, the guest oper-
ating system) does not control translation, either directly or indirectly. Instead,
translation is controlled by the processor (through its TLB) and by the VMM (through
a page-table hierarchy that it maintains).

Specifically, the VMM maintains an alternative page-table hierarchy that effectively
caches translations derived from the hierarchy maintained by guest software. The
remainder of this document refers to the former as the active page-table hierarchy
(because it is referenced by CR3 and may be used by the processor to load its TLB)
and the latter as the guest page-table hierarchy (because it is maintained by guest
software). The entries in the active hierarchy may resemble the corresponding
entries in the guest hierarchy in some ways and may differ in others.

Guest software is allowed to freely modify the guest page-table hierarchy without
causing VM exits to the VMM. Because of this, the active page-table hierarchy might
not always be consistent with the guest hierarchy. Any potential problems arising
from any inconsistencies can be solved using techniques analogous to those used by
the processor and its TLB. Note the following:

• Suppose the guest page-table hierarchy allows more access than active hierarchy
(for example: there is a translation for a linear address in the guest hierarchy but
not in the active hierarchy); this is analogous to a situation in which the TLB
allows less access than the page-table hierarchy. If an access occurs that would
be allowed by the guest hierarchy but not the active one, a page fault occurs; this
is analogous to a TLB miss. The VMM gains control (as it handles all page faults)
and can update the active page-table hierarchy appropriately; this corresponds
to a TLB fill.

• Suppose the guest page-table hierarchy allows less access than the active
hierarchy; this is analogous to a situation in which the TLB allows more access
than the page-table hierarchy. This situation can occur only if the guest operating
system has modified a page-table entry to reduce access (for example: by
marking it not-present). Because the older, more permissive translation may
have been cached in the TLB, the processor is architecturally permitted to use the
older translation and allow more access. Thus, the VMM may (through the active
page-table hierarchy) also allow greater access. For the new, less permissive
Vol. 3 26-5

VIRTUALIZATION OF SYSTEM RESOURCES
translation to take effect, guest software should flush any older translations from
the TLB either by executing INVLPG or by loading CR3. Because both these
operations will cause a trap to the VMM, the VMM will gain control and can
remove from the active page-table hierarchy the translations indicated by guest
software (the translation of a specific linear address for INVLPG or all translations
for a load of CR3).

As noted previously, the processor reads the page-table hierarchy to cache transla-
tions in the TLB. It also writes to the hierarchy to main the accessed (A) and dirty (D)
bits in the PDEs and PTEs. The virtual TLB emulates this behavior as follows:

• When a page is accessed by guest software, the A bit in the corresponding PTE
(or PDE for a 4-MByte page) in the active page-table hierarchy will be set by the
processor (the same is true for PDEs when active page tables are accessed by the
processor). For guest software to operate properly, the VMM should update the A
bit in the guest entry at this time. It can do this reliably if it keeps the active PTE
(or PDE) marked not-present until it has set the A bit in the guest entry.

• When a page is written by guest software, the D bit in the corresponding PTE (or
PDE for a 4-MByte page) in the active page-table hierarchy will be set by the
processor. For guest software to operate properly, the VMM should update the D
bit in the guest entry at this time. It can do this reliably if it keeps the active PTE
(or PDE) marked read-only until it has set the D bit in the guest entry. This
solution is valid for guest software running at privilege level 3; support for more
privileged guest software is described in Section 26.3.5.

26.3.5 Details of Virtual TLB Operation
This section describes in more detail how a VMM could support a virtual TLB. It
explains how an active page-table hierarchy is initialized and how it is maintained in
response to page faults, uses of INVLPG, and accesses to CR3. The mechanisms
described here are the minimum necessary. They may not result in the best perfor-
mance.
26-6 Vol. 3

VIRTUALIZATION OF SYSTEM RESOURCES
As noted above, the VMM maintains an active page-table hierarchy for each virtual
machine that it supports. It also maintains, for each machine, values that the
machine expects for control registers CR0, CR2, CR3, and CR4 (they control address
translation). These values are called the guest control registers.

In general, the VMM selects the physical-address space that is allocated to guest
software. The term guest address refers to an address installed by guest software in
the guest CR3, in a guest PDE (as a page table base address or a page base address),
or in a guest PTE (as a page base address). While guest software considers these to
be specific physical addresses, the VMM may map them differently.

26.3.5.1 Initialization of Virtual TLB
To enable the Virtual TLB scheme, the VMCS must be set up to trigger VM exits on:

• All writes to CR3 (the CR3-target count should be 0) or the paging-mode bits in
CR0 and CR4 (using the CR0 and CR4 guest/host masks)

• Page-fault (#PF) exceptions

• Execution of INVLPG

Figure 26-1. Virtual TLB Scheme

refill on
TLB miss

CR3

PD

PT

PT

F

F

F

F

PD

"Virtual TLB"

Active Guest

INVLPG
MOV to CR3
task switch

refill on
page fault

set accessed
and dirty bits

TLB

PD = page directory
PT = page table
F = page frame

INVLPG
MOV to

CR3
task switch

Active Page-Table Hierarchy Guest Page-Table Hierarchy

PT

PT

F

F

F

F

CR3

set dirty
accessed

OM19040
Vol. 3 26-7

VIRTUALIZATION OF SYSTEM RESOURCES
When guest software first enables paging, the VMM creates an aligned 4-KByte active
page directory that is invalid (all entries marked not-present). This invalid directory
is analogous to an empty TLB.

26.3.5.2 Response to Page Faults
Page faults can occur for a variety of reasons. In some cases, the page fault alerts the
VMM to an inconsistency between the active and guest page-table hierarchy. In such
cases, the VMM can update the former and re-execute the faulting instruction. In
other cases, the hierarchies are already consistent and the fault should be handled
by the guest operating system. The VMM can detect this and use an established
mechanism for raising a page fault to guest software.

The VMM can handle a page fault by following these steps (The steps below assume
the guest is operating in a paging mode without PAE. Analogous steps to handle
address translation using PAE or four-level paging mechanisms can be derived by
VMM developers according to the paging behavior defined in Chapter 3 of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A):

1. First consult the active PDE, which can be located using the upper 10 bits of the
faulting address and the current value of CR3. The active PDE is the source of the
fault if it is marked not present or if its R/W bit and U/S bits are inconsistent with
the attempted guest access (the guest privilege level and the value of CR0:WP
should also be taken into account).

2. If the active PDE is the source of the fault, consult the corresponding guest PDE
using the same 10 bits from the faulting address and the physical address that
corresponds to the guest address in the guest CR3. If the guest PDE would cause
a page fault (for example: it is marked not present), then raise a page fault to the
guest operating system.

The following steps assume that the guest PDE would not have caused a page
fault.

3. If the active PDE is the source of the fault and the guest PDE contains, as page-
table base address (if PS = 0) or page base address (PS = 1), a guest address
that the VMM has chosen not to support; then raise a machine check (or some
other abort) to the guest operating system.

The following steps assume that the guest address in the guest PDE is supported
for the virtual machine.

4. If the active PDE is marked not-present, then set the active PDE to correspond to
guest PDE as follows:

a. If the active PDE contains a page-table base address (if PS = 0), then
allocate an aligned 4-KByte active page table marked completely invalid and
set the page-table base address in the active PDE to be the physical address
of the newly allocated page table.
26-8 Vol. 3

VIRTUALIZATION OF SYSTEM RESOURCES
b. If the active PDE contains a page base address (if PS = 1), then set the page
base address in the active PDE to be the physical page base address that
corresponds to the guest address in the guest PDE.

c. Set the P, U/S, and PS bits in the active PDE to be identical to those in the
guest PDE.

d. Set the PWT, PCD, and G bits according to the policy of the VMM.

e. Set A = 1 in the guest PDE.

f. If D = 1 in the guest PDE or PS = 0 (meaning that this PDE refers to a page
table), then set the R/W bit in the active PDE as in the guest PDE.

g. If D = 0 in the guest PDE, PS = 1 (this is a 4-MByte page), and the attempted
access is a write; then set R/W in the active PDE as in the guest PDE and set
D = 1 in the guest PDE.

h. If D = 0 in the guest PDE, PS = 1, and the attempted access is not a write;
then set R/W = 0 in the active PDE.

i. After modifying the active PDE, re-execute the faulting instruction.

The remaining steps assume that the active PDE is already marked present.

5. If the active PDE is the source of the fault, the active PDE refers to a 4-MByte
page (PS = 1), the attempted access is a write; D = 0 in the guest PDE, and the
active PDE has caused a fault solely because it has R/W = 0; then set R/W in the
active PDE as in the guest PDE; set D = 1 in the guest PDE, and re-execute the
faulting instruction.

6. If the active PDE is the source of the fault and none of the above cases apply,
then raise a page fault of the guest operating system.

The remaining steps assume that the source of the original page fault is not the
active PDE.

NOTE
It is possible that the active PDE might be causing a fault even
though the guest PDE would not. However, this can happen only if the
guest operating system increased access in the guest PDE and did
not take action to ensure that older translations were flushed from
the TLB. Such translations might have caused a page fault if the
guest software were running on bare hardware.

7. If the active PDE refers to a 4-MByte page (PS = 1) but is not the source of the
fault, then the fault resulted from an inconsistency between the active page-table
hierarchy and the processor’s TLB. Since the transition to the VMM caused an
address-space change and flushed the processor’s TLB, the VMM can simply re-
execute the faulting instruction.

The remaining steps assume that PS = 0 in the active and guest PDEs.
Vol. 3 26-9

VIRTUALIZATION OF SYSTEM RESOURCES
8. Consult the active PTE, which can be located using the next 10 bits of the faulting
address (bits 21–12) and the physical page-table base address in the active PDE.
The active PTE is the source of the fault if it is marked not-present or if its R/W bit
and U/S bits are inconsistent with the attempted guest access (the guest
privilege level and the value of CR0:WP should also be taken into account).

9. If the active PTE is not the source of the fault, then the fault has resulted from an
inconsistency between the active page-table hierarchy and the processor’s TLB.
Since the transition to the VMM caused an address-space change and flushed the
processor’s TLB, the VMM simply re-executes the faulting instruction.

The remaining steps assume that the active PTE is the source of the fault.

10. Consult the corresponding guest PTE using the same 10 bits from the faulting
address and the physical address that correspond to the guest page-table base
address in the guest PDE. If the guest PTE would cause a page fault (it is marked
not-present), the raise a page fault to the guest operating system.

The following steps assume that the guest PTE would not have caused a page
fault.

11. If the guest PTE contains, as page base address, a physical address that is not
valid for the virtual machine being supported; then raise a machine check (or
some other abort) to the guest operating system.

The following steps assume that the address in the guest PTE is valid for the
virtual machine.

12. If the active PTE is marked not-present, then set the active PTE to correspond to
guest PTE:

a. Set the page base address in the active PTE to be the physical address that
corresponds to the guest page base address in the guest PTE.

b. Set the P, U/S, and PS bits in the active PTE to be identical to those in the
guest PTE.

c. Set the PWT, PCD, and G bits according to the policy of the VMM.

d. Set A = 1 in the guest PTE.

e. If D = 1 in the guest PTE, then set the R/W bit in the active PTE as in the
guest PTE.

f. If D = 0 in the guest PTE and the attempted access is a write, then set R/W in
the active PTE as in the guest PTE and set D = 1 in the guest PTE.

g. If D = 0 in the guest PTE and the attempted access is not a write, then set
R/W = 0 in the active PTE.

h. After modifying the active PTE, re-execute the faulting instruction.

The remaining steps assume that the active PTE is already marked present.

13. If the attempted access is a write, D = 0 (not dirty) in the guest PTE and the
active PTE has caused a fault solely because it has R/W = 0 (read-only); then set
26-10 Vol. 3

VIRTUALIZATION OF SYSTEM RESOURCES
R/W in the active PTE as in the guest PTE, set D = 1 in the guest PTE and re-
execute the faulting instruction.

14. If none of the above cases apply, then raise a page fault of the guest operating
system.

26.3.5.3 Response to Uses of INVLPG
Operating-systems can use INVLPG to flush entries from the TLB. This instruction
takes a linear address as an operand and software expects any cached translations
for the address to be flushed. VMM should set the processor-based VMCS execution
control invplg-exiting = 1, such that any attempts by a privileged guest to execute
INVLPG will trap to the VMM (attempts to execute INVLPG by unprivileged guest are
managed by the exception bitmap control in the VMCS). The VMM can then modify
the active page-table hierarchy to emulate the desired effect of the INVLPG.

The following steps are performed. Note that these steps are performed only if the
guest invocation of INVLPG would not fault and only if the guest software is running
at privilege level 0:

1. Locate the relevant active PDE using the upper 10 bits of the operand address
and the current value of CR3. If the PDE refers to a 4-MByte page (PS = 1), then
set P = 0 in the PDE.

2. If the PDE is marked present and refers to a page table (PS = 0), locate the
relevant active PTE using the next 10 bits of the operand address (bits 21–12)
and the page-table base address in the PDE. Set P = 0 in the PTE. Examine all
PTEs in the page table; if they are now all marked not-present, de-allocate the
page table and set P = 0 in the PDE (this step may be optional).

26.3.5.4 Response to CR3 Writes
A guest operating system may attempt to write to CR3. Any write to CR3 implies a
TLB flush and a possible page table change. The following steps are performed:

1. The VMM notes the new CR3 value (used later to walk guest page tables) and
emulates the write.

2. The VMM allocates a new PD page, with all invalid entries.

3. The VMM sets actual processor CR3 register to point to the new PD page.

The VMM may, at this point, speculatively fill in VTLB mappings for performance
reasons.

26.4 MICROCODE UPDATE FACILITY
The microcode code update facility may be invoked at various points during the oper-
ation of a platform. Typically, the BIOS invokes the facility on all processors during
Vol. 3 26-11

VIRTUALIZATION OF SYSTEM RESOURCES
the BIOS boot process. This is sufficient to boot the BIOS and operating system. As a
microcode update more current than the system BIOS may be available, system soft-
ware should provide another mechanism for invoking the microcode update facility.
The implications of the microcode update mechanism on the design of the VMM are
described in this section.

NOTE
Microcode updates must not be performed during VMX non-root
operation. Updates performed in VMX non-root operation may result
in unpredictable system behavior.

26.4.1 Early Load of Microcode Updates
The microcode update facility may be invoked early in the VMM or guest OS boot
process. Loading the microcode update early provides the opportunity to correct
errata affecting the boot process but the technique generally requires a reboot of the
software.

A microcode update may be loaded from the OS or VMM image loader. Typically, such
image loaders do not run on every logical processor, so this method effects only one
logical processor. Later in the VMM or OS boot process, after bringing all application
processors on-line, the VMM or OS needs to invoke the microcode update facility for
all application processors.

Depending on the order of the VMM and the guest OS boot, the microcode update
facility may be invoked by the VMM or the guest OS. For example, if the guest OS
boots first and then loads the VMM, the guest OS may invoke the microcode update
facility on all the logical processors. If a VMM boots before its guests, then the VMM
may invoke the microcode update facility during its boot process. In both cases, the
VMM or OS should invoke the microcode update facilities soon after performing the
multiprocessor startup.

In the early load scenario, microcode updates may be contained in the VMM or OS
image or, the VMM or OS may manage a separate database or file of microcode
updates. Maintaining a separate microcode update image database has the advan-
tage of reducing the number of required VMM or OS releases as a result of microcode
update releases.

26.4.2 Late Load of Microcode Updates
A microcode update may be loaded during normal system operation. This allows
system software to activate the microcode update at anytime without requiring a
system reboot. This scenario does not allow the microcode update to correct errata
which affect the processor’s boot process but does allow high-availability systems to
activate microcode updates without interrupting the availability of the system. In this
late load scenario, either the VMM or a designated guest may load the microcode
update. If the guest is loading the microcode update, the VMM must make sure that
26-12 Vol. 3

VIRTUALIZATION OF SYSTEM RESOURCES
the entire guest memory buffer (which contains the microcode update image) will not
cause a page fault when accessed.

If the VMM loads the microcode update, then the VMM must have access to the
current set of microcode updates. These updates could be part of the VMM image or
could be contained in a separate microcode update image database (for example: a
database file on disk or in memory). Again, maintaining a separate microcode update
image database has the advantage of reducing the number of required VMM or OS
releases as a result of microcode update releases.

The VMM may wish to prevent a guest from loading a microcode update or may wish
to support the microcode update requested by a guest using emulation (without
actually loading the microcode update). To prevent microcode update loading, the
VMM may return a microcode update signature value greater than the value of
IA32_BISO_SIGN_ID MSR. A well behaved guest will not attempt to load an older
microcode update. The VMM may also drop the guest attempts to write to
IA32_BIOS_UPDT_TRIG MSR, preventing the guest from loading any microcode
updates. Later, when the guest queries IA32_BIOS_SIGN_ID MSR, the VMM could
emulate the microcode update signature that the guest expects.

In general, loading a microcode update later will limit guest software’s visibility of
features that may be enhanced by a microcode update.
Vol. 3 26-13

VIRTUALIZATION OF SYSTEM RESOURCES
26-14 Vol. 3

CHAPTER 27
HANDLING BOUNDARY CONDITIONS IN A VIRTUAL

MACHINE MONITOR

27.1 OVERVIEW
This chapter describes what a VMM must consider when handling exceptions, inter-
rupts, error conditions, and transitions between activity states.

27.2 INTERRUPT HANDLING IN VMX OPERATION
The following bullets summarize VMX support for handling interrupts:

• Control of Processor Exceptions. The VMM can get control on specific guest
exceptions through the exception-bitmap in the guest controlling-VMCS. The
exception bitmap is a 32-bit field that allows the VMM to specify processor
behavior on specific exceptions (including traps, faults and aborts). Setting a
specific bit in the exception bitmap implies VM exits will be generated when the
corresponding exception occurs. Any exceptions that are programmed not to
cause VM exits are delivered directly to the guest through the guest IDT. The
exception bitmap also controls execution of relevant instructions such as BOUND,
INTO and INT3. VM exits on page-faults are treated in such a way the page-fault
error-code is qualified through the page fault error-code mask and match fields in
the VMCS.

• Control over Triple-faults. If a fault occurs while attempting to call a double-
fault handler in the guest and that fault is not configured to cause a VM exit in the
exception bitmap, the resulting triple fault causes a VM exit.

• Control of External-Interrupts. VMX allows both host and guest control of
external interrupts through the “external-interrupt exiting” VM execution control.
With guest control (external-interrupt exiting set to 0), external-interrupts do not
cause VM exits and the interrupt delivery is masked by the guest programmed
RFLAGS.IF value.1 With host control (external-interrupt exiting set to 1),
external-interrupts causes VM exits and are not masked by RFLAGS.IF. The VMM
can identify VM exits due to external interrupts by checking the exit-reason for an
‘external-interrupt’ (value = 1).

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For processors that do
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers
(EAX, EIP, ESP, EFLAGS, etc.).
Vol. 3 27-1

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
• Control of Other Events. There is a pin-based VM-execution control that
controls system behavior (exit or no-exit) for NMI events. Most VMM usages will
need handling of NMI external events in the VMM and hence will specify host
control of these events.

Some processors also support a pin-based VM-execution control called “virtual
NMIs.” When this control is set, NMIs cause VM exits, but the processor tracks
guest readiness for virtual NMIs. This control interacts with the “NMI-window
exiting” VM-execution control (see below).

INIT and SIPI events always cause VM exits.

• Acknowledge-Interrupt-On-Exit. The acknowledge-interrupt-on-exit bit in
the VM-exit control field in the controlling-VMCS controls processor behavior for
external interrupt acknowledgement. If the control bit is set, the processor
acknowledges the interrupt controller to acquire the interrupt vector upon VM
exit, and stores the vector in the VM-exit interruption-information field. If the
control bit is clear, the external interrupt is not acknowledged during VM exit.
Since RFLAGS.IF is automatically cleared on VM exits due to external interrupts,
VMM re-enabling of interrupts (setting RFLAGS.IF = 1) initiates the external
interrupt acknowledgement and vectoring of the external interrupt through the
monitor/host IDT.

• Event Masking Support. VMX captures the masking conditions of specific
events while in VMX non-root operation through the interruptibility-state field in
the guest-state area of the VMCS.

This feature allows proper virtualization of various interrupt blocking states, such
as: (a) blocking of external interrupts for the instruction following STI; (b)
blocking of interrupts for the instruction following a MOV-SS or POP-SS
instruction; (c) SMI blocking of subsequent SMIs until the next execution of RSM;
and (d) NMI/SMI blocking of NMIs until the next execution of IRET or RSM.

INIT and SIPI events are treated specially. INIT assertions are always blocked in
VMX root operation and while in SMM, and unblocked otherwise. SIPI events are
always blocked in VMX root operation.

The interruptibility state is loaded from the VMCS guest-state area on every
VM entry and saved into the VMCS on every VM exit.

• Event injection. VMX operation allows injecting interruptions to a guest virtual
machine through the use of VM-entry interrupt-information field in VMCS.
Injectable interruptions include external interrupts, NMI, processor exceptions,
software generated interrupts, and software traps. If the interrupt-information
field indicates a valid interrupt, exception or trap event upon the next VM entry;
the processor will use the information in the field to vector a virtual interruption
through the guest IDT after all guest state and MSRs are loaded. Delivery
through the guest IDT emulates vectoring in non-VMX operation by doing the
normal privilege checks and pushing appropriate entries to the guest stack
(entries may include RFLAGS, EIP and exception error code). A VMM with host
control of NMI and external interrupts can use the event-injection facility to
forward virtual interruptions to various guest virtual machines.
27-2 Vol. 3

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
• Interrupt-window Exiting. The interrupt-window exiting control bit in the
VM-execution controls (Section 20.6.2) causes VM exits when guest RFLAGS.IF is
1 and no other conditions block external interrupts. If the control is 1, a VM exit
occurs at the beginning of any instruction at which RFLAGS.IF = 1 and on which
the interruptibility state of the guest would allow delivery of an interrupt. For
example: when the guest executes an STI instruction, RFLAGS = 1, and if at the
completion of next instruction the interruptibility state masking due to STI is
removed; a VM exit occurs if interrupt-window exiting control is 1. The interrupt-
window exiting feature allows a VMM to queue a virtual interrupt to the guest
when the guest is not in an interruptible state. The VMM can set the interrupt-
window exiting control for the guest and depend on a VM exit to know when the
guest becomes interruptible (and, therefore, when it can inject a virtual
interrupt). The VMM can detect such VM exits by checking for the basic exit
reason ‘interrupt-window’ (value = 7). Without interrupt-window exiting support,
the VMM will need to poll and check the interruptibility state of the guest to
deliver virtual interrupts.

• NMI-window Exiting. If the “virtual NMIs” VM-execution is set, the processor
tracks virtual-NMI blocking. The NMI-window exiting control bit in VM-execution
controls (Section 20.6.2) causes VM exits when there is no virtual-NMI blocking.
For example, after execution of the IRET instruction, a VM exit occurs if NMI-
window exiting control is 1. The NMI-window exiting feature allows a VMM to
queue a virtual NMI to a guest when the guest is not ready to receive NMIs. The
VMM can set the NMI-window exiting control for the guest and depend on a
VM exit to know when the guest becomes ready for NMIs (and, therefore, when it
can inject a virtual NMI). The VMM can detect such VM exits by checking for the
basic exit reason ‘NMI window’ (value = 8). Without NMI-window exiting support,
the VMM will need to poll and check the interruptibility state of the guest to
deliver virtual NMIs.

• VM-Exit Information. The VM-exit information fields provide details on
VM exits due to exceptions and interrupts. This information is provided through
the exit-qualification, VM-exit-interruption-information, instruction-length and
interruption-error-code fields. Also, for VM exits that occur in the course of
vectoring through the guest-IDT, information about the event that was being
vectored through the guest-IDT is provided in the IDT-vectoring-information and
IDT-vectoring-error-code fields. These information fields allow the VMM to
identify the exception cause and to handle it properly.

27.3 EXTERNAL INTERRUPT VIRTUALIZATION
VMX operation allows both host and guest control of external interrupts. While guest
control of external interrupts might be suitable for partitioned usages (different CPU
cores/threads and I/O devices partitioned to independent virtual machines), most
VMMs built upon VMX are expected to utilize host control of external interrupts. The
rest of this section describes a general host-controlled interrupt virtualization archi-
tecture for standard PC platforms through the use of VMX supported features.
Vol. 3 27-3

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
With host control of external interrupts, the VMM (or the host OS in a hosted VMM
model) manages the physical interrupt controllers in the platform and the interrupts
generated through them. The VMM exposes software-emulated virtual interrupt
controller devices (such as PIC and APIC) to each guest virtual machine instance.

27.3.1 Virtualization of Interrupt Vector Space
The Intel 64 and IA-32 architectures use 8-bit vectors of which 244 (20H - FFH) are
available for external interrupts. Vectors are used to select the appropriate entry in
the interrupt descriptor table (IDT). VMX operation allows each guest to control its
own IDT. Host vectors refer to vectors delivered by the platform to the processor
during the interrupt acknowledgement cycle. Guest vectors refer to vectors
programmed by a guest to select an entry in its guest IDT. Depending on the I/O
resource management models supported by the VMM design, the guest vector space
may or may not overlap with the underlying host vector space.

• Interrupts from virtual devices: Guest vector numbers for virtual interrupts
delivered to guests on behalf of emulated virtual devices have no direct relation
to the host vector numbers of interrupts from physical devices on which they are
emulated. A guest-vector assigned for a virtual device by the guest operating
environment is saved by the VMM and utilized when injecting virtual interrupts on
behalf of the virtual device.

• Interrupts from assigned physical devices: Hardware support for I/O device
assignment allows physical I/O devices in the host platform to be assigned
(direct-mapped) to VMs. Guest vectors for interrupts from direct-mapped
physical devices take up equivalent space from the host vector space, and
require the VMM to perform host-vector to guest-vector mapping for interrupts.

Figure 27-1 illustrates the functional relationship between host external interrupts
and guest virtual external interrupts. Device A is owned by the host and generates
external interrupts with host vector X. The host IDT is set up such that the interrupt
service routine (ISR) for device driver A is hooked to host vector X as normal. VMM
emulates (over device A) virtual device C in software which generates virtual inter-
rupts to the VM with guest expected vector P. Device B is assigned to a VM and gener-
ates external interrupts with host vector Y. The host IDT is programmed to hook the
VMM interrupt service routine (ISR) for assigned devices for vector Y, and the VMM
handler injects virtual interrupt with guest vector Q to the VM. The guest operating
system programs the guest to hook appropriate guest driver’s ISR to vectors P
and Q.
27-4 Vol. 3

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
27.3.2 Control of Platform Interrupts
To meet the interrupt virtualization requirements, the VMM needs to take ownership
of the physical interrupts and the various interrupt controllers in the platform. VMM
control of physical interrupts may be enabled through the host-control settings of the
“external-interrupt exiting” VM-execution control. To take ownership of the platform
interrupt controllers, the VMM needs to expose the virtual interrupt controller devices
to the virtual machines and restrict guest access to the platform interrupt controllers.

Intel 64 and IA-32 platforms can support three types of external interrupt control
mechanisms: Programmable Interrupt Controllers (PIC), Advanced Programmable

Figure 27-1. Host External Interrupts and Guest Virtual Interrupts

Device Driver B

Device Driver C

Virtual Device C
Emulation

Device Driver A
Monitor Handler

Host IDTR

Device A Device B
Hardware

Platform Interrupt Platform Interrupt

Virtual Machine Monitor (VMM)

Host IDT

H
os

t

H
os

t

V
ec

to
r X

Ve
ct

or
 Y

Guest IDTR

Guest IDT

Guest
Vector P

VM

Virtual Interrupt Virtual Interrupt

Guest
Vector Q

OM19041
Vol. 3 27-5

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
Interrupt Controllers (APIC), and Message Signaled Interrupts (MSI). The following
sections provide information on the virtualization of each of these mechanisms.

27.3.2.1 PIC Virtualization
Typical PIC-enabled platform implementations support dual 8259 interrupt control-
lers cascaded as master and slave controllers. They supporting up to 15 possible
interrupt inputs. The 8259 controllers are programmed through initialization
command words (ICWx) and operation command words (OCWx) accessed through
specific I/O ports. The various interrupt line states are captured in the PIC through
interrupt requests, interrupt service routines and interrupt mask registers.

Guest access to the PIC I/O ports can be restricted by activating I/O bitmaps in the
guest controlling-VMCS (activate-I/O-bitmap bit in VM-execution control field set
to 1) and pointing the I/O-bitmap physical addresses to valid bitmap regions. Bits
corresponding to the PIC I/O ports can be cleared to cause a VM exit on guest access
to these ports.

If the VMM is not supporting direct access to any I/O ports from a guest, it can set the
unconditional-I/O-exiting in the VM-execution control field instead of activating I/O
bitmaps. The exit-reason field in VM-exit information allows identification of VM exits
due to I/O access and can provide an exit-qualification to identify details about the
guest I/O operation that caused the VM exit.

The VMM PIC virtualization needs to emulate the platform PIC functionality including
interrupt priority, mask, request and service states, and specific guest programmed
modes of PIC operation.

27.3.2.2 xAPIC Virtualization
Most modern Intel 64 and IA-32 platforms include support for an APIC. While the
standard PIC is intended for use on uniprocessor systems, APIC can be used in either
uniprocessor or multi-processor systems.

APIC based interrupt control consists of two physical components: the interrupt
acceptance unit (Local APIC) which is integrated with the processor, and the interrupt
delivery unit (I/O APIC) which is part of the I/O subsystem. APIC virtualization
involves protecting the platform’s local and I/O APICs and emulating them for the
guest.

27.3.2.3 Local APIC Virtualization
The local APIC is responsible for the local interrupt sources, interrupt acceptance,
dispensing interrupts to the logical processor, and generating inter-processor inter-
rupts. Software interacts with the local APIC by reading and writing its memory-
mapped registers residing within a 4-KByte uncached memory region with base
address stored in the IA32_APIC_BASE MSR. Since the local APIC registers are
memory-mapped, the VMM can utilize memory virtualization techniques (such as
27-6 Vol. 3

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
page-table virtualization) to trap guest accesses to the page frame hosting the
virtual local APIC registers.

Local APIC virtualization in the VMM needs to emulate the various local APIC opera-
tions and registers, such as: APIC identification/format registers, the local vector
table (LVT), the interrupt command register (ICR), interrupt capture registers (TMR,
IRR and ISR), task and processor priority registers (TPR, PPR), the EOI register and
the APIC-timer register. Since local APICs are designed to operate with non-specific
EOI, local APIC emulation also needs to emulate broadcast of EOI to the guest’s
virtual I/O APICs for level triggered virtual interrupts.

A local APIC allows interrupt masking at two levels: (1) mask bit in the local vector
table entry for local interrupts and (2) raising processor priority through the TPR
registers for masking lower priority external interrupts. The VMM needs to compre-
hend these virtual local APIC mask settings as programmed by the guest in addition
to the guest virtual processor interruptibility state (when injecting APIC routed
external virtual interrupts to a guest VM).

VMX provides several features which help the VMM to virtualize the local APIC. These
features allow many of guest TPR accesses (using CR8 only) to occur without VM
exits to the VMM:

• The VMCS contains a 'Virtual-APIC page address' field. This 64-bit field is the
physical address of the 4-KByte virtual APIC page (4-KByte aligned). The virtual-
APIC page contains a TPR shadow, which is accessed by the MOV CR8 instruction.
The TPR shadow comprises bits 7:4 in byte 80H of the virtual-APIC page.

• The TPR threshold: bits 3:0 of this 32-bit field determine the threshold below
which the TPR shadow cannot fall. A VM exit will occur after an execution of MOV
CR8 that reduces the TPR shadow below this value.

• The processor-based VM-execution controls field contains a 'Use TPR shadow' bit
and a 'CR8-store exiting' bit. If 'Use TPR shadow' is set and 'CR8-store exiting' is
cleared, then a MOV from CR8 reads from the TPR shadow. If the 'CR8-store
exiting' VM-execution control is set, then MOV from CR8 causes a VM exit. 'Use
TPR shadow' is ignored in this case.

• The processor-based VM-execution controls field contains a 'CR8-load exiting'
bit. If 'Use TPR shadow' is set and 'CR8-load exiting' is clear, then MOV to CR8
writes to the 'TPR shadow'. A VM exit will occur after this write if the value written
is below the TPR threshold. If 'CR8-load exiting' is set, then MOV to CR8 causes a
VM exit. 'Use TPR shadow' is ignored in this case.

27.3.2.4 I/O APIC Virtualization
The I/O APIC registers are typically mapped to a 1 MByte region where each I/O APIC
is allocated a 4K address window within this range. The VMM may utilize physical
memory virtualization to trap guest accesses to the virtual I/O APIC memory-
mapped registers. The I/O APIC virtualization needs to emulate the various I/O APIC
operations and registers such as identification/version registers, indirect-I/O-access
registers, EOI register, and the I/O redirection table. I/O APIC virtualization also
Vol. 3 27-7

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
need to emulate various redirection table entry settings such as delivery mode,
destination mode, delivery status, polarity, masking, and trigger mode programmed
by the guest and track remote-IRR state on guest EOI writes to various virtual local
APICs.

27.3.2.5 Virtualization of Message Signaled Interrupts
The PCI Local Bus Specification (Rev. 2.2) introduces the concept of message
signaled interrupts (MSI). MSI enable PCI devices to request service by writing a
system-specified message to a system specified address. The transaction address
specifies the message destination while the transaction data specifies the interrupt
vector, trigger mode and delivery mode. System software is expected to configure
the message data and address during MSI device configuration, allocating one or
more no-shared messages to MSI capable devices. Chapter 8, “Advanced Program-
mable Interrupt Controller (APIC),” specifies the MSI message address and data
register formats to be followed on Intel 64 and IA-32 platforms. While MSI is optional
for conventional PCI devices, it is the preferred interrupt mechanism for PCI-Express
devices.

Since the MSI address and data are configured through PCI configuration space, to
control these physical interrupts the VMM needs to assume ownership of PCI config-
uration space. This allows the VMM to capture the guest configuration of message
address and data for MSI-capable virtual and assigned guest devices. PCI configura-
tion transactions on PC-compatible systems are generated by software through two
different methods:

1. The standard CONFIG_ADDRESS/CONFIG_DATA register mechanism
(CFCH/CF8H ports) as defined in the PCI Local Bus Specification.

2. The enhanced flat memory-mapped (MEMCFG) configuration mechanism as
defined in the PCI-Express Base Specification (Rev. 1.0a.).

The CFCH/CF8H configuration access from guests can be trapped by the VMM
through use of I/O-bitmap VM-execution controls. The memory-mapped PCI-Express
MEMCFG guest configuration accesses can be trapped by VMM through physical
memory virtualization.

27.3.3 Examples of Handling of External Interrupts
The following sections illustrate interrupt processing in a VMM (when used to support
the external interrupt virtualization requirements).

27.3.3.1 Guest Setup
The VMM sets up the guest to cause a VM exit to the VMM on external interrupts. This
is done by setting the “external-interrupt exiting” VM-execution control in the guest
controlling-VMCS.
27-8 Vol. 3

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
27.3.3.2 Processor Treatment of External Interrupt
Interrupts are automatically masked by hardware in the processor on VM exit by
clearing RFLAGS.IF. The exit-reason field in VMCS is set to 1 to indicate an external
interrupt as the exit reason.

If the VMM is utilizing the acknowledge-on-exit feature (by setting the acknowledge-
interrupt-on-exit bit in guest VM-exit control field), the processor acknowledges the
interrupt, retrieves the host vector, and saves the interrupt in the exit-interruption-
information field (in the VM-exit information region of the VMCS) before transitioning
control to the VMM.

27.3.3.3 Processing of External Interrupts by VMM
Upon VM exit, the VMM can determine the exit cause of an external interrupt by
checking the exit-reason field (value = 1) in VMCS. If the acknowledge-interrupt-on-
exit control (see Section 20.7.1) is enabled, the VMM can use the saved host vector
(in the exit-interruption-information field) to switch to the appropriate interrupt
handler. If acknowledge-interrupt-on-exit is not enabled, the VMM may re-enable
interrupts (by setting RFLAGS.IF) to allow vectoring of external interrupts through
the monitor/host IDT.

The following steps may need to be performed by the VMM to process an external
interrupt:

• Host Owned I/O Devices: For host-owned I/O devices, the interrupting device
is owned by the VMM (or hosting OS in a hosted VMM). In this model, the
interrupt service routine in the VMM/host driver is invoked and, upon ISR
completion, the appropriate write sequences (TPR updates, EOI etc.) to
respective interrupt controllers are performed as normal. If the work completion
indicated by the driver implies virtual device activity, the VMM runs the virtual
device emulation. Depending on the device class, physical device activity could
imply activity by multiple virtual devices mapped over the device. For each
affected virtual device, the VMM injects a virtual external interrupt event to
respective guest virtual machines. The guest driver interacts with the emulated
virtual device to process the virtual interrupt. The interrupt controller emulation
in the VMM supports various guest accesses to the VMM’s virtual interrupt
controller.

• Guest Assigned I/O Devices: For assigned I/O devices, either the VMM uses a
software proxy or it can directly map the physical device to the assigned VM. In
both cases, servicing of the interrupt condition on the physical device is initiated
by the driver running inside the guest VM. With host control of external
interrupts, interrupts from assigned physical devices cause VM exits to the VMM
and vectoring through the host IDT to the registered VMM interrupt handler. To
unblock delivery of other low priority platform interrupts, the VMM interrupt
handler must mask the interrupt source (for level triggered interrupts) and issue
the appropriate EOI write sequences.
Vol. 3 27-9

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
Once the physical interrupt source is masked and the platform EOI generated, the
VMM can map the host vector to its corresponding guest vector to inject the virtual
interrupt into the assigned VM. The guest software does EOI write sequences to its
virtual interrupt controller after completing interrupt processing. For level triggered
interrupts, these EOI writes to the virtual interrupt controller may be trapped by the
VMM which may in turn unmask the previously masked interrupt source.

27.3.3.4 Generation of Virtual Interrupt Events by VMM
The following provides some of the general steps that need to be taken by VMM
designs when generating virtual interrupts:

1. Check virtual processor interruptibility state. The virtual processor interruptibility
state is reflected in the guest RFLAGS.IF flag and the processor interruptibility-
state saved in the guest state area of the controlling-VMCS. If RFLAGS.IF is set
and the interruptibility state indicates readiness to take external interrupts (STI-
masking and MOV-SS/POP-SS-masking bits are clear), the guest virtual
processor is ready to take external interrupts. If the VMM design supports non-
active guest sleep states, the VMM needs to make sure the current guest sleep
state allows injection of external interrupt events.

2. If the guest virtual processor state is currently not interruptible, a VMM may
utilize the “interrupt-window exiting” VM-execution to notify the VM (through a
VM exit) when the virtual processor state changes to interruptible state.

3. Check the virtual interrupt controller state. If the guest VM exposes a virtual local
APIC, the current value of its processor priority register specifies if guest
software allows dispensing an external virtual interrupt with a specific priority to
the virtual processor. If the virtual interrupt is routed through the local vector
table (LVT) entry of the local APIC, the mask bits in the corresponding LVT entry
specifies if the interrupt is currently masked. Similarly, the virtual interrupt
controller’s current mask (IO-APIC or PIC) and priority settings reflect guest
state to accept specific external interrupts. The VMM needs to check both the
virtual processor and interrupt controller states to verify its guest interruptibility
state. If the guest is currently interruptible, the VMM can inject the virtual
interrupt. If the current guest state does not allow injecting a virtual interrupt,
the interrupt needs to be queued by the VMM until it can be delivered.

4. Prioritize the use of VM-entry event injection. A VMM may use VM-entry event
injection to deliver various virtual events (such as external interrupts,
exceptions, traps, and so forth). VMM designs may prioritize use of virtual-
interrupt injection between these event types. Since each VM entry allows
injection of one event, depending on the VMM event priority policies, the VMM
may need to queue the external virtual interrupt if a higher priority event is to be
delivered on the next VM entry. Since the VMM has masked this particular
interrupt source (if it was level triggered) and done EOI to the platform interrupt
controller, other platform interrupts can be serviced while this virtual interrupt
event is queued for later delivery to the VM.
27-10 Vol. 3

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
5. Update the virtual interrupt controller state. When the above checks have
passed, before generating the virtual interrupt to the guest, the VMM updates the
virtual interrupt controller state (Local-APIC, IO-APIC and/or PIC) to reflect
assertion of the virtual interrupt. This involves updating the various interrupt
capture registers, and priority registers as done by the respective hardware
interrupt controllers. Updating the virtual interrupt controller state is required for
proper interrupt event processing by guest software.

6. Inject the virtual interrupt on VM entry. To inject an external virtual interrupt to a
guest VM, the VMM sets up the VM-entry interruption-information field in the
guest controlling-VMCS before entry to guest using VMRESUME. Upon VM entry,
the processor will use this vector to access the gate in guest’s IDT and the value
of RFLAGS and EIP in guest-state area of controlling-VMCS is pushed on the
guest stack. If the guest RFLAGS.IF is clear, the STI-masking bit is set, or the
MOV- SS/POP-SS-masking bit is set, the VM entry will fail and the processor will
load state from the host-state area of the working VMCS as if a VM exit had
occurred (see Section 22.7).

27.4 ERROR HANDLING BY VMM
Error conditions may occur during VM entries and VM exits and a few other situa-
tions. This section describes how VMM should handle these error conditions,
including triple faults and machine check exceptions.

27.4.1 VM-Exit Failures
All VM exits load processor state from the host-state area of the VMCS that was the
controlling VMCS before the VM exit. This state is checked for consistency while being
loaded. Because the host-state is checked on VM entry, these checks will generally
succeed. Failure is possible only if host software is incorrect or if VMCS data in the
VMCS region in memory has been written by guest software (or by I/O DMA) since
the last VM entry. VM exits may fail for the following reasons:

• There was a failure on storing guest MSRs.

• There was failure in loading a PDPTR.

• The controlling VMCS has been corrupted (through writes to the corresponding
VMCS region) in such a way that the implementation cannot complete the VM
exit.

• There was a failure on loading host MSRs.

• A machine check occurred.

If one of these problems occurs on a VM exit, a VMX abort results.
Vol. 3 27-11

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
27.4.2 Machine Check Considerations
The following sequence determine how machine checks are handled during VMXON,
VMXOFF, VM entries, and VM exits:

• VMXOFF and VMXON:

If a machine check occurs during VMXOFF or VMXON and CR4.MCE = 1, a
machine-check exception (#MC) is generated. If CR4.MCE = 0, the processor
goes to shutdown state.

• VM entry:

If a machine check occurs during VM entry, one of the following two treatments
must occur:

a. Normal delivery. If CR4.MCE = 1, delivery of a machine-check exception
(#MC) through the host IDT occurs. If CR4.MCE = 0, the processor goes to
shutdown state.

b. Load state from the host-state area of the working VMCS as if a VM exit had
occurred (see Section 22.7). The basic exit reason will be “VM-entry failure
due to machine check.”

If the machine check occurs after any guest state has been loaded, option b
above must be used. If the machine check occurs while checking host state and
VMX controls (or while reporting a failure due to such checks), option a should be
preferred; however, an implementation may use b, since software will not be able
to tell whether any guest state has been loaded.

• VM exit:

If a machine check occurs during VM exit, one of the following two treatments
must occur:

• Normal delivery. If CR4.MCE = 1, delivery of a machine-check exception
(#MC) through the guest IDT. If CR4.MCE = 0, the processor goes to
shutdown state.

• Fail the VM exit. If the VM exit is to VMX root operation, a VMX abort will
result; it will block events as done normally in VMX abort. The VMX abort
indicator will show a machine check has induced the abort operation.

If a machine check is induced by an action in VMX non-root operation before any
determination is made that the inducing action may cause a VM exit, that
machine check should be considered as happening during guest execution in VMX
non-root operation. This is the case even if the part of the action that caused the
machine check was VMX-specific (for example: the processor’s consulting an I/O
bitmap). A machine-check exception will occur. If bit 12H of the exception bitmap
is cleared to 0, a machine-check exception could be delivered to the guest
through gate 12H of its IDT; if the bit is set to 1, the machine-check exception will
cause a VM exit.
27-12 Vol. 3

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
NOTE
The state saved in the guest-state area on VM exits due to machine-
check exceptions should be considered suspect. A VMM should
consult the RIPV and EIPV bits in the IA32_MCG_STATUS MSR before
resuming a guest that caused a VM exit due to a machine-check
exception.

27.5 HANDLING ACTIVITY STATES BY VMM
A VMM might place a logic processor in the wait-for-SIPI activity state if supporting
certain guest operating system using the multi-processor (MP) start-up algorithm. A
guest with direct access to the physical local APIC and using the MP start-up algo-
rithm sends an INIT-SIPI-SIPI IPI sequence to start the application processor. In
order to trap the SIPIs, the VMM must start the logic processor which is the target of
the SIPIs in wait-for-SIPI mode.
Vol. 3 27-13

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
27-14 Vol. 3

APPENDIX A
PERFORMANCE-MONITORING EVENTS

This appendix lists the performance-monitoring events that can be monitored with
the Intel 64 or IA-32 processors. The ability to monitor performance events and the
events that can be monitored in these processors are mostly model-specific, except
for architectural performance events, described in Section A.1.

Non-architectural performance events (i.e. model-specific events) are listed for each
generation of microarchitecture:

• Section A.2 - Processors based on Intel Core microarchitecture

• Section A.3 - Intel Core Solo and Intel Core Duo processors

• Section A.4 - Processors based on Intel NetBurst microarchitecture

• Section A.5 - Pentium M family processors

• Section A.6 - P6 family processors

• Section A.7 - Pentium processors

NOTE
These performance-monitoring events are intended to be used as
guides for performance tuning. The counter values reported by the
performance-monitoring events are approximate and believed to be
useful as relative guides for tuning software. Known discrepancies
are documented where applicable.

A.1 ARCHITECTURAL PERFORMANCE-MONITORING
EVENTS

Architectural performance events are introduced in Intel Core Solo and Intel Core
Duo processors. They are also supported on processors based on Intel Core microar-
chitecture. Table A-1 lists pre-defined architectural performance events that can be
configured using general-purpose performance counters and associated event-select
registers.

Table A-1. Architectural Performance Events
Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment

3CH UnHalted Core Cycles 00H Unhalted core cycles

3CH UnHalted Reference
Cycles

01H Unhalted reference cycles Measures bus
cycle1
Vol. 3 A-1

PERFORMANCE-MONITORING EVENTS
A.2 PERFORMANCE MONITORING EVENTS FOR
INTEL® XEON® PROCESSOR 3000, 3200, 5100,
5300 SERIES AND INTEL® CORE™2 DUO
PROCESSORS

Processors based on Intel Core microarchitecture support architectural and non-
architectural performance-monitoring events.

Fixed-function performance counters are introduced first on processors based on
Intel Core microarchitecture. Table A-2 lists pre-defined performance events that can
be counted using fixed-function performance counters.

C0H Instruction Retired 00H Instruction retired

2EH LLC Reference 4FH LL cache references

2EH LLC Misses 41H LL cache misses

C4H Branch Instruction
Retired

00H Branch instruction retired

C5H Branch Misses
Retired

00H Mispredicted Branch Instruction
retired

NOTES:
1. Implementation of this event in Intel Core 2 processor family, Intel Core Duo, and Intel Core Solo

processors measures bus clocks.

Table A-2. Fixed-Function Performance Counter
and Pre-defined Performance Events

Fixed-Function
Performance
Counter Address

Event Mask
Mnemonic Description

MSR_PERF_FIXED_
CTR0

309H Instr_Retired.Any This event counts the number of
instructions that retire execution. For
instructions that consist of multiple micro-
ops, this event counts the retirement of
the last micro-op of the instruction. The
counter continue counting during
hardware interrupts, traps, and inside
interrupt handlers

Table A-1. Architectural Performance Events
Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
A-2 Vol. 3

PERFORMANCE-MONITORING EVENTS
Table A-3 lists general-purpose non-architectural performance-monitoring events
supported in processors based on Intel Core microarchitecture. For convenience,
Table A-3 also includes architectural events and describes minor model-specific
behavior where applicable. Software must use a general-purpose performance
counter to count events listed in Table A-3.

MSR_PERF_FIXED_
CTR1

30AH CPU_CLK_UNHALT
ED.CORE

This event counts the number of core
cycles while the core is not in a halt state.
The core enters the halt state when it is
running the HLT instruction. This event is a
component in many key event ratios.

The core frequency may change from time
to time due to transitions associated with
Enhanced Intel SpeedStep Technology or
TM2. For this reason this event may have
a changing ratio with regards to time.

When the core frequency is constant, this
event can approximate elapsed time while
the core was not in halt state.

MSR_PERF_FIXED_
CTR2

30BH CPU_CLK_UNHALT
ED.REF

This event counts the number of
reference cycles when the core is not in a
halt state. The core enters the halt state
when it is running the HLT instruction or
the MWAIT instruction.

This event is not affected by core
frequency changes (e.g., P states, TM2
transitions) but counts at the same
frequency as the time stamp counter. This
event can approximate elapsed time while
the core was not in halt state.

This event has a constant ratio with the
CPU_CLK_UNHALTED.BUS event.

Table A-2. Fixed-Function Performance Counter
and Pre-defined Performance Events (Contd.)

Fixed-Function
Performance
Counter Address

Event Mask
Mnemonic Description
Vol. 3 A-3

PERFORMANCE-MONITORING EVENTS
Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture

Event
Num

Umask
Value Event Name Definition

Description and
Comment

03H 02H LOAD_BLOCK.STA Loads blocked
by a preceding
store with
unknown
address

This event indicates that loads are blocked
by preceding stores. A load is blocked
when there is a preceding store to an
address that is not yet calculated. The
number of events is greater or equal to
the number of load operations that were
blocked.

If the load and the store are always to
different addresses, check why the
memory disambiguation mechanism is not
working. To avoid such blocks, increase the
distance between the store and the
following load so that the store address is
known at the time the load is dispatched.

03H 04H LOAD_BLOCK.STD Loads blocked
by a preceding
store with
unknown data

This event indicates that loads are blocked
by preceding stores. A load is blocked
when there is a preceding store to the
same address and the stored data value is
not yet known. The number of events is
greater or equal to the number of load
operations that were blocked.

To avoid such blocks, increase the distance
between the store and the dependant
load, so that the store data is known at
the time the load is dispatched.

03H 08H LOAD_BLOCK.
OVERLAP_STORE

Loads that
partially
overlap an
earlier store, or
4-Kbyte aliased
with a previous
store

This event indicates that loads are blocked
due to a variety of reasons. Some of the
triggers for this event are when a load is
blocked by a preceding store, in one of the
following:

• Some of the loaded byte locations are
written by the preceding store and
some are not.

• The load is from bytes written by the
preceding store, the store is aligned to
its size and either:

• The load’s data size is one or two bytes
and it is not aligned to the store.

• The load’s data size is of four or eight
bytes and the load is misaligned.
A-4 Vol. 3

PERFORMANCE-MONITORING EVENTS
• The load is from bytes written by the
preceding store, the store is misaligned
and the load is not aligned on the
beginning of the store.

• The load is split over an eight byte
boundary (excluding 16-byte loads).

• The load and store have the same
offset relative to the beginning of
different 4-KByte pages. This case is
also called 4-KByte aliasing.

In all these cases the load is blocked until
after the blocking store retires and the
stored data is committed to the cache
hierarchy.

03H 10H LOAD_BLOCK.
UNTIL_RETIRE

Loads blocked
until retirement

This event indicates that load operations
were blocked until retirement. The number
of events is greater or equal to the
number of load operations that were
blocked.

This includes mainly uncacheable loads
and split loads (loads that cross the cache
line boundary) but may include other cases
where loads are blocked until retirement.

03H 20H LOAD_BLOCK.L1D Loads blocked
by the L1 data
cache

This event indicates that loads are blocked
due to one or more reasons. Some
triggers for this event are:

• The number of L1 data cache misses
exceeds the maximum number of
outstanding misses supported by the
processor. This includes misses
generated as result of demand fetches,
software prefetches or hardware
prefetches.

• Cache line split loads.
• Partial reads, such as reads to un-

cacheable memory, I/O instructions and
more.

• A locked load operation is in progress.
The number of events is greater or
equal to the number of load operations
that were blocked.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3 A-5

PERFORMANCE-MONITORING EVENTS
04H 01H SB_DRAIN_
CYCLES

Cycles while
stores are
blocked due to
store buffer
drain

This event counts every cycle during
which the store buffer is draining. This
includes:

• Serializing operations such as CPUID
• Synchronizing operations such as XCHG
• Interrupt acknowledgment
• Other conditions, such as cache flushing

04H 02H STORE_BLOCK.
ORDER

Cycles while
store is waiting
for a preceding
store to be
globally
observed

This event counts the total duration, in
number of cycles, which stores are waiting
for a preceding stored cache line to be
observed by other cores.

This situation happens as a result of the
strong store ordering behavior, as defined
in “Memory Ordering,” Chapter 7, Intel® 64
and IA-32 Architectures Software
Developer’s Manual, Volume 3A.

The stall may occur and be noticeable if
there are many cases when a store either
misses the L1 data cache or hits a cache
line in the Shared state. If the store
requires a bus transaction to read the
cache line then the stall ends when snoop
response for the bus transaction arrives.

04H 08H STORE_BLOCK.
SNOOP

A store is
blocked due to
a conflict with
an external or
internal snoop.

This event counts the number of cycles
the store port was used for snooping the
L1 data cache and a store was stalled by
the snoop. The store is typically
resubmitted one cycle later.

06H 00H SEGMENT_REG_
LOADS

Number of
segment
register loads

This event counts the number of segment
register load operations. Instructions that
load new values into segment registers
cause a penalty.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-6 Vol. 3

PERFORMANCE-MONITORING EVENTS
This event indicates performance issues in
16-bit code. If this event occurs
frequently, it may be useful to calculate
the number of instructions retired per
segment register load. If the resulting
calculation is low (on average a small
number of instructions are executed
between segment register loads), then the
code’s segment register usage should be
optimized.

As a result of branch misprediction, this
event is speculative and may include
segment register loads that do not
actually occur. However, most segment
register loads are internally serialized and
such speculative effects are minimized.

07H 00H SSE_PRE_EXEC.
NTA

Streaming SIMD
Extensions
(SSE) Prefetch
NTA
instructions
executed

This event counts the number of times the
SSE instruction prefetchNTA is executed.

This instruction prefetches the data to the
L1 data cache.

07H 01H SSE_PRE_EXEC.L1 Streaming SIMD
Extensions
(SSE)
PrefetchT0
instructions
executed

This event counts the number of times the
SSE instruction prefetchT0 is executed.
This instruction prefetches the data to the
L1 data cache and L2 cache.

07H 02H SSE_PRE_EXEC.L2 Streaming
SIMD
Extensions
(SSE)
PrefetchT1 and
PrefetchT2
instructions
executed

This event counts the number of times the
SSE instructions prefetchT1 and
prefetchT2 are executed. These
instructions prefetch the data to the L2
cache.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3 A-7

PERFORMANCE-MONITORING EVENTS
07H 03H SSE_PRE_
EXEC.STORES

Streaming SIMD
Extensions
(SSE) Weakly-
ordered store
instructions
executed

This event counts the number of times
SSE non-temporal store instructions are
executed.

08H 01H DTLB_MISSES.
ANY

Memory
accesses that
missed the
DTLB

This event counts the number of Data
Table Lookaside Buffer (DTLB) misses. The
count includes misses detected as a result
of speculative accesses.

Typically a high count for this event
indicates that the code accesses a large
number of data pages.

08H 02H DTLB_MISSES
.MISS_LD

DTLB misses
due to load
operations

This event counts the number of Data
Table Lookaside Buffer (DTLB) misses due
to load operations.

This count includes misses detected as a
result of speculative accesses.

08H 04H DTLB_MISSES.L0_
MISS_LD

L0 DTLB misses
due to load
operations

This event counts the number of level 0
Data Table Lookaside Buffer (DTLB0)
misses due to load operations.

This count includes misses detected as a
result of speculative accesses. Loads that
miss that DTLB0 and hit the DTLB1 can
incur two-cycle penalty.

08H 08H DTLB_MISSES.
MISS_ST

TLB misses due
to store
operations

This event counts the number of Data
Table Lookaside Buffer (DTLB) misses due
to store operations.

This count includes misses detected as a
result of speculative accesses. Address
translation for store operations is
performed in the DTLB1.

09H 01H MEMORY_
DISAMBIGUATION.
RESET

Memory
disambiguation
reset cycles

This event counts the number of cycles
during which memory disambiguation
misprediction occurs. As a result the
execution pipeline is cleaned and
execution of the mispredicted load
instruction and all succeeding instructions
restarts.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-8 Vol. 3

PERFORMANCE-MONITORING EVENTS
This event occurs when the data address
accessed by a load instruction, collides
infrequently with preceding stores, but
usually there is no collision. It happens
rarely, and may have a penalty of about 20
cycles.

09H 02H MEMORY_DISAMBI
GUATION.SUCCESS

Number of
loads
successfully
disambiguated.

This event counts the number of load
operations that were successfully
disambiguated. Loads are preceded by a
store with an unknown address, but they
are not blocked.

0CH 01H PAGE_WALKS
.COUNT

Number of
page-walks
executed

This event counts the number of page-
walks executed due to either a DTLB or
ITLB miss.

The page walk duration,
PAGE_WALKS.CYCLES, divided by number
of page walks is the average duration of a
page walk. The average can hint whether
most of the page-walks are satisfied by
the caches or cause an L2 cache miss.

0CH 02H PAGE_WALKS.
CYCLES

Duration of
page-walks in
core cycles

This event counts the duration of page-
walks in core cycles. The paging mode in
use typically affects the duration of page
walks.

Page walk duration divided by number of
page walks is the average duration of
page-walks. The average can hint at
whether most of the page-walks are
satisfied by the caches or cause an L2
cache miss.

10H 00H FP_COMP_OPS
_EXE

Floating point
computational
micro-ops
executed

This event counts the number of floating
point computational micro-ops executed.

11H 00H FP_ASSIST Floating point
assists

This event counts the number of floating
point operations executed that required
micro-code assist intervention. Assists are
required in the following cases:

• Streaming SIMD Extensions (SSE)
instructions:

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3 A-9

PERFORMANCE-MONITORING EVENTS
• Denormal input when the DAZ
(Denormals Are Zeros) flag is off

• Underflow result when the FTZ (Flush
To Zero) flag is off

• X87 instructions:
• NaN or denormal are loaded to a

register or used as input from memory
• Division by 0
• Underflow output

12H 00H MUL Multiply
operations
executed

This event counts the number of multiply
operations executed. This includes integer
as well as floating point multiply
operations.

13H 00H DIV Divide
operations
executed

This event counts the number of divide
operations executed. This includes integer
divides, floating point divides and square-
root operations executed.

14H 00H CYCLES_DIV
_BUSY

Cycles the
divider busy

This event counts the number of cycles
the divider is busy executing divide or
square root operations. The divide can be
integer, X87 or Streaming SIMD
Extensions (SSE). The square root
operation can be either X87 or SSE.

18H 00H IDLE_DURING
_DIV

Cycles the
divider is busy
and all other
execution units
are idle.

This event counts the number of cycles
the divider is busy (with a divide or a
square root operation) and no other
execution unit or load operation is in
progress.

Load operations are assumed to hit the L1
data cache. This event considers only
micro-ops dispatched after the divider
started operating.

19H 00H DELAYED_
BYPASS.FP

Delayed bypass
to FP operation

This event counts the number of times
floating point operations use data
immediately after the data was generated
by a non-floating point execution unit.
Such cases result in one penalty cycle due
to data bypass between the units.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-10 Vol. 3

PERFORMANCE-MONITORING EVENTS
19H 01H DELAYED_
BYPASS.SIMD

Delayed bypass
to SIMD
operation

This event counts the number of times
SIMD operations use data immediately
after the data was generated by a non-
SIMD execution unit. Such cases result in
one penalty cycle due to data bypass
between the units.

19H 02H DELAYED_
BYPASS.LOAD

Delayed bypass
to load
operation

This event counts the number of delayed
bypass penalty cycles that a load
operation incurred.

When load operations use data
immediately after the data was generated
by an integer execution unit, they may
(pending on certain dynamic internal
conditions) incur one penalty cycle due to
delayed data bypass between the units.

21H See
Table
18-7

L2_ADS.(Core) Cycles L2
address bus is
in use

This event counts the number of cycles
the L2 address bus is being used for
accesses to the L2 cache or bus queue. It
can count occurrences for this core or both
cores.

23H See
Table
18-7

L2_DBUS_BUSY
_RD.(Core)

Cycles the L2
transfers data
to the core

This event counts the number of cycles
during which the L2 data bus is busy
transferring data from the L2 cache to the
core. It counts for all L1 cache misses (data
and instruction) that hit the L2 cache.

This event can count occurrences for this
core or both cores.

24H Com-
bined
mask
from
Table
18-7
and
Table
18-9

L2_LINES_IN.
(Core, Prefetch)

L2 cache
misses

This event counts the number of cache
lines allocated in the L2 cache. Cache lines
are allocated in the L2 cache as a result of
requests from the L1 data and instruction
caches and the L2 hardware prefetchers
to cache lines that are missing in the L2
cache.

This event can count occurrences for this
core or both cores. It can also count
demand requests and L2 hardware
prefetch requests together or separately.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3 A-11

PERFORMANCE-MONITORING EVENTS
25H See
Table
18-7

L2_M_LINES_IN.
(Core)

L2 cache line
modifications

This event counts whenever a modified
cache line is written back from the L1 data
cache to the L2 cache.

This event can count occurrences for this
core or both cores.

26H See
Table
18-7
and
Table
18-9

L2_LINES_OUT.
(Core, Prefetch)

L2 cache lines
evicted

This event counts the number of L2 cache
lines evicted.

This event can count occurrences for this
core or both cores. It can also count
evictions due to demand requests and L2
hardware prefetch requests together or
separately.

27H See
Table
18-7
and
Table
18-9

L2_M_LINES_OUT.(
Core, Prefetch)

Modified lines
evicted from
the L2 cache

This event counts the number of L2
modified cache lines evicted. These lines
are written back to memory unless they
also exist in a modified-state in one of the
L1 data caches.

This event can count occurrences for this
core or both cores. It can also count
evictions due to demand requests and L2
hardware prefetch requests together or
separately.

28H Com-
bined
mask
from
Table
18-7
and
Table
18-10

L2_IFETCH.(Core,
Cache Line State)

L2 cacheable
instruction
fetch requests

This event counts the number of
instruction cache line requests from the
IFU. It does not include fetch requests
from uncacheable memory. It does not
include ITLB miss accesses.

This event can count occurrences for this
core or both cores. It can also count
accesses to cache lines at different MESI
states.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-12 Vol. 3

PERFORMANCE-MONITORING EVENTS
29H Combin
ed mask
from
Table
18-7,
Table
18-9,
and
Table
18-10

L2_LD.(Core,
Prefetch, Cache
Line State)

L2 cache reads This event counts L2 cache read requests
coming from the L1 data cache and L2
prefetchers.

The event can count occurrences:

• for this core or both cores
• due to demand requests and L2

hardware prefetch requests together or
separately

• of accesses to cache lines at different
MESI states

2AH See
Table
18-7
and
Table
18-10

L2_ST.(Core, Cache
Line State)

L2 store
requests

This event counts all store operations that
miss the L1 data cache and request the
data from the L2 cache.

The event can count occurrences for this
core or both cores. It can also count
accesses to cache lines at different MESI
states.

2BH See
Table
18-7
and
Table
18-10

L2_LOCK.(Core,
Cache Line State)

L2 locked
accesses

This event counts all locked accesses to
cache lines that miss the L1 data cache.

The event can count occurrences for this
core or both cores. It can also count
accesses to cache lines at different MESI
states.

2EH See
Table
18-7,
Table
18-9,
and
Table
18-10

L2_RQSTS.(Core,
Prefetch, Cache
Line State)

L2 cache
requests

This event counts all completed L2 cache
requests. This includes L1 data cache
reads, writes, and locked accesses, L1 data
prefetch requests, instruction fetches, and
all L2 hardware prefetch requests.

This event can count occurrences:

• for this core or both cores.
• due to demand requests and L2

hardware prefetch requests together,
or separately

• of accesses to cache lines at different
MESI states

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3 A-13

PERFORMANCE-MONITORING EVENTS
2EH 41H L2_RQSTS.SELF.
DEMAND.I_STATE

L2 cache
demand
requests from
this core that
missed the L2

This event counts all completed L2 cache
demand requests from this core that miss
the L2 cache. This includes L1 data cache
reads, writes, and locked accesses, L1 data
prefetch requests, and instruction fetches.

This is an architectural performance event.

2EH 4FH L2_RQSTS.SELF.
DEMAND.MESI

L2 cache
demand
requests from
this core

This event counts all completed L2 cache
demand requests from this core. This
includes L1 data cache reads, writes, and
locked accesses, L1 data prefetch
requests, and instruction fetches.

This is an architectural performance event.

30H See
Table
18-7,
Table
18-9,
and
Table
18-10

L2_REJECT_BUSQ.(
Core, Prefetch,
Cache Line State)

Rejected L2
cache requests

This event indicates that a pending L2
cache request that requires a bus
transaction is delayed from moving to the
bus queue. Some of the reasons for this
event are:

• The bus queue is full.
• The bus queue already holds an entry

for a cache line in the same set.
The number of events is greater or equal
to the number of requests that were
rejected.

• for this core or both cores.
• due to demand requests and L2

hardware prefetch requests together,
or separately.

• of accesses to cache lines at different
MESI states.

32H See
Table
18-7

L2_NO_REQ.(Core) Cycles no L2
cache requests
are pending

This event counts the number of cycles
that no L2 cache requests were pending
from a core. When using the BOTH_CORE
modifier, the event counts only if none of
the cores have a pending request. The
event counts also when one core is halted
and the other is not halted.

The event can count occurrences for this
core or both cores.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-14 Vol. 3

PERFORMANCE-MONITORING EVENTS
3AH 00H EIST_TRANS Number of
Enhanced Intel
SpeedStep
Technology
(EIST)
transitions

This event counts the number of
transitions that include a frequency
change, either with or without voltage
change. This includes Enhanced Intel
SpeedStep Technology (EIST) and TM2
transitions.

The event is incremented only while the
counting core is in C0 state. Since
transitions to higher-numbered CxE states
and TM2 transitions include a frequency
change or voltage transition, the event is
incremented accordingly.

3BH C0H THERMAL_TRIP Number of
thermal trips

This event counts the number of thermal
trips. A thermal trip occurs whenever the
processor temperature exceeds the
thermal trip threshold temperature.

Following a thermal trip, the processor
automatically reduces frequency and
voltage. The processor checks the
temperature every millisecond and returns
to normal when the temperature falls
below the thermal trip threshold
temperature.

3CH 00H CPU_CLK_
UNHALTED.
CORE_P

Core cycles
when core is
not halted

This event counts the number of core
cycles while the core is not in a halt state.
The core enters the halt state when it is
running the HLT instruction. This event is a
component in many key event ratios.

The core frequency may change due to
transitions associated with Enhanced Intel
SpeedStep Technology or TM2. For this
reason, this event may have a changing
ratio in regard to time.

When the core frequency is constant, this
event can give approximate elapsed time
while the core not in halt state.

This is an architectural performance event.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3 A-15

PERFORMANCE-MONITORING EVENTS
3CH 01H CPU_CLK_
UNHALTED.BUS

Bus cycles
when core is
not halted

This event counts the number of bus
cycles while the core is not in the halt
state. This event can give a measurement
of the elapsed time while the core was not
in the halt state. The core enters the halt
state when it is running the HLT
instruction.

The event also has a constant ratio with
CPU_CLK_UNHALTED.REF event, which is
the maximum bus to processor frequency
ratio.

Non-halted bus cycles are a component in
many key event ratios.

3CH 02H CPU_CLK_
UNHALTED.NO
_OTHER

Bus cycles
when core is
active and the
other is halted

This event counts the number of bus
cycles during which the core remains non-
halted and the other core on the processor
is halted.

This event can be used to determine the
amount of parallelism exploited by an
application or a system. Divide this event
count by the bus frequency to determine
the amount of time that only one core was
in use.

40H See
Table
18-10

L1D_CACHE_LD.
(Cache Line State)

L1 cacheable
data reads

This event counts the number of data
reads from cacheable memory. Locked
reads are not counted.

41H See
Table
18-10

L1D_CACHE_ST.
(Cache Line State)

L1 cacheable
data writes

This event counts the number of data
writes to cacheable memory. Locked
writes are not counted.

42H See
Table
18-10

L1D_CACHE_
LOCK.(Cache Line
State)

L1 data
cacheable
locked reads

This event counts the number of locked
data reads from cacheable memory.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-16 Vol. 3

PERFORMANCE-MONITORING EVENTS
42H 10H L1D_CACHE_
LOCK_DURATION

Duration of L1
data cacheable
locked
operation

This event counts the number of cycles
during which any cache line is locked by
any locking instruction.

Locking happens at retirement and
therefore the event does not occur for
instructions that are speculatively
executed. Locking duration is shorter than
locked instruction execution duration.

43H 10H L1D_ALL_REF All references
to the L1 data
cache

This event counts all references to the L1
data cache, including all loads and stores
with any memory types.

The event counts memory accesses only
when they are actually performed. For
example, a load blocked by unknown store
address and later performed is only
counted once.

The event includes non-cacheable
accesses, such as I/O accesses.

43H 02H L1D_ALL_
CACHE_REF

L1 Data
cacheable
reads and
writes

This event counts the number of data
reads and writes from cacheable memory,
including locked operations.

This event is a sum of:

• L1D_CACHE_LD.MESI
• L1D_CACHE_ST.MESI
• L1D_CACHE_LOCK.MESI

45H 0FH L1D_REPL Cache lines
allocated in the
L1 data cache

This event counts the number of lines
brought into the L1 data cache.

46H 00H L1D_M_REPL Modified cache
lines allocated
in the L1 data
cache

This event counts the number of modified
lines brought into the L1 data cache.

47H 00H L1D_M_EVICT Modified cache
lines evicted
from the L1
data cache

This event counts the number of modified
lines evicted from the L1 data cache,
whether due to replacement or by snoop
HITM intervention.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3 A-17

PERFORMANCE-MONITORING EVENTS
48H 00H L1D_PEND_
MISS

Total number of
outstanding L1
data cache
misses at any
cycle

This event counts the number of
outstanding L1 data cache misses at any
cycle. An L1 data cache miss is
outstanding from the cycle on which the
miss is determined until the first chunk of
data is available. This event counts:

• all cacheable demand requests
• L1 data cache hardware prefetch

requests
• requests to write through memory
• requests to write combine memory
Uncacheable requests are not counted.
The count of this event divided by the
number of L1 data cache misses,
L1D_REPL, is the average duration in core
cycles of an L1 data cache miss.

49H 01H L1D_SPLIT.LOADS Cache line split
loads from the
L1 data cache

This event counts the number of load
operations that span two cache lines. Such
load operations are also called split loads.
Split load operations are executed at
retirement.

49H 02H L1D_SPLIT.
STORES

Cache line split
stores to the
L1 data cache

This event counts the number of store
operations that span two cache lines.

4BH 00H SSE_PRE_
MISS.NTA

Streaming SIMD
Extensions
(SSE) Prefetch
NTA
instructions
missing all
cache levels

This event counts the number of times the
SSE instructions prefetchNTA were
executed and missed all cache levels.

Due to speculation an executed instruction
might not retire. This instruction
prefetches the data to the L1 data cache.

4BH 01H SSE_PRE_
MISS.L1

Streaming SIMD
Extensions
(SSE)
PrefetchT0
instructions
missing all
cache levels

This event counts the number of times the
SSE instructions prefetchT0 were
executed and missed all cache levels.

Due to speculation executed instruction
might not retire. The prefetchT0
instruction prefetches data to the L2
cache and L1 data cache.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-18 Vol. 3

PERFORMANCE-MONITORING EVENTS
4BH 02H SSE_PRE_
MISS.L2

Streaming SIMD
Extensions
(SSE)
PrefetchT1 and
PrefetchT2
instructions
missing all
cache levels

This event counts the number of times the
SSE instructions prefetchT1 and
prefetchT2 were executed and missed all
cache levels.

Due to speculation, an executed
instruction might not retire. The
prefetchT1 and PrefetchNT2 instructions
prefetch data to the L2 cache.

4CH 00H LOAD_HIT_PRE Load
operations
conflicting with
a software
prefetch to the
same address

This event counts load operations sent to
the L1 data cache while a previous
Streaming SIMD Extensions (SSE) prefetch
instruction to the same cache line has
started prefetching but has not yet
finished.

4EH 10H L1D_PREFETCH.
REQUESTS

L1 data cache
prefetch
requests

This event counts the number of times the
L1 data cache requested to prefetch a
data cache line. Requests can be rejected
when the L2 cache is busy and
resubmitted later or lost.

All requests are counted, including those
that are rejected.

60H See
Table
18-7
and
Table
18-8

BUS_REQUEST_
OUTSTANDING.
(Core and Bus
Agents)

Outstanding
cacheable data
read bus
requests
duration

This event counts the number of pending
full cache line read transactions on the bus
occurring in each cycle. A read transaction
is pending from the cycle it is sent on the
bus until the full cache line is received by
the processor.

The event counts only full-line cacheable
read requests from either the L1 data
cache or the L2 prefetchers. It does not
count Read for Ownership transactions,
instruction byte fetch transactions, or any
other bus transaction.

61H See
Table
18-8.

BUS_BNR_DRV.
(Bus Agents)

Number of Bus
Not Ready
signals
asserted

This event counts the number of Bus Not
Ready (BNR) signals that the processor
asserts on the bus to suspend additional
bus requests by other bus agents.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3 A-19

PERFORMANCE-MONITORING EVENTS
A bus agent asserts the BNR signal when
the number of data and snoop
transactions is close to the maximum that
the bus can handle. To obtain the number
of bus cycles during which the BNR signal
is asserted, multiply the event count by
two.

While this signal is asserted, new
transactions cannot be submitted on the
bus. As a result, transaction latency may
have higher impact on program
performance.

62H See
Table
18-8

BUS_DRDY_
CLOCKS.(Bus
Agents)

Bus cycles
when data is
sent on the bus

This event counts the number of bus
cycles during which the DRDY (Data
Ready) signal is asserted on the bus. The
DRDY signal is asserted when data is sent
on the bus. With the 'THIS_AGENT' mask
this event counts the number of bus
cycles during which this agent (the
processor) writes data on the bus back to
memory or to other bus agents. This
includes all explicit and implicit data
writebacks, as well as partial writes.

With the 'ALL_AGENTS' mask, this event
counts the number of bus cycles during
which any bus agent sends data on the
bus. This includes all data reads and writes
on the bus.

63H See
Table
18-7
and
Table
18-8

BUS_LOCK_
CLOCKS.(Core and
Bus Agents)

Bus cycles
when a LOCK
signal asserted

This event counts the number of bus
cycles, during which the LOCK signal is
asserted on the bus. A LOCK signal is
asserted when there is a locked memory
access, due to:

• uncacheable memory
• locked operation that spans two cache

lines
• page-walk from an uncacheable page

table
Bus locks have a very high performance
penalty and it is highly recommended to
avoid such accesses.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-20 Vol. 3

PERFORMANCE-MONITORING EVENTS
64H See
Table
18-7

BUS_DATA_
RCV.(Core)

Bus cycles
while processor
receives data

This event counts the number of bus
cycles during which the processor is busy
receiving data.

65H See
Table
18-7
and
Table
18-8

BUS_TRANS_BRD.(
Core and Bus
Agents)

Burst read bus
transactions

This event counts the number of burst
read transactions including:

• L1 data cache read misses (and L1 data
cache hardware prefetches)

• L2 hardware prefetches by the DPL and
L2 streamer

• IFU read misses of cacheable lines.
It does not include RFO transactions.

66H See
Table
18-7
and
Table
18-8.

BUS_TRANS_RFO.(
Core and Bus
Agents)

RFO bus
transactions

This event counts the number of Read For
Ownership (RFO) bus transactions, due to
store operations that miss the L1 data
cache and the L2 cache. It also counts RFO
bus transactions due to locked operations.

67H See
Table
18-7
and
Table
18-8.

BUS_TRANS_WB.
(Core and Bus
Agents)

Explicit
writeback bus
transactions

This event counts all explicit writeback bus
transactions due to dirty line evictions. It
does not count implicit writebacks due to
invalidation by a snoop request.

68H See
Table
18-7
and
Table
18-8

BUS_TRANS_
IFETCH.(Core and
Bus Agents)

Instruction-
fetch bus
transactions

This event counts all instruction fetch full
cache line bus transactions.

69H See
Table
18-7
and
Table
18-8

BUS_TRANS_
INVAL.(Core and
Bus Agents)

Invalidate bus
transactions

This event counts all invalidate
transactions. Invalidate transactions are
generated when:

• A store operation hits a shared line in
the L2 cache.

• A full cache line write misses the L2
cache or hits a shared line in the L2
cache.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3 A-21

PERFORMANCE-MONITORING EVENTS
6AH See
Table
18-7
and
Table
18-8

BUS_TRANS_
PWR.(Core and Bus
Agents)

Partial write
bus transaction

This event counts partial write bus
transactions.

6BH See
Table
18-7
and
Table
18-8

BUS_TRANS
_P.(Core and Bus
Agents)

Partial bus
transactions

This event counts all (read and write)
partial bus transactions.

6CH See
Table
18-7
and
Table
18-8

BUS_TRANS_IO.(C
ore and Bus
Agents)

IO bus
transactions

This event counts the number of
completed I/O bus transactions as a result
of IN and OUT instructions. The count does
not include memory mapped IO.

6DH See
Table
18-7
and
Table
18-8

BUS_TRANS_
DEF.(Core and Bus
Agents)

Deferred bus
transactions

This event counts the number of deferred
transactions.

6EH See
Table
18-7
and
Table
18-8

BUS_TRANS_
BURST.(Core and
Bus Agents)

Burst (full
cache-line) bus
transactions

This event counts burst (full cache line)
transactions including:

• Burst reads
• RFOs
• Explicit writebacks
• Write combine lines

6FH See
Table
18-7
and
Table
18-8

BUS_TRANS_
MEM.(Core and Bus
Agents)

Memory bus
transactions

This event counts all memory bus
transactions including:

• Burst transactions
• Partial reads and writes - invalidate

transactions
The BUS_TRANS_MEM count is the sum of
BUS_TRANS_BURST, BUS_TRANS_P and
BUS_TRANS_IVAL.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-22 Vol. 3

PERFORMANCE-MONITORING EVENTS
70H See
Table
18-7
and
Table
18-8

BUS_TRANS_
ANY.(Core and Bus
Agents)

All bus
transactions

This event counts all bus transactions. This
includes:

• Memory transactions
• IO transactions (non memory-mapped)
• Deferred transaction completion
• Other less frequent transactions, such

as interrupts

77H See
Table
18-7
and
Table
18-11

EXT_SNOOP.
(Bus Agents, Snoop
Response)

External
snoops

This event counts the snoop responses to
bus transactions. Responses can be
counted separately by type and by bus
agent.

With the 'THIS_AGENT' mask, the event
counts snoop responses from this
processor to bus transactions sent by this
processor. With the 'ALL_AGENTS' mask
the event counts all snoop responses seen
on the bus.

78H See
Table
18-7
and
Table
18-12

CMP_SNOOP.(Core,
Snoop Type)

L1 data cache
snooped by
other core

This event counts the number of times the
L1 data cache is snooped for a cache line
that is needed by the other core in the
same processor. The cache line is either
missing in the L1 instruction or data
caches of the other core, or is available for
reading only and the other core wishes to
write the cache line.

The snoop operation may change the
cache line state. If the other core issued a
read request that hit this core in E state,
typically the state changes to S state in
this core. If the other core issued a read
for ownership request (due a write miss or
hit to S state) that hits this core's cache
line in E or S state, this typically results in
invalidation of the cache line in this core. If
the snoop hits a line in M state, the state is
changed at a later opportunity.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3 A-23

PERFORMANCE-MONITORING EVENTS
These snoops are performed through the
L1 data cache store port. Therefore,
frequent snoops may conflict with
extensive stores to the L1 data cache,
which may increase store latency and
impact performance.

7AH See
Table
18-8

BUS_HIT_DRV.

(Bus Agents)

HIT signal
asserted

This event counts the number of bus
cycles during which the processor drives
the HIT# pin to signal HIT snoop response.

7BH See
Table
18-8

BUS_HITM_DRV.

(Bus Agents)

HITM signal
asserted

This event counts the number of bus
cycles during which the processor drives
the HITM# pin to signal HITM snoop
response.

7DH See
Table
18-7

BUSQ_EMPTY.

(Core)

Bus queue
empty

This event counts the number of cycles
during which the core did not have any
pending transactions in the bus queue. It
also counts when the core is halted and
the other core is not halted.

This event can count occurrences for this
core or both cores.

7EH See
Table
18-7
and
Table
18-8

SNOOP_STALL_
DRV.(Core and Bus
Agents)

Bus stalled for
snoops

This event counts the number of times
that the bus snoop stall signal is asserted.
To obtain the number of bus cycles during
which snoops on the bus are prohibited,
multiply the event count by two.

During the snoop stall cycles, no new bus
transactions requiring a snoop response
can be initiated on the bus. A bus agent
asserts a snoop stall signal if it cannot
response to a snoop request within three
bus cycles.

7FH See
Table
18-7

BUS_IO_WAIT.
(Core)

IO requests
waiting in the
bus queue

This event counts the number of core
cycles during which IO requests wait in the
bus queue. With the SELF modifier this
event counts IO requests per core.

With the BOTH_CORE modifier, this event
increments by one for any cycle for which
there is a request from either core.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-24 Vol. 3

PERFORMANCE-MONITORING EVENTS
80H 00H L1I_READS Instruction
fetches

This event counts all instruction fetches,
including uncacheable fetches that bypass
the Instruction Fetch Unit (IFU).

81H 00H L1I_MISSES Instruction
Fetch Unit
misses

This event counts all instruction fetches
that miss the Instruction Fetch Unit (IFU)
or produce memory requests. This
includes uncacheable fetches.

An instruction fetch miss is counted only
once and not once for every cycle it is
outstanding.

82H 02H ITLB.SMALL_MISS ITLB small page
misses

This event counts the number of
instruction fetches from small pages that
miss the ITLB.

82H 10H ITLB.LARGE_MISS ITLB large page
misses

This event counts the number of
instruction fetches from large pages that
miss the ITLB.

82H 40H ITLB.FLUSH ITLB flushes This event counts the number of ITLB
flushes. This usually happens upon CR3 or
CR0 writes, which are executed by the
operating system during process switches.

82H 12H ITLB.MISSES ITLB misses This event counts the number of
instruction fetches from either small or
large pages that miss the ITLB.

83H 02H INST_QUEUE.FULL Cycles during
which the
instruction
queue is full

This event counts the number of cycles
during which the instruction queue is full.
In this situation, the core front-end stops
fetching more instructions. This is an
indication of very long stalls in the back-
end pipeline stages.

86H 00H CYCLES_L1I_
MEM_STALLED

Cycles during
which
instruction
fetches stalled

This event counts the number of cycles for
which an instruction fetch stalls, including
stalls due to any of the following reasons:

• instruction Fetch Unit cache misses
• instruction TLB misses
• instruction TLB faults

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3 A-25

PERFORMANCE-MONITORING EVENTS
87H 00H ILD_STALL Instruction
Length Decoder
stall cycles due
to a length
changing prefix

This event counts the number of cycles
during which the instruction length
decoder uses the slow length decoder.
Usually, instruction length decoding is
done in one cycle. When the slow decoder
is used, instruction decoding requires 6
cycles.

The slow decoder is used in the following
cases:

• operand override prefix (66H)
preceding an instruction with
immediate data

• address override prefix (67H) preceding
an instruction with a modr/m in real, big
real, 16-bit protected or 32-bit
protected modes

To avoid instruction length decoding stalls,
generate code using imm8 or imm32
values instead of imm16 values. If you
must use an imm16 value, store the value
in a register using “mov reg, imm32” and
use the register format of the instruction.

88H 00H BR_INST_EXEC Branch
instructions
executed

This event counts all executed branches
(not necessarily retired). This includes only
instructions and not micro-op branches.

Frequent branching is not necessarily a
major performance issue. However
frequent branch mispredictions may be a
problem.

89H 00H BR_MISSP_EXEC Mispredicted
branch
instructions
executed

This event counts the number of
mispredicted branch instructions that
were executed.

8AH 00H BR_BAC_
MISSP_EXEC

Branch
instructions
mispredicted at
decoding

This event counts the number of branch
instructions that were mispredicted at
decoding.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-26 Vol. 3

PERFORMANCE-MONITORING EVENTS
8BH 00H BR_CND_EXEC Conditional
branch
instructions
executed.

This event counts the number of
conditional branch instructions executed,
but not necessarily retired.

8CH 00H BR_CND_
MISSP_EXEC

Mispredicted
conditional
branch
instructions
executed

This event counts the number of
mispredicted conditional branch
instructions that were executed.

8DH 00H BR_IND_EXEC Indirect branch
instructions
executed

This event counts the number of indirect
branch instructions that were executed.

8EH 00H BR_IND_MISSP
_EXEC

Mispredicted
indirect branch
instructions
executed

This event counts the number of
mispredicted indirect branch instructions
that were executed.

8FH 00H BR_RET_EXEC RET
instructions
executed

This event counts the number of RET
instructions that were executed.

90H 00H BR_RET_
MISSP_EXEC

Mispredicted
RET
instructions
executed

This event counts the number of
mispredicted RET instructions that were
executed.

91H 00H BR_RET_BAC_
MISSP_EXEC

RET
instructions
executed
mispredicted at
decoding

This event counts the number of RET
instructions that were executed and were
mispredicted at decoding.

92H 00H BR_CALL_EXEC CALL
instructions
executed

This event counts the number of CALL
instructions executed

93H 00H BR_CALL_
MISSP_EXEC

Mispredicted
CALL
instructions
executed

This event counts the number of
mispredicted CALL instructions that were
executed.

94H 00H BR_IND_CALL_
EXEC

Indirect CALL
instructions
executed

This event counts the number of indirect
CALL instructions that were executed.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3 A-27

PERFORMANCE-MONITORING EVENTS
97H 00H BR_TKN_
BUBBLE_1

Branch
predicted taken
with bubble 1

The events BR_TKN_BUBBLE_1 and
BR_TKN_BUBBLE_2 together count the
number of times a taken branch prediction
incurred a one-cycle penalty. The penalty
incurs when:

• Too many taken branches are placed
together. To avoid this, unroll loops and
add a non-taken branch in the middle of
the taken sequence.

• The branch target is unaligned. To avoid
this, align the branch target.

98H 00H BR_TKN_
BUBBLE_2

Branch
predicted taken
with bubble 2

The events BR_TKN_BUBBLE_1 and
BR_TKN_BUBBLE_2 together count the
number of times a taken branch prediction
incurred a one-cycle penalty. The penalty
incurs when:

• Too many taken branches are placed
together. To avoid this, unroll loops and
add a non-taken branch in the middle of
the taken sequence.

• The branch target is unaligned. To avoid
this, align the branch target.

A0H 00H RS_UOPS_
DISPATCHED

Micro-ops
dispatched for
execution

This event counts the number of micro-
ops dispatched for execution. Up to six
micro-ops can be dispatched in each cycle.

A1H 01H RS_UOPS_
DISPATCHED.PORT
0

Cycles micro-
ops dispatched
for execution
on port 0

This event counts the number of cycles for
which micro-ops dispatched for execution.
Each cycle, at most one micro-op can be
dispatched on the port. Issue Ports are
described in Intel® 64 and IA-32
Architectures Optimization Reference
Manual.

A1H 02H RS_UOPS_
DISPATCHED.PORT
1

Cycles micro-
ops dispatched
for execution
on port 1

This event counts the number of cycles for
which micro-ops dispatched for execution.
Each cycle, at most one micro-op can be
dispatched on the port.

A1H 04H RS_UOPS_
DISPATCHED.PORT
2

Cycles micro-
ops dispatched
for execution
on port 2

This event counts the number of cycles for
which micro-ops dispatched for execution.
Each cycle, at most one micro-op can be
dispatched on the port.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-28 Vol. 3

PERFORMANCE-MONITORING EVENTS
A1H 08H RS_UOPS_
DISPATCHED.PORT
3

Cycles micro-
ops dispatched
for execution
on port 3

This event counts the number of cycles for
which micro-ops dispatched for execution.
Each cycle, at most one micro-op can be
dispatched on the port.

A1H 10H RS_UOPS_
DISPATCHED.PORT
4

Cycles micro-
ops dispatched
for execution
on port 4

This event counts the number of cycles for
which micro-ops dispatched for execution.
Each cycle, at most one micro-op can be
dispatched on the port.

A1H 20H RS_UOPS_
DISPATCHED.PORT
5

Cycles micro-
ops dispatched
for execution
on port 5

This event counts the number of cycles for
which micro-ops dispatched for execution.
Each cycle, at most one micro-op can be
dispatched on the port.

AAH 01H MACRO_INSTS.
DECODED

Instructions
decoded

This event counts the number of
instructions decoded (but not necessarily
executed or retired).

AAH 08H MACRO_INSTS.
CISC_DECODED

CISC
Instructions
decoded

This event counts the number of complex
instructions decoded. Complex instructions
usually have more than four micro-ops.
Only one complex instruction can be
decoded at a time.

ABH 01H ESP.SYNCH ESP register
content
synchron-
ization

This event counts the number of times
that the ESP register is explicitly used in
the address expression of a load or store
operation, after it is implicitly used, for
example by a push or a pop instruction.

ESP synch micro-op uses resources from
the rename pipe-stage and up to
retirement. The expected ratio of this
event divided by the number of ESP
implicit changes is 0,2. If the ratio is
higher, consider rearranging your code to
avoid ESP synchronization events.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3 A-29

PERFORMANCE-MONITORING EVENTS
ABH 02H ESP.ADDITIONS ESP register
automatic
additions

This event counts the number of ESP
additions performed automatically by the
decoder. A high count of this event is good,
since each automatic addition performed
by the decoder saves a micro-op from the
execution units.

To maximize the number of ESP additions
performed automatically by the decoder,
choose instructions that implicitly use the
ESP, such as PUSH, POP, CALL, and RET
instructions whenever possible.

B0H 00H SIMD_UOPS_EXEC SIMD micro-ops
executed
(excluding
stores)

This event counts all the SIMD micro-ops
executed. It does not count MOVQ and
MOVD stores from register to memory.

B1H 00H SIMD_SAT_UOP_
EXEC

SIMD saturated
arithmetic
micro-ops
executed

This event counts the number of SIMD
saturated arithmetic micro-ops executed.

B3H 01H SIMD_UOP_
TYPE_EXEC.MUL

SIMD packed
multiply micro-
ops executed

This event counts the number of SIMD
packed multiply micro-ops executed.

B3H 02H SIMD_UOP_TYPE_
EXEC.SHIFT

SIMD packed
shift micro-ops
executed

This event counts the number of SIMD
packed shift micro-ops executed.

B3H 04H SIMD_UOP_TYPE_
EXEC.PACK

SIMD pack
micro-ops
executed

This event counts the number of SIMD
pack micro-ops executed.

B3H 08H SIMD_UOP_TYPE_
EXEC.UNPACK

SIMD unpack
micro-ops
executed

This event counts the number of SIMD
unpack micro-ops executed.

B3H 10H SIMD_UOP_TYPE_
EXEC.LOGICAL

SIMD packed
logical micro-
ops executed

This event counts the number of SIMD
packed logical micro-ops executed.

B3H 20H SIMD_UOP_TYPE_
EXEC.ARITHMETIC

SIMD packed
arithmetic
micro-ops
executed

This event counts the number of SIMD
packed arithmetic micro-ops executed.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-30 Vol. 3

PERFORMANCE-MONITORING EVENTS
C0H 00H INST_RETIRED.
ANY_P

Instructions
retired

This event counts the number of
instructions that retire execution. For
instructions that consist of multiple micro-
ops, this event counts the retirement of
the last micro-op of the instruction. The
counter continue counting during
hardware interrupts, traps, and inside
interrupt handlers.

INST_RETIRED.ANY_P is an architectural
performance event.

C0H 01H INST_RETIRED.
LOADS

Instructions
retired, which
contain a load

This event counts the number of
instructions retired that contain a load
operation.

C0H 02H INST_RETIRED.
STORES

Instructions
retired, which
contain a store

This event counts the number of
instructions retired that contain a store
operation.

C0H 04H INST_RETIRED.
OTHER

Instructions
retired, with no
load or store
operation

This event counts the number of
instructions retired that do not contain a
load or a store operation.

C1H 01H X87_OPS_
RETIRED.FXCH

FXCH
instructions
retired

This event counts the number of FXCH
instructions retired. Modern compilers
generate more efficient code and are less
likely to use this instruction. If you obtain a
high count for this event consider
recompiling the code.

C1H FEH X87_OPS_
RETIRED.ANY

Retired
floating-point
computational
operations
(precise event)

This event counts the number of floating-
point computational operations retired. It
counts:

• floating point computational operations
executed by the assist handler

• sub-operations of complex floating-
point instructions like transcendental
instructions

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3 A-31

PERFORMANCE-MONITORING EVENTS
This event does not count:

• floating-point computational operations
that cause traps or assists.

• floating-point loads and stores.
When this event is captured with the
precise event mechanism, the collected
samples contain the address of the
instruction that was executed immediately
after the instruction that caused the
event.

C2H 01H UOPS_RETIRED.
LD_IND_BR

Fused load+op
or load+indirect
branch retired

This event counts the number of retired
micro-ops that fused a load with another
operation. This includes:

• Fusion of a load and an arithmetic
operation, such as with the following
instruction: ADD EAX, [EBX] where the
content of the memory location
specified by EBX register is loaded,
added to EXA register, and the result is
stored in EAX.

• Fusion of a load and a branch in an
indirect branch operation, such as with
the following instructions:

• JMP [RDI+200]
• RET
• Fusion decreases the number of micro-

ops in the processor pipeline. A high
value for this event count indicates that
the code is using the processor
resources effectively.

C2H 02H UOPS_RETIRED.
STD_STA

Fused store
address + data
retired

This event counts the number of store
address calculations that are fused with
store data emission into one micro-op.
Traditionally, each store operation
required two micro-ops.

This event counts fusion of retired micro-
ops only. Fusion decreases the number of
micro-ops in the processor pipeline. A high
value for this event count indicates that
the code is using the processor resources
effectively.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-32 Vol. 3

PERFORMANCE-MONITORING EVENTS
C2H 04H UOPS_RETIRED.
MACRO_FUSION

Retired
instruction
pairs fused into
one micro-op

This event counts the number of times
CMP or TEST instructions were fused with
a conditional branch instruction into one
micro-op. It counts fusion by retired micro-
ops only.

Fusion decreases the number of micro-ops
in the processor pipeline. A high value for
this event count indicates that the code
uses the processor resources more
effectively.

C2H 07H UOPS_RETIRED.
FUSED

Fused micro-
ops retired

This event counts the total number of
retired fused micro-ops. The counts
include the following fusion types:

• Fusion of load operation with an
arithmetic operation or with an indirect
branch (counted by event
UOPS_RETIRED.LD_IND_BR)

• Fusion of store address and data
(counted by event
UOPS_RETIRED.STD_STA)

• Fusion of CMP or TEST instruction with
a conditional branch instruction
(counted by event
UOPS_RETIRED.MACRO_FUSION)

Fusion decreases the number of micro-ops
in the processor pipeline. A high value for
this event count indicates that the code is
using the processor resources effectively.

C2H 08H UOPS_RETIRED.
NON_FUSED

Non-fused
micro-ops
retired

This event counts the number of micro-
ops retired that were not fused.

C2H 0FH UOPS_RETIRED.
ANY

Micro-ops
retired

This event counts the number of micro-
ops retired. The processor decodes
complex macro instructions into a
sequence of simpler micro-ops. Most
instructions are composed of one or two
micro-ops.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3 A-33

PERFORMANCE-MONITORING EVENTS
Some instructions are decoded into longer
sequences such as repeat instructions,
floating point transcendental instructions,
and assists. In some cases micro-op
sequences are fused or whole instructions
are fused into one micro-op.

See other UOPS_RETIRED events for
differentiating retired fused and non-
fused micro-ops.

C3H 01H MACHINE_
NUKES.SMC

Self-Modifying
Code detected

This event counts the number of times
that a program writes to a code section.
Self-modifying code causes a sever
penalty in all Intel 64 and IA-32
processors.

C3H 04H MACHINE_NUKES.
MEM_ORDER

Execution
pipeline restart
due to memory
ordering
conflict or
memory
disambiguation
misprediction

This event counts the number of times the
pipeline is restarted due to either multi-
threaded memory ordering conflicts or
memory disambiguation misprediction.

A multi-threaded memory ordering conflict
occurs when a store, which is executed in
another core, hits a load that is executed
out of order in this core but not yet retired.
As a result, the load needs to be restarted
to satisfy the memory ordering model.

See Chapter 7, “Multiple-Processor
Management” in the Intel® 64 and IA-32
Architectures Software Developer’s
Manual, Volume 3A.

To count memory disambiguation
mispredictions, use the event
MEMORY_DISAMBIGUATION.RESET.

C4H 00H BR_INST_RETIRED.
ANY

Retired branch
instructions

This event counts the number of branch
instructions retired. This is an architectural
performance event.

C4H 01H BR_INST_RETIRED.
PRED_NOT_
TAKEN

Retired branch
instructions
that were
predicted not-
taken

This event counts the number of branch
instructions retired that were correctly
predicted to be not-taken.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-34 Vol. 3

PERFORMANCE-MONITORING EVENTS
C4H 02H BR_INST_RETIRED.
MISPRED_NOT_
TAKEN

Retired branch
instructions
that were
mispredicted
not-taken

This event counts the number of branch
instructions retired that were
mispredicted and not-taken.

C4H 04H BR_INST_RETIRED.
PRED_TAKEN

Retired branch
instructions
that were
predicted taken

This event counts the number of branch
instructions retired that were correctly
predicted to be taken.

C4H 08H BR_INST_RETIRED.
MISPRED_TAKEN

Retired branch
instructions
that were
mispredicted
taken

This event counts the number of branch
instructions retired that were
mispredicted and taken.

C4H 0CH BR_INST_RETIRED.
TAKEN

Retired taken
branch
instructions

This event counts the number of branches
retired that were taken.

C5H 00H BR_INST_RETIRED.
MISPRED

Retired
mispredicted
branch
instructions.
(precise event)

This event counts the number of retired
branch instructions that were
mispredicted by the processor. A branch
misprediction occurs when the processor
predicts that the branch would be taken,
but it is not, or vice-versa.

This is an architectural performance event.

C6H 01H CYCLES_INT_
MASKED

Cycles during
which
interrupts are
disabled

This event counts the number of cycles
during which interrupts are disabled.

C6H 02H CYCLES_INT_
PENDING_AND
_MASKED

Cycles during
which
interrupts are
pending and
disabled

This event counts the number of cycles
during which there are pending interrupts
but interrupts are disabled.

C7H 01H SIMD_INST_
RETIRED.PACKED_
SINGLE

Retired SSE
packed-single
instructions

This event counts the number of SSE
packed-single instructions retired.

C7H 02H SIMD_INST_
RETIRED.SCALAR_
SINGLE

Retired SSE
scalar-single
instructions

This event counts the number of SSE
scalar-single instructions retired.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3 A-35

PERFORMANCE-MONITORING EVENTS
C7H 04H SIMD_INST_
RETIRED.PACKED_
DOUBLE

Retired SSE2
packed-double
instructions

This event counts the number of SSE2
packed-double instructions retired.

C7H 08H SIMD_INST_
RETIRED.SCALAR_
DOUBLE

Retired SSE2
scalar-double
instructions

This event counts the number of SSE2
scalar-double instructions retired.

C7H 10H SIMD_INST_
RETIRED.VECTOR

Retired SSE2
vector integer
instructions

This event counts the number of SSE2
vector integer instructions retired.

C7H 1FH SIMD_INST_
RETIRED.ANY

Retired
Streaming SIMD
instructions
(precise event)

This event counts the overall number of
SIMD instructions retired. To count each
type of SIMD instruction separately, use
the following events:

• SIMD_INST_RETIRED.PACKED_SINGLE
• SIMD_INST_RETIRED.SCALAR_SINGLE
• SIMD_INST_RETIRED.PACKED_DOUBLE
• SIMD_INST_RETIRED.SCALAR_DOUBLE
• and SIMD_INST_RETIRED.VECTOR
When this event is captured with the
precise event mechanism, the collected
samples contain the address of the
instruction that was executed immediately
after the instruction that caused the
event.

C8H 00H HW_INT_RCV Hardware
interrupts
received

This event counts the number of hardware
interrupts received by the processor.

C9H 00H ITLB_MISS_
RETIRED

Retired
instructions
that missed the
ITLB

This event counts the number of retired
instructions that missed the ITLB when
they were fetched.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-36 Vol. 3

PERFORMANCE-MONITORING EVENTS
CAH 01H SIMD_COMP_
INST_RETIRED.
PACKED_SINGLE

Retired
computational
SSE packed-
single
instructions

This event counts the number of
computational SSE packed-single
instructions retired. Computational
instructions perform arithmetic
computations (for example: add, multiply
and divide).

Instructions that perform load and store
operations or logical operations, like XOR,
OR, and AND are not counted by this
event.

CAH 02H SIMD_COMP_
INST_RETIRED.
SCALAR_SINGLE

Retired
computational
SSE scalar-
single
instructions

This event counts the number of
computational SSE scalar-single
instructions retired. Computational
instructions perform arithmetic
computations (for example: add, multiply
and divide).

Instructions that perform load and store
operations or logical operations, like XOR,
OR, and AND are not counted by this
event.

CAH 04H SIMD_COMP_
INST_RETIRED.
PACKED_DOUBLE

Retired
computational
SSE2 packed-
double
instructions

This event counts the number of
computational SSE2 packed-double
instructions retired. Computational
instructions perform arithmetic
computations (for example: add, multiply
and divide).

Instructions that perform load and store
operations or logical operations, like XOR,
OR, and AND are not counted by this
event.

CAH 08H SIMD_COMP_INST_
RETIRED.SCALAR_
DOUBLE

Retired
computational
SSE2 scalar-
double
instructions

This event counts the number of
computational SSE2 scalar-double
instructions retired. Computational
instructions perform arithmetic
computations (for example: add, multiply
and divide).

Instructions that perform load and store
operations or logical operations, like XOR,
OR, and AND are not counted by this
event.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3 A-37

PERFORMANCE-MONITORING EVENTS
CBH 01H MEM_LOAD_
RETIRED.L1D
_MISS

Retired loads
that miss the
L1 data cache
(precise event)

This event counts the number of retired
load operations that missed the L1 data
cache. This includes loads from cache lines
that are currently being fetched, due to a
previous L1 data cache miss to the same
cache line.

This event counts loads from cacheable
memory only. The event does not count
loads by software prefetches.

When this event is captured with the
precise event mechanism, the collected
samples contain the address of the
instruction that was executed immediately
after the instruction that caused the
event.

CBH 02H MEM_LOAD_
RETIRED.L1D_
LINE_MISS

L1 data cache
line missed by
retired loads
(precise event)

This event counts the number of load
operations that miss the L1 data cache
and send a request to the L2 cache to
fetch the missing cache line. That is the
missing cache line fetching has not yet
started.

The event count is equal to the number of
cache lines fetched from the L2 cache by
retired loads.

This event counts loads from cacheable
memory only. The event does not count
loads by software prefetches.

The event might not be counted if the load
is blocked (see LOAD_BLOCK events).

When this event is captured with the
precise event mechanism, the collected
samples contain the address of the
instruction that was executed immediately
after the instruction that caused the
event.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-38 Vol. 3

PERFORMANCE-MONITORING EVENTS
CBH 04H MEM_LOAD_
RETIRED.L2_MISS

Retired loads
that miss the
L2 cache
(precise event)

This event counts the number of retired
load operations that missed the L2 cache.

This event counts loads from cacheable
memory only. It does not count loads by
software prefetches.

When this event is captured with the
precise event mechanism, the collected
samples contain the address of the
instruction that was executed immediately
after the instruction that caused the
event.

CBH 08H MEM_LOAD_
RETIRED.L2_LINE_
MISS

L2 cache line
missed by
retired loads
(precise event)

This event counts the number of load
operations that miss the L2 cache and
result in a bus request to fetch the missing
cache line. That is the missing cache line
fetching has not yet started.

This event count is equal to the number of
cache lines fetched from memory by
retired loads.

This event counts loads from cacheable
memory only. The event does not count
loads by software prefetches.

The event might not be counted if the load
is blocked (see LOAD_BLOCK events).

When this event is captured with the
precise event mechanism, the collected
samples contain the address of the
instruction that was executed immediately
after the instruction that caused the
event.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3 A-39

PERFORMANCE-MONITORING EVENTS
CBH 10H MEM_LOAD_
RETIRED.DTLB_
MISS

Retired loads
that miss the
DTLB (precise
event)

This event counts the number of retired
loads that missed the DTLB. The DTLB
miss is not counted if the load operation
causes a fault.

This event counts loads from cacheable
memory only. The event does not count
loads by software prefetches.

When this event is captured with the
precise event mechanism, the collected
samples contain the address of the
instruction that was executed immediately
after the instruction that caused the
event.

CCH 01H FP_MMX_TRANS_
TO_MMX

Transitions
from Floating
Point to MMX
Instructions

This event counts the first MMX
instructions following a floating-point
instruction. Use this event to estimate the
penalties for the transitions between
floating-point and MMX states.

CCH 02H FP_MMX_TRANS_
TO_FP

Transitions
from MMX
Instructions to
Floating Point
Instructions

This event counts the first floating-point
instructions following any MMX
instruction. Use this event to estimate the
penalties for the transitions between
floating-point and MMX states.

CDH 00H SIMD_ASSIST SIMD assists
invoked

This event counts the number of SIMD
assists invoked. SIMD assists are invoked
when an EMMS instruction is executed,
changing the MMX state in the floating
point stack.

CEH 00H SIMD_INSTR_
RETIRED

SIMD
Instructions
retired

This event counts the number of SIMD
instructions that retired.

CFH 00H SIMD_SAT_INSTR_
RETIRED

Saturated
arithmetic
instructions
retired

This event counts the number of saturated
arithmetic SIMD instructions that retired.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-40 Vol. 3

PERFORMANCE-MONITORING EVENTS
D2H 01H RAT_STALLS.
ROB_READ_PORT

ROB read port
stalls cycles

This event counts the number of cycles
when ROB read port stalls occurred, which
did not allow new micro-ops to enter the
out-of-order pipeline.

Note that, at this stage in the pipeline,
additional stalls may occur at the same
cycle and prevent the stalled micro-ops
from entering the pipe. In such a case,
micro-ops retry entering the execution
pipe in the next cycle and the ROB-read-
port stall is counted again.

D2H 02H RAT_STALLS.
PARTIAL_CYCLES

Partial register
stall cycles

This event counts the number of cycles
instruction execution latency became
longer than the defined latency because
the instruction uses a register that was
partially written by previous instructions.

D2H 04H RAT_STALLS.
FLAGS

Flag stall cycles This event counts the number of cycles
during which execution stalled due to
several reasons, one of which is a partial
flag register stall.

A partial register stall may occur when
two conditions are met:

• an instruction modifies some, but not
all, of the flags in the flag register

• the next instruction, which depends on
flags, depends on flags that were not
modified by this instruction

D2H 08H RAT_STALLS.
FPSW

FPU status
word stall

This event indicates that the FPU status
word (FPSW) is written. To obtain the
number of times the FPSW is written
divide the event count by 2.

The FPSW is written by instructions with
long latency; a small count may indicate a
high penalty.

D2H 0FH RAT_STALLS.
ANY

All RAT stall
cycles

This event counts the number of stall
cycles due to conditions described by:

• RAT_STALLS.ROB_READ_PORT
• RAT_STALLS.PARTIAL
• RAT_STALLS.FLAGS
• RAT_STALLS.FPSW.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3 A-41

PERFORMANCE-MONITORING EVENTS
D4H 01H SEG_RENAME_
STALLS.ES

Segment
rename stalls -
ES

This event counts the number of stalls due
to the lack of renaming resources for the
ES segment register. If a segment is
renamed, but not retired and a second
update to the same segment occurs, a stall
occurs in the front-end of the pipeline until
the renamed segment retires.

D4H 02H SEG_RENAME_
STALLS.DS

Segment
rename stalls -
DS

This event counts the number of stalls due
to the lack of renaming resources for the
DS segment register. If a segment is
renamed, but not retired and a second
update to the same segment occurs, a stall
occurs in the front-end of the pipeline until
the renamed segment retires.

D4H 04H SEG_RENAME_
STALLS.FS

Segment
rename stalls -
FS

This event counts the number of stalls due
to the lack of renaming resources for the
FS segment register.

If a segment is renamed, but not retired
and a second update to the same segment
occurs, a stall occurs in the front-end of
the pipeline until the renamed segment
retires.

D4H 08H SEG_RENAME_
STALLS.GS

Segment
rename stalls -
GS

This event counts the number of stalls due
to the lack of renaming resources for the
GS segment register.

If a segment is renamed, but not retired
and a second update to the same segment
occurs, a stall occurs in the front-end of
the pipeline until the renamed segment
retires.

D4H 0FH SEG_RENAME_
STALLS.ANY

Any
(ES/DS/FS/GS)
segment
rename stall

This event counts the number of stalls due
to the lack of renaming resources for the
ES, DS, FS, and GS segment registers.

If a segment is renamed but not retired
and a second update to the same segment
occurs, a stall occurs in the front-end of
the pipeline until the renamed segment
retires.

D5H 01H SEG_REG_
RENAMES.ES

Segment
renames - ES

This event counts the number of times the
ES segment register is renamed.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-42 Vol. 3

PERFORMANCE-MONITORING EVENTS
D5H 02H SEG_REG_
RENAMES.DS

Segment
renames - DS

This event counts the number of times the
DS segment register is renamed.

D5H 04H SEG_REG_
RENAMES.FS

Segment
renames - FS

This event counts the number of times the
FS segment register is renamed.

D5H 08H SEG_REG_
RENAMES.GS

Segment
renames - GS

This event counts the number of times the
GS segment register is renamed.

D5H 0FH SEG_REG_
RENAMES.ANY

Any
(ES/DS/FS/GS)
segment
rename

This event counts the number of times
any of the four segment registers
(ES/DS/FS/GS) is renamed.

DCH 01H RESOURCE_
STALLS.ROB_FULL

Cycles during
which the ROB
full

This event counts the number of cycles
when the number of instructions in the
pipeline waiting for retirement reaches
the limit the processor can handle.

A high count for this event indicates that
there are long latency operations in the
pipe (possibly load and store operations
that miss the L2 cache, and other
instructions that depend on these cannot
execute until the former instructions
complete execution). In this situation new
instructions can not enter the pipe and
start execution.

DCH 02H RESOURCE_
STALLS.RS_FULL

Cycles during
which the RS
full

This event counts the number of cycles
when the number of instructions in the
pipeline waiting for execution reaches the
limit the processor can handle.

A high count of this event indicates that
there are long latency operations in the
pipe (possibly load and store operations
that miss the L2 cache, and other
instructions that depend on these cannot
execute until the former instructions
complete execution). In this situation new
instructions can not enter the pipe and
start execution.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3 A-43

PERFORMANCE-MONITORING EVENTS
DCH 04 RESOURCE_
STALLS.LD_ST

Cycles during
which the
pipeline has
exceeded load
or store limit or
waiting to
commit all
stores

This event counts the number of cycles
while resource-related stalls occur due to:

• The number of load instructions in the
pipeline reached the limit the processor
can handle. The stall ends when a
loading instruction retires.

• The number of store instructions in the
pipeline reached the limit the processor
can handle. The stall ends when a
storing instruction commits its data to
the cache or memory.

• There is an instruction in the pipe that
can be executed only when all previous
stores complete and their data is
committed in the caches or memory.
For example, the SFENCE and MFENCE
instructions require this behavior.

DCH 08H RESOURCE_
STALLS.FPCW

Cycles stalled
due to FPU
control word
write

This event counts the number of cycles
while execution was stalled due to writing
the floating-point unit (FPU) control word.

DCH 10H RESOURCE_
STALLS.BR_MISS_C
LEAR

Cycles stalled
due to branch
misprediction

This event counts the number of cycles
after a branch misprediction is detected at
execution until the branch and all older
micro-ops retire. During this time new
micro-ops cannot enter the out-of-order
pipeline.

DCH 1FH RESOURCE_
STALLS.ANY

Resource
related stalls

This event counts the number of cycles
while resource-related stalls occurs for
any conditions described by the following
events:

• RESOURCE_STALLS.ROB_FULL
• RESOURCE_STALLS.RS_FULL
• RESOURCE_STALLS.LD_ST
• RESOURCE_STALLS.FPCW
• RESOURCE_STALLS.BR_MISS_CLEAR

E0H 00H BR_INST_
DECODED

Branch
instructions
decoded

This event counts the number of branch
instructions decoded.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-44 Vol. 3

PERFORMANCE-MONITORING EVENTS
A.3 PERFORMANCE MONITORING EVENTS FOR INTEL®
CORE™ SOLO AND INTEL® CORE™ DUO PROCESSORS

Table A-4 lists non-architectural performance events for Intel Core Duo processors. If
a non-architectural event requires qualification in core specificity, it is indicated in the
comment column. Table A-4 also applies to Intel Core Solo processors; bits in the
unit mask corresponding to core-specificity are reserved and should be 00B.

E4H 00H BOGUS_BR Bogus branches This event counts the number of byte
sequences that were mistakenly detected
as taken branch instructions.

This results in a BACLEAR event. This
occurs mainly after task switches.

E6H 00H BACLEARS BACLEARS
asserted

This event counts the number of times the
front end is resteered, mainly when the
BPU cannot provide a correct prediction
and this is corrected by other branch
handling mechanisms at the front and.
This can occur if the code has many
branches such that they cannot be
consumed by the BPU.

Each BACLEAR asserted costs
approximately 7 cycles of instruction
fetch. The effect on total execution time
depends on the surrounding code.

F0 00H PREF_RQSTS_UP Upward
prefetches
issued from
DPL

This event counts the number of upward
prefetches issued from the Data Prefetch
Logic (DPL) to the L2 cache. A prefetch
request issued to the L2 cache cannot be
cancelled and the requested cache line is
fetched to the L2 cache.

F8 00H PREF_RQSTS_DN Downward
prefetches
issued from
DPL.

This event counts the number of
downward prefetches issued from the
Data Prefetch Logic (DPL) to the L2 cache.
A prefetch request issued to the L2 cache
cannot be cancelled and the requested
cache line is fetched to the L2 cache.

Table A-3. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3 A-45

PERFORMANCE-MONITORING EVENTS
Table A-4. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment

03H LD_Blocks 00H Load operations delayed due to
store buffer blocks.

The preceding store may be
blocked due to unknown address,
unknown data, or conflict due to
partial overlap between the load
and store.

04H SD_Drains 00H Cycles while draining store buffers

05H Misalign_Mem_Ref 00H Misaligned data memory
references (MOB splits of loads
and stores).

06H Seg_Reg_Loads 00H Segment register loads

07H SSE_PrefNta_Ret 00H SSE software prefetch instruction
PREFETCHNTA retired

07H SSE_PrefT1_Ret 01H SSE software prefetch instruction
PREFETCHT1 retired

07H SSE_PrefT2_Ret 02H SSE software prefetch instruction
PREFETCHT2 retired

07H SSE_NTStores_Ret 03H SSE streaming store instruction
retired

10H FP_Comps_Op_Exe 00H FP computational Instruction
executed. FADD, FSUB, FCOM,
FMULs, MUL, IMUL, FDIVs, DIV, IDIV,
FPREMs, FSQRT are included; but
exclude FADD or FMUL used in the
middle of a transcendental
instruction.

11H FP_Assist 00H FP exceptions experienced
microcode assists

12H Mul 00H Multiply operations (a speculative
count, including FP and integer
multiplies).

13H Div 00H Divide operations (a speculative
count, including FP and integer
divisions).

14H Cycles_Div_Busy 00H Cycles the divider is busy
A-46 Vol. 3

PERFORMANCE-MONITORING EVENTS
21H L2_ADS 00H L2 Address strobes Requires core-
specificity

22H Dbus_Busy 00H Core cycle during which data bus
was busy (increments by 4)

Requires core-
specificity

23H Dbus_Busy_Rd 00H Cycles data bus is busy
transferring data to a core
(increments by 4)

Requires core-
specificity

24H L2_Lines_In 00H L2 cache lines allocated Requires core-
specificity and
HW prefetch
qualification

25H L2_M_Lines_In 00H L2 Modified-state cache lines
allocated

Requires core-
specificity

26H L2_Lines_Out 00H L2 cache lines evicted Requires core-
specificity and
HW prefetch
qualification

27H L2_M_Lines_Out 00H L2 Modified-state cache lines
evicted

28H L2_IFetch Requires
MESI
qualification

L2 instruction fetches from
instruction fetch unit (includes
speculative fetches)

Requires core-
specificity

29H L2_LD Requires
MESI
qualification

L2 cache reads Requires core-
specificity

2AH L2_ST Requires
MESI
qualification

L2 cache writes (includes
speculation)

Requires core-
specificity

2EH L2_Rqsts Requires
MESI
qualification

L2 cache reference requests Requires core-
specificity, HW
prefetch
qualification30H L2_Reject_Cycles Requires

MESI
qualification

Cycles L2 is busy and rejecting
new requests.

32H L2_No_Request_
Cycles

Requires
MESI
qualification

Cycles there is no request to
access L2.

3AH EST_Trans_All 00H Any Intel Enhanced SpeedStep(R)
Technology transitions

Table A-4. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
Vol. 3 A-47

PERFORMANCE-MONITORING EVENTS
3AH EST_Trans_All 10H Intel Enhanced SpeedStep
Technology frequency transitions

3BH Thermal_Trip C0H Duration in a thermal trip based on
the current core clock

Use edge
trigger to count
occurrence

3CH NonHlt_Ref_Cycles 01H Non-halted bus cycles

3CH Serial_Execution_
Cycles

02H Non-halted bus cycles of this core
executing code while the other
core is halted

40H DCache_Cache_LD Requires
MESI
qualification

L1 cacheable data read operations

41H DCache_Cache_ST Requires
MESI
qualification

L1 cacheable data write
operations

42H DCache_Cache_
Lock

Requires
MESI
qualification

L1 cacheable lock read operations
to invalid state

43H Data_Mem_Ref 01H L1 data read and writes of
cacheable and non-cacheable
types

44H Data_Mem_Cache_
Ref

02H L1 data cacheable read and write
operations

45H DCache_Repl 0FH L1 data cache line replacements

46H DCache_M_Repl 00H L1 data M-state cache line
allocated

47H DCache_M_Evict 00H L1 data M-state cache line evicted

48H DCache_Pend_Miss 00H Weighted cycles of L1 miss
outstanding

Use Cmask =1
to count
duration.

49H Dtlb_Miss 00H Data references that missed TLB

4BH SSE_PrefNta_Miss 00H PREFETCHNTA missed all caches

4BH SSE_PrefT1_Miss 01H PREFETCHT1 missed all caches

4BH SSE_PrefT2_Miss 02H PREFETCHT2 missed all caches

4BH SSE_NTStores_
Miss

03H SSE streaming store instruction
missed all caches

Table A-4. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
A-48 Vol. 3

PERFORMANCE-MONITORING EVENTS
4FH L1_Pref_Req 00H L1 prefetch requests due to DCU
cache misses

May overcount
if request re-
submitted

60H Bus_Req_
Outstanding

00; Requires
core-
specificity,
and agent
specificity

Weighted cycles of cacheable bus
data read requests. This event
counts full-line read request from
DCU or HW prefetcher, but not
RFO, write, instruction fetches, or
others.

Use Cmask =1
to count
duration.

Use Umask bit
12 to include
HWP or exclude
HWP separately.

61H Bus_BNR_Clocks 00H External bus cycles while BNR
asserted

62H Bus_DRDY_Clocks 00H External bus cycles while DRDY
asserted

Requires agent
specificity

63H Bus_Locks_Clocks 00H External bus cycles while bus lock
signal asserted

Requires core
specificity

64H Bus_Data_Rcv 40H External bus cycles while bus lock
signal asserted

65H Bus_Trans_Brd See comment. Burst read bus transactions (data
or code)

Requires core
specificity

66H Bus_Trans_RFO See comment. Completed read for ownership
(RFO) transactions

Requires agent
specificity

Requires core
specificity

Each
transaction
counts its
address strobe

Retried
transaction may
be counted
more than once

68H Bus_Trans_Ifetch See comment. Completed instruction fetch
transactions

69H Bus_Trans_Inval See comment. Completed invalidate transactions

6AH Bus_Trans_Pwr See comment. Completed partial write
transactions

6BH Bus_Trans_P See comment. Completed partial transactions
(include partial read + partial write
+ line write)

6CH Bus_Trans_IO See comment. Completed I/O transactions (read
and write)

Table A-4. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
Vol. 3 A-49

PERFORMANCE-MONITORING EVENTS
6DH Bus_Trans_Def 20H Completed defer transactions Requires core
specificity

Retried
transaction may
be counted
more than once

67H Bus_Trans_WB C0H Completed writeback transactions
from DCU (does not include L2
writebacks)

Requires agent
specificity

Each
transaction
counts its
address strobe

Retried
transaction may
be counted
more than once

6EH Bus_Trans_Burst C0H Completed burst transactions (full
line transactions include reads,
write, RFO, and writebacks)

6FH Bus_Trans_Mem C0H Completed memory transactions.
This includes Bus_Trans_Burst +
Bus_Trans_P+Bus_Trans_Inval.

70H Bus_Trans_Any C0H Any completed bus transactions

77H Bus_Snoops 00H External bus cycles while bus lock
signal asserted

Requires MESI
qualification

Requires agent
specificity

78H DCU_Snoop_To_
Share

01H DCU snoops to share-state L1
cache line due to L1 misses

Requires core
specificity

7DH Bus_Not_In_Use 00H Number of cycles there is no
transaction from the core

Requires core
specificity

7EH Bus_Snoop_Stall 00H Number of bus cycles while bus
snoop is stalled

80H ICache_Reads 00H Number of instruction fetches
from ICache, streaming buffers
(both cacheable and uncacheable
fetches)

81H ICache_Misses 00H Number of instruction fetch misses
from ICache, streaming buffers.

85H ITLB_Misses 00H Number of iITLB misses

86H IFU_Mem_Stall 00H Cycles IFU is stalled while waiting
for data from memory

Table A-4. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
A-50 Vol. 3

PERFORMANCE-MONITORING EVENTS
87H ILD_Stall 00H Number of instruction length
decoder stalls (Counts number of
LCP stalls)

88H Br_Inst_Exec 00H Branch instruction executed
(includes speculation).

89H Br_Missp_Exec 00H Branch instructions executed and
mispredicted at execution
(includes branches that do not
have prediction or mispredicted)

8AH Br_BAC_Missp_
Exec

00H Branch instructions executed that
were mispredicted at front end

8BH Br_Cnd_Exec 00H Conditional branch instructions
executed

8CH Br_Cnd_Missp_
Exec

00H Conditional branch instructions
executed that were mispredicted

8DH Br_Ind_Exec 00H Indirect branch instructions
executed

8EH Br_Ind_Missp_Exec 00H Indirect branch instructions
executed that were mispredicted

8FH Br_Ret_Exec 00H Return branch instructions
executed

90H Br_Ret_Missp_Exec 00H Return branch instructions
executed that were mispredicted

91H Br_Ret_BAC_Missp_
Exec

00H Return branch instructions
executed that were mispredicted
at the front end

92H Br_Call_Exec 00H Return call instructions executed

93H Br_Call_Missp_Exec 00H Return call instructions executed
that were mispredicted

94H Br_Ind_Call_Exec 00H Indirect call branch instructions
executed

A2H Resource_Stall 00H Cycles while there is a resource
related stall (renaming, buffer
entries) as seen by allocator

B0H MMX_Instr_Exec 00H Number of MMX instructions
executed (does not include MOVQ
and MOVD stores)

Table A-4. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
Vol. 3 A-51

PERFORMANCE-MONITORING EVENTS
B1H SIMD_Int_Sat_Exec 00H Number of SIMD Integer saturating
instructions executed

B3H SIMD_Int_Pmul_
Exec

01H Number of SIMD Integer packed
multiply instructions executed

B3H SIMD_Int_Psft_Exec 02H Number of SIMD Integer packed
shift instructions executed

B3H SIMD_Int_Pck_Exec 04H Number of SIMD Integer pack
operations instruction executed

B3H SIMD_Int_Upck_
Exec

08H Number of SIMD Integer unpack
instructions executed

B3H SIMD_Int_Plog_
Exec

10H Number of SIMD Integer packed
logical instructions executed

B3H SIMD_Int_Pari_Exec 20H Number of SIMD Integer packed
arithmetic instructions executed

C0H Instr_Ret 00H Number of instruction retired
(Macro fused instruction count
as 2)

C1H FP_Comp_Instr_Ret 00H Number of FP compute
instructions retired (X87
instruction or instruction that
contain X87 operations)

C2H Uops_Ret 00H Number of micro-ops retired
(include fused uops)

C3H SMC_Detected 00H Number of times self-modifying
code condition detected

C4H Br_Instr_Ret 00H Number of branch instructions
retired

C5H Br_MisPred_Ret 00H Number of mispredicted branch
instructions retired

C6H Cycles_Int_Masked 00H Cycles while interrupt is disabled

C7H Cycles_Int_Pedning_
Masked

00H Cycles while interrupt is disabled
and interrupts are pending

C8H HW_Int_Rx 00H Number of hardware interrupts
received

C9H Br_Taken_Ret 00H Number of taken branch
instruction retired

Table A-4. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
A-52 Vol. 3

PERFORMANCE-MONITORING EVENTS
CAH Br_MisPred_Taken_
Ret

00H Number of taken and mispredicted
branch instructions retired

CCH MMX_FP_Trans 00H Number of transitions from MMX
to X87

CCH FP_MMX_Trans 01H Number of transitions from X87 to
MMX

CDH MMX_Assist 00H Number of EMMS executed

CEH MMX_Instr_Ret 00H Number of MMX instruction retired

D0H Instr_Decoded 00H Number of instruction decoded

D7H ESP_Uops 00H Number of ESP folding instruction
decoded

D8H SIMD_FP_SP_Ret 00H Number of SSE/SSE2 single
precision instructions retired
(packed and scalar)

D8H SIMD_FP_SP_S_
Ret

01H Number of SSE/SSE2 scalar single
precision instructions retired

D8H SIMD_FP_DP_P_
Ret

02H Number of SSE/SSE2 packed
double precision instructions
retired

D8H SIMD_FP_DP_S_
Ret

03H Number of SSE/SSE2 scalar double
precision instructions retired

D8H SIMD_Int_128_Ret 04H Number of SSE2 128 bit integer
instructions retired

D9H SIMD_FP_SP_P_
Comp_Ret

00H Number of SSE/SSE2 packed single
precision compute instructions
retired (does not include AND, OR,
XOR)

D9H SIMD_FP_SP_S_
Comp_Ret

01H Number of SSE/SSE2 scalar single
precision compute instructions
retired (does not include AND, OR,
XOR)

D9H SIMD_FP_DP_P_
Comp_Ret

02H Number of SSE/SSE2 packed
double precision compute
instructions retired (does not
include AND, OR, XOR)

Table A-4. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
Vol. 3 A-53

PERFORMANCE-MONITORING EVENTS
A.4 PENTIUM 4 AND INTEL XEON PROCESSOR
PERFORMANCE-MONITORING EVENTS

Tables A-5, A-6 and list performance-monitoring events that can be counted or
sampled on processors based on Intel NetBurst microarchitecture. Table A-5 lists the
non-retirement events, and Table A-6 lists the at-retirement events. Tables A-8, A-9,
and A-10 describes three sets of parameters that are available for three of the
at-retirement counting events defined in Table A-6. Table A-11 shows which of the
non-retirement and at retirement events are logical processor specific (TS) (see
Section 18.16.4, “Performance Monitoring Events”) and which are non-logical
processor specific (TI).

Some of the Pentium 4 and Intel Xeon processor performance-monitoring events
may be available only to specific models. The performance-monitoring events listed
in Tables A-5 and A-6 apply to processors with CPUID signature that matches family

D9H SIMD_FP_DP_S_
Comp_Ret

03H Number of SSE/SSE2 scalar double
precision compute instructions
retired (does not include AND, OR,
XOR)

DAH Fused_Uops_Ret 00H All fused uops retired

DAH Fused_Ld_Uops_
Ret

01H Fused load uops retired

DAH Fused_St_Uops_Ret 02H Fused store uops retired

DBH Unfusion 00H Number of unfusion events in the
ROB (due to exception)

E0H Br_Instr_Decoded 00H Branch instructions decoded

E2H BTB_Misses 00H Number of branches the BTB did
not produce a prediction

E4H Br_Bogus 00H Number of bogus branches

E6H BAClears 00H Number of BAClears asserted

F0H Pref_Rqsts_Up 00H Number of hardware prefetch
requests issued in forward
streams

F8H Pref_Rqsts_Dn 00H Number of hardware prefetch
requests issued in backward
streams

Table A-4. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
A-54 Vol. 3

PERFORMANCE-MONITORING EVENTS
encoding 15, model encoding 0, 1, 2 3, 4, or 6. Table applies to processors with a
CPUID signature that matches family encoding 15, model encoding 3, 4 or 6.

The functionality of performance-monitoring events in Pentium 4 and Intel Xeon
processors is also available when IA-32e mode is enabled.

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting

Event Name Event Parameters Parameter Value Description

TC_deliver_mode This event counts the duration (in
clock cycles) of the operating
modes of the trace cache and
decode engine in the processor
package. The mode is specified by
one or more of the event mask
bits.

ESCR restrictions MSR_TC_ESCR0

MSR_TC_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 01H ESCR[31:25]

ESCR Event Mask

Bit

0: DD

1: DB

2: DI

ESCR[24:9]

Both logical processors are in
deliver mode.

Logical processor 0 is in deliver
mode and logical processor 1 is in
build mode.

Logical processor 0 is in deliver
mode and logical processor 1 is
either halted, under a machine
clear condition or transitioning to
a long microcode flow.

3: BD

4: BB

Logical processor 0 is in build
mode and logical processor 1 is in
deliver mode.

Both logical processors are in build
mode.
Vol. 3 A-55

PERFORMANCE-MONITORING EVENTS
5: BI Logical processor 0 is in build
mode and logical processor 1 is
either halted, under a machine
clear condition or transitioning to
a long microcode flow.

6: ID

7: IB

Logical processor 0 is either
halted, under a machine clear
condition or transitioning to a long
microcode flow. Logical processor
1 is in deliver mode.

Logical processor 0 is either
halted, under a machine clear
condition or transitioning to a long
microcode flow. Logical processor
1 is in build mode.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If only one logical processor is
available from a physical
processor package, the event
mask should be interpreted as
logical processor 1 is halted. Event
mask bit 2 was previously known
as “DELIVER”, bit 5 was previously
known as “BUILD”.

BPU_fetch_
request

This event counts instruction
fetch requests of specified
request type by the Branch
Prediction unit. Specify one or
more mask bits to qualify the
request type(s).

ESCR restrictions MSR_BPU_ESCR0
MSR_BPU_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 0: TCMISS

ESCR[24:9]

Trace cache lookup miss

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-56 Vol. 3

PERFORMANCE-MONITORING EVENTS
CCCR Select 00H CCCR[15:13]

ITLB_reference This event counts translations
using the Instruction Translation
Look-aside Buffer (ITLB).

ESCR restrictions MSR_ITLB_ESCR0

MSR_ITLB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 18H ESCR[31:25]

ESCR Event Mask

Bit

0: HIT

1: MISS

2: HIT_UC

ESCR[24:9]

ITLB hit

ITLB miss

Uncacheable ITLB hit

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

All page references regardless of
the page size are looked up as
actual 4-KByte pages. Use the
page_walk_type event with the
ITMISS mask for a more
conservative count.

memory_cancel This event counts the canceling of
various type of request in the
Data cache Address Control unit
(DAC). Specify one or more mask
bits to select the type of requests
that are canceled.

ESCR restrictions MSR_DAC_ESCR0

MSR_DAC_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 02H ESCR[31:25]

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3 A-57

PERFORMANCE-MONITORING EVENTS
ESCR Event Mask

Bit

2: ST_RB_FULL

3: 64K_CONF

ESCR[24:9]

Replayed because no store
request buffer is available

Conflicts due to 64-KByte aliasing

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

All_CACHE_MISS includes
uncacheable memory in count

memory_
complete

This event counts the completion
of a load split, store split,
uncacheable (UC) split, or UC load.
Specify one or more mask bits to
select the operations to be
counted.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 08H ESCR[31:25]

ESCR Event Mask

Bit

0: LSC

1: SSC

ESCR[24:9]

Load split completed, excluding
UC/WC loads

Any split stores completed

CCCR Select 02H CCCR[15:13]

load_port_replay This event counts replayed events
at the load port. Specify one or
more mask bits to select the
cause of the replay.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 04H ESCR[31:25]

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-58 Vol. 3

PERFORMANCE-MONITORING EVENTS
ESCR Event Mask

Bit 1: SPLIT_LD

ESCR[24:9]

Split load.

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

Must use ESCR1 for at-retirement
counting

store_port_replay This event counts replayed events
at the store port. Specify one or
more mask bits to select the
cause of the replay.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 05H ESCR[31:25]

ESCR Event Mask

Bit 1: SPLIT_ST

ESCR[24:9]

Split store

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

Must use ESCR1 for at-retirement
counting

MOB_load_replay This event triggers if the memory
order buffer (MOB) caused a load
operation to be replayed. Specify
one or more mask bits to select
the cause of the replay.

ESCR restrictions MSR_MOB_ESCR0

MSR_MOB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3 A-59

PERFORMANCE-MONITORING EVENTS
ESCR Event Mask

Bit

1: NO_STA

3: NO_STD

ESCR[24:9]

Replayed because of unknown
store address

Replayed because of unknown
store data

4: PARTIAL_DATA

5: UNALGN_ADDR

Replayed because of partially
overlapped data access between
the load and store operations

Replayed because the lower 4 bits
of the linear address do not match
between the load and store
operations

CCCR Select 02H CCCR[15:13]

page_walk_type This event counts various types
of page walks that the page miss
handler (PMH) performs.

ESCR restrictions MSR_PMH_
ESCR0

MSR_PMH_
ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 01H ESCR[31:25]

ESCR Event Mask

Bit

0: DTMISS

1: ITMISS

ESCR[24:9]

Page walk for a data TLB miss
(either load or store)

Page walk for an instruction TLB
miss

CCCR Select 04H CCCR[15:13]

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-60 Vol. 3

PERFORMANCE-MONITORING EVENTS
BSQ_cache
_reference

This event counts cache
references (2nd level cache or 3rd
level cache) as seen by the bus
unit.

Specify one or more mask bit to
select an access according to the
access type (read type includes
both load and RFO, write type
includes writebacks and evictions)
and the access result (hit, misses).

ESCR restrictions MSR_BSU_
ESCR0

MSR_BSU_
ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 0CH ESCR[31:25]

Bit

0: RD_2ndL_HITS

1: RD_2ndL_HITE

2: RD_2ndL_HITM

3: RD_3rdL_HITS

ESCR[24:9]

Read 2nd level cache hit Shared
(includes load and RFO)

Read 2nd level cache hit Exclusive
(includes load and RFO)

Read 2nd level cache hit Modified
(includes load and RFO)

Read 3rd level cache hit Shared
(includes load and RFO)

4: RD_3rdL_HITE

5: RD_3rdL_HITM

Read 3rd level cache hit Exclusive
(includes load and RFO)

Read 3rd level cache hit Modified
(includes load and RFO)

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3 A-61

PERFORMANCE-MONITORING EVENTS
ESCR Event Mask 8: RD_2ndL_MISS

9: RD_3rdL_MISS

10: WR_2ndL_MISS

Read 2nd level cache miss
(includes load and RFO)

Read 3rd level cache miss
(includes load and RFO)

A Writeback lookup from DAC
misses the 2nd level cache
(unlikely to happen)

CCCR Select 07H CCCR[15:13]

Event Specific
Notes

1: The implementation of this
event in current Pentium 4 and
Xeon processors treats either
a load operation or a request
for ownership (RFO) request as
a “read” type operation.

2: Currently this event causes
both over and undercounting
by as much as a factor of two
due to an erratum.

3: It is possible for a transaction
that is started as a prefetch to
change the transaction's
internal status, making it no
longer a prefetch. or change
the access result status (hit,
miss) as seen by this event.

IOQ_allocation This event counts the various
types of transactions on the bus.
A count is generated each time a
transaction is allocated into the
IOQ that matches the specified
mask bits. An allocated entry can
be a sector (64 bytes) or a chunks
of 8 bytes.

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-62 Vol. 3

PERFORMANCE-MONITORING EVENTS
Requests are counted once per
retry. The event mask bits
constitute 4 bit fields. A
transaction type is specified by
interpreting the values of each bit
field.

Specify one or more event mask
bits in a bit field to select the
value of the bit field.

Each field (bits 0-4 are one field)
are independent of and can be
ORed with the others. The
request type field is further
combined with bit 5 and 6 to form
a binary expression. Bits 7 and 8
form a bit field to specify the
memory type of the target
address.

Bits 13 and 14 form a bit field to
specify the source agent of the
request. Bit 15 affects read
operation only. The event is
triggered by evaluating the logical
expression: (((Request type) OR
Bit 5 OR Bit 6) OR (Memory type))
AND (Source agent).

ESCR restrictions MSR_FSB_ESCR0,
MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1;

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3 A-63

PERFORMANCE-MONITORING EVENTS
ESCR Event Mask

Bits

0-4 (single field)

 5: ALL_READ

 6: ALL_WRITE

 7: MEM_UC

 8: MEM_WC

ESCR[24:9]

Bus request type (use 00001 for
invalid or default)

Count read entries

Count write entries

Count UC memory access entries

Count WC memory access entries

 9: MEM_WT

10: MEM_WP

Count write-through (WT)
memory access entries.

Count write-protected (WP)
memory access entries

11: MEM_WB

13: OWN

Count WB memory access entries.

Count all store requests driven by
processor, as opposed to other
processor or DMA.

14: OTHER

15: PREFETCH

Count all requests driven by other
processors or DMA.

Include HW and SW prefetch
requests in the count.

CCCR Select 06H CCCR[15:13]

Event Specific
Notes

1: If PREFETCH bit is cleared,
sectors fetched using prefetch
are excluded in the counts. If
PREFETCH bit is set, all sectors
or chunks read are counted.

2: Specify the edge trigger in
CCCR to avoid double counting.

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-64 Vol. 3

PERFORMANCE-MONITORING EVENTS
3: The mapping of interpreted bit
field values to transaction
types may differ with different
processor model
implementations of the
Pentium 4 processor family.
Applications that program
performance monitoring
events should use CPUID to
determine processor models
when using this event. The
logic equations that trigger the
event are model-specific (see
4a and 4b below).

4a:For Pentium 4 and Xeon
Processors starting with CPUID
Model field encoding equal to 2
or greater, this event is
triggered by evaluating the
logical expression ((Request
type) and (Bit 5 or Bit 6) and
(Memory type) and (Source
agent)).

4b:For Pentium 4 and Xeon
Processors with CPUID Model
field encoding less than 2, this
event is triggered by
evaluating the logical
expression [((Request type) or
Bit 5 or Bit 6) or (Memory
type)] and (Source agent). Note
that event mask bits for
memory type are ignored if
either ALL_READ or
ALL_WRITE is specified.

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3 A-65

PERFORMANCE-MONITORING EVENTS
5: This event is known to ignore
CPL in early implementations
of Pentium 4 and Xeon
Processors. Both user requests
and OS requests are included in
the count. This behavior is
fixed starting with Pentium 4
and Xeon Processors with
CPUID signature 0xF27 (Family
15, Model 2, Stepping 7).

6: For write-through (WT) and
write-protected (WP) memory
types, this event counts reads
as the number of 64-byte
sectors. Writes are counted by
individual chunks.

7: For uncacheable (UC) memory
types, this events counts the
number of 8-byte chunks
allocated.

8: For Pentium 4 and Xeon
Processors with CPUID
Signature less than 0xf27, only
MSR_FSB_ESCR0 is available.

IOQ_active_
entries

This event counts the number of
entries (clipped at 15) in the IOQ
that are active. An allocated entry
can be a sector (64 bytes) or a
chunks of 8 bytes.

The event must be programmed in
conjunction with IOQ_allocation.
Specify one or more event mask
bits to select the transactions
that is counted.

ESCR restrictions MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR1: 2, 3

ESCR Event Select 01AH ESCR[30:25]

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-66 Vol. 3

PERFORMANCE-MONITORING EVENTS
ESCR Event Mask

Bits

0-4 (single field)

5: ALL_READ

6: ALL_WRITE

7: MEM_UC

8: MEM_WC

ESCR[24:9]

Bus request type (use 00001 for
invalid or default).

Count read entries.

Count write entries.

Count UC memory access entries.

Count WC memory access entries.

9: MEM_WT

10: MEM_WP

Count write-through (WT)
memory access entries.

Count write-protected (WP)
memory access entries.

11: MEM_WB

13: OWN

Count WB memory access entries.

Count all store requests driven by
processor, as opposed to other
processor or DMA.

14: OTHER

15: PREFETCH

Count all requests driven by other
processors or DMA.

Include HW and SW prefetch
requests in the count.

CCCR Select 06H CCCR[15:13]

Event Specific
Notes

1: Specified desired mask bits in
ESCR0 and ESCR1.

2: See the ioq_allocation event
for descriptions of the mask
bits.

3: Edge triggering should not be
used when counting cycles.

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3 A-67

PERFORMANCE-MONITORING EVENTS
4: The mapping of interpreted bit
field values to transaction
types may differ across
different processor model
implementations of the
Pentium 4 processor family.
Applications that programs
performance monitoring
events should use the CPUID
instruction to detect processor
models when using this event.
The logical expression that
triggers this event as describe
below:

5a:For Pentium 4 and Xeon
Processors starting with CPUID
MODEL field encoding equal to
2 or greater, this event is
triggered by evaluating the
logical expression ((Request
type) and (Bit 5 or Bit 6) and
(Memory type) and (Source
agent)).

5b:For Pentium 4 and Xeon
Processors starting with CPUID
MODEL field encoding less than
2, this event is triggered by
evaluating the logical
expression [((Request type) or
Bit 5 or Bit 6) or (Memory
type)] and (Source agent).
Event mask bits for memory
type are ignored if either
ALL_READ or ALL_WRITE is
specified.

5c:This event is known to ignore
CPL in the current
implementations of Pentium 4
and Xeon Processors Both user
requests and OS requests are
included in the count.

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-68 Vol. 3

PERFORMANCE-MONITORING EVENTS
6: An allocated entry can be a full
line (64 bytes) or in individual
chunks of 8 bytes.

FSB_data_
activity

This event increments once for
each DRDY or DBSY event that
occurs on the front side bus. The
event allows selection of a
specific DRDY or DBSY event.

ESCR restrictions MSR_FSB_ESCR0
MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 17H ESCR[31:25]

ESCR Event Mask

Bit 0:

ESCR[24:9]

DRDY_DRV Count when this processor drives
data onto the bus - includes
writes and implicit writebacks.

Asserted two processor clock
cycles for partial writes and 4
processor clocks (usually in
consecutive bus clocks) for full
line writes.

1: DRDY_OWN Count when this processor reads
data from the bus - includes loads
and some PIC transactions.
Asserted two processor clock
cycles for partial reads and 4
processor clocks (usually in
consecutive bus clocks) for full
line reads.

Count DRDY events that we drive.

Count DRDY events sampled that
we own.

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3 A-69

PERFORMANCE-MONITORING EVENTS
2: DRDY_OTHER Count when data is on the bus but
not being sampled by the
processor. It may or may not be
being driven by this processor.

Asserted two processor clock
cycles for partial transactions and
4 processor clocks (usually in
consecutive bus clocks) for full
line transactions.

3: DBSY_DRV Count when this processor
reserves the bus for use in the
next bus cycle in order to drive
data. Asserted for two processor
clock cycles for full line writes and
not at all for partial line writes.

May be asserted multiple times (in
consecutive bus clocks) if we stall
the bus waiting for a cache lock to
complete.

4: DBSY_OWN Count when some agent reserves
the bus for use in the next bus
cycle to drive data that this
processor will sample.

Asserted for two processor clock
cycles for full line writes and not
at all for partial line writes. May be
asserted multiple times (all one
bus clock apart) if we stall the bus
for some reason.

5:DBSY_OTHER Count when some agent reserves
the bus for use in the next bus
cycle to drive data that this
processor will NOT sample. It may
or may not be being driven by this
processor.

Asserted two processor clock
cycles for partial transactions and
4 processor clocks (usually in
consecutive bus clocks) for full
line transactions.

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-70 Vol. 3

PERFORMANCE-MONITORING EVENTS
CCCR Select 06H CCCR[15:13]

Event Specific
Notes

Specify edge trigger in the CCCR
MSR to avoid double counting.

DRDY_OWN and DRDY_OTHER are
mutually exclusive; similarly for
DBSY_OWN and DBSY_OTHER.

BSQ_allocation This event counts allocations in
the Bus Sequence Unit (BSQ)
according to the specified mask
bit encoding. The event mask bits
consist of four sub-groups:

• request type,
• request length
• memory type
• and sub-group consisting

mostly of independent bits
(bits 5, 6, 7, 8, 9, and 10)

Specify an encoding for each sub-
group.

ESCR restrictions MSR_BSU_ESCR0

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR Event Select 05H ESCR[31:25]

ESCR Event Mask Bit

0: REQ_TYPE0
1: REQ_TYPE1

ESCR[24:9]

Request type encoding (bit 0 and
1) are:

0 – Read (excludes read
invalidate)
1 – Read invalidate
2 – Write (other than
writebacks)
3 – Writeback (evicted from
cache). (public)

2: REQ_LEN0
3: REQ_LEN1

Request length encoding (bit 2, 3)
are:

0 – 0 chunks
1 – 1 chunks
3 – 8 chunks

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3 A-71

PERFORMANCE-MONITORING EVENTS
5: REQ_IO_TYPE

6: REQ_LOCK_
 TYPE

7: REQ_CACHE_
 TYPE

Request type is input or output.

Request type is bus lock.

Request type is cacheable.

8: REQ_SPLIT_
 TYPE

9: REQ_DEM_TYPE

10: REQ_ORD_
 TYPE

Request type is a bus 8-byte
chunk split across 8-byte
boundary.

Request type is a demand if set.
Request type is HW.SW prefetch
if 0.

Request is an ordered type.

11: MEM_TYPE0
12: MEM_TYPE1
13: MEM_TYPE2

Memory type encodings (bit
11-13) are:

0 – UC
1 – USWC
4 – WT
5 – WP
6 – WB

CCCR Select 07H CCCR[15:13]

Event Specific
Notes

1: Specify edge trigger in CCCR to
avoid double counting.

2: A writebacks to 3rd level cache
from 2nd level cache counts as
a separate entry, this is in
additional to the entry
allocated for a request to the
bus.

3: A read request to WB memory
type results in a request to the
64-byte sector, containing the
target address, followed by a
prefetch request to an
adjacent sector.

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-72 Vol. 3

PERFORMANCE-MONITORING EVENTS
4: For Pentium 4 and Xeon
processors with CPUID model
encoding value equals to 0 and
1, an allocated BSQ entry
includes both the demand
sector and prefetched 2nd
sector.

5: An allocated BSQ entry for a
data chunk is any request less
than 64 bytes.

6a:This event may undercount for
requests of split type
transactions if the data
address straddled across
modulo-64 byte boundary.

6b:This event may undercount for
requests of read request of
16-byte operands from WC or
UC address.

6c: This event may undercount WC
partial requests originated
from store operands that are
dwords.

bsq_active_
entries

This event represents the number
of BSQ entries (clipped at 15)
currently active (valid) which meet
the subevent mask criteria during
allocation in the BSQ. Active
request entries are allocated on
the BSQ until de-allocated.

De-allocation of an entry does not
necessarily imply the request is
filled. This event must be
programmed in conjunction with
BSQ_allocation. Specify one or
more event mask bits to select
the transactions that is counted.

ESCR restrictions ESCR1

Counter numbers
per ESCR

ESCR1: 2, 3

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3 A-73

PERFORMANCE-MONITORING EVENTS
ESCR Event Select 06H ESCR[30:25]

ESCR Event Mask ESCR[24:9]

CCCR Select 07H CCCR[15:13]

Event Specific
Notes

1: Specified desired mask bits in
ESCR0 and ESCR1.

2: See the BSQ_allocation event
for descriptions of the mask
bits.

3: Edge triggering should not be
used when counting cycles.

4: This event can be used to
estimate the latency of a
transaction from allocation to
de-allocation in the BSQ. The
latency observed by
BSQ_allocation includes the
latency of FSB, plus additional
overhead.

5: Additional overhead may
include the time it takes to
issue two requests (the sector
by demand and the adjacent
sector via prefetch). Since
adjacent sector prefetches
have lower priority that
demand fetches, on a heavily
used system there is a high
probability that the adjacent
sector prefetch will have to
wait until the next bus
arbitration.

6: For Pentium 4 and Xeon
processors with CPUID model
encoding value less than 3, this
event is updated every clock.

7: For Pentium 4 and Xeon
processors with CPUID model
encoding value equals to 3 or 4,
this event is updated every
other clock.

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-74 Vol. 3

PERFORMANCE-MONITORING EVENTS
SSE_input_assist This event counts the number of
times an assist is requested to
handle problems with input
operands for SSE/SSE2/SSE3
operations; most notably
denormal source operands when
the DAZ bit is not set. Set bit 15
of the event mask to use this
event.

ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 34H ESCR[31:25]

ESCR Event Mask

15: ALL

ESCR[24:9]

Count assists for SSE/SSE2/SSE3
μops.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

1: Not all requests for assists are
actually taken. This event is
known to overcount in that it
counts requests for assists
from instructions on the non-
retired path that do not incur a
performance penalty. An assist
is actually taken only for non-
bogus μops. Any appreciable
counts for this event are an
indication that the DAZ or FTZ
bit should be set and/or the
source code should be changed
to eliminate the condition.

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3 A-75

PERFORMANCE-MONITORING EVENTS
2: Two common situations for an
SSE/SSE2/SSE3 operation
needing an assist are: (1) when
a denormal constant is used as
an input and the Denormals-
Are-Zero (DAZ) mode is not
set, (2) when the input operand
uses the underflowed result of
a previous SSE/SSE2/SSE3
operation and neither the DAZ
nor Flush-To-Zero (FTZ) modes
are set.

3: Enabling the DAZ mode
prevents SSE/SSE2/SSE3
operations from needing
assists in the first situation.
Enabling the FTZ mode
prevents SSE/SSE2/SSE3
operations from needing
assists in the second situation.

packed_SP_uop This event increments for each
packed single-precision μop,
specified through the event mask
for detection.

ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 08H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on
packed single-precision operands.

CCCR Select 01H CCCR[15:13]

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-76 Vol. 3

PERFORMANCE-MONITORING EVENTS
Event Specific
Notes

1: If an instruction contains more
than one packed SP μops, each
packed SP μop that is specified
by the event mask will be
counted.

2: This metric counts instances of
packed memory μops in a
repeat move string.

packed_DP_uop This event increments for each
packed double-precision μop,
specified through the event mask
for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0CH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on
packed double-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more
than one packed DP μops, each
packed DP μop that is specified by
the event mask will be counted.

scalar_SP_uop This event increments for each
scalar single-precision μop,
specified through the event mask
for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0AH ESCR[31:25]

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3 A-77

PERFORMANCE-MONITORING EVENTS
ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on scalar
single-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more
than one scalar SP μops, each
scalar SP μop that is specified by
the event mask will be counted.

scalar_DP_uop This event increments for each
scalar double-precision μop,
specified through the event mask
for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0EH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on scalar
double-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more
than one scalar DP μops, each
scalar DP μop that is specified by
the event mask is counted.

64bit_MMX_uop This event increments for each
MMX instruction, which operate
on 64-bit SIMD operands.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 02H ESCR[31:25]

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-78 Vol. 3

PERFORMANCE-MONITORING EVENTS
ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on 64-
bit SIMD integer operands in
memory or MMX registers.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more
than one 64-bit MMX μops, each
64-bit MMX μop that is specified
by the event mask will be
counted.

128bit_MMX_uop This event increments for each
integer SIMD SSE2 instruction,
which operate on 128-bit SIMD
operands.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 1AH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on 128-
bit SIMD integer operands in
memory or XMM registers.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more
than one 128-bit MMX μops, each
128-bit MMX μop that is specified
by the event mask will be
counted.

x87_FP_uop This event increments for each
x87 floating-point μop, specified
through the event mask for
detection.

ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3 A-79

PERFORMANCE-MONITORING EVENTS
Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 04H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all x87 FP μops.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

1: If an instruction contains more
than one x87 FP μops, each
x87 FP μop that is specified by
the event mask will be counted.

2: This event does not count x87
FP μop for load, store, move
between registers.

TC_misc This event counts miscellaneous
events detected by the TC. The
counter will count twice for each
occurrence.

ESCR restrictions MSR_TC_ESCR0
MSR_TC_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 06H ESCR[31:25]

CCCR Select 01H CCCR[15:13]

ESCR Event Mask

Bit 4: FLUSH

ESCR[24:9]

Number of flushes

global_power
_events

This event accumulates the time
during which a processor is not
stopped.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 013H ESCR[31:25]

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-80 Vol. 3

PERFORMANCE-MONITORING EVENTS
ESCR Event Mask Bit 0: Running ESCR[24:9]

The processor is active (includes
the handling of HLT STPCLK and
throttling.

CCCR Select 06H CCCR[15:13]

tc_ms_xfer This event counts the number of
times that uop delivery changed
from TC to MS ROM.

ESCR restrictions MSR_MS_ESCR0

MSR_MS_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 05H ESCR[31:25]

ESCR Event Mask

Bit 0: CISC

ESCR[24:9]

A TC to MS transfer occurred.

CCCR Select 0H CCCR[15:13]

uop_queue_
writes

This event counts the number of
valid uops written to the uop
queue. Specify one or more mask
bits to select the source type of
writes.

ESCR restrictions MSR_MS_ESCR0

MSR_MS_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 09H ESCR[31:25]

ESCR Event Mask

Bit

0: FROM_TC_
BUILD

ESCR[24:9]

The uops being written are from
TC build mode.

1: FROM_TC_
DELIVER

2: FROM_ROM

The uops being written are from
TC deliver mode.

The uops being written are from
microcode ROM.

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3 A-81

PERFORMANCE-MONITORING EVENTS
CCCR Select 0H CCCR[15:13]

retired_mispred

_branch_type

This event counts retiring
mispredicted branches by type.

ESCR restrictions MSR_TBPU_ESCR0

MSR_TBPU_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 05H ESCR[30:25]

ESCR Event Mask

Bit

1: CONDITIONAL

2: CALL

ESCR[24:9]

Conditional jumps.

Indirect call branches.

3: RETURN

4: INDIRECT

Return branches.

Returns, indirect calls, or indirect
jumps.

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

This event may overcount
conditional branches if:

• Mispredictions cause the trace
cache and delivery engine to
build new traces.

• When the processor's pipeline
is being cleared.

retired_branch

_type

This event counts retiring
branches by type. Specify one or
more mask bits to qualify the
branch by its type

ESCR restrictions MSR_TBPU_ESCR0

MSR_TBPU_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 04H ESCR[30:25]

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-82 Vol. 3

PERFORMANCE-MONITORING EVENTS
ESCR Event Mask

Bit

1: CONDITIONAL

2: CALL

ESCR[24:9]

Conditional jumps.

Direct or indirect calls.

3: RETURN

4: INDIRECT

Return branches.

Returns, indirect calls, or indirect
jumps.

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

This event may overcount
conditional branches if :

• Mispredictions cause the trace
cache and delivery engine to
build new traces.

• When the processor's pipeline
is being cleared.

resource_stall This event monitors the
occurrence or latency of stalls in
the Allocator.

ESCR restrictions MSR_ALF_ESCR0

MSR_ALF_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16
ESCR1: 14, 15, 17

ESCR Event Select 01H ESCR[30:25]

Event Masks

Bit

ESCR[24:9]

5: SBFULL A Stall due to lack of store buffers.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

This event may not be supported
in all models of the processor
family.

WC_Buffer This event counts Write
Combining Buffer operations that
are selected by the event mask.

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3 A-83

PERFORMANCE-MONITORING EVENTS
ESCR restrictions MSR_DAC_ESCR0

MSR_DAC_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 05H ESCR[30:25]

Event Masks

Bit

ESCR[24:9]

0: WCB_EVICTS WC Buffer evictions of all causes.

1: WCB_FULL_
 EVICT

WC Buffer eviction: no WC buffer
is available.

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

This event is useful for detecting
the subset of 64K aliasing cases
that are more costly (i.e. 64K
aliasing cases involving stores) as
long as there are no significant
contributions due to write
combining buffer full or hit-
modified conditions.

b2b_cycles This event can be configured to
count the number back-to-back
bus cycles using sub-event mask
bits 1 through 6.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 016H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

This event may not be supported
in all models of the processor
family.

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-84 Vol. 3

PERFORMANCE-MONITORING EVENTS
bnr This event can be configured to
count bus not ready conditions
using sub-event mask bits 0
through 2.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 08H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

This event may not be supported
in all models of the processor
family.

snoop This event can be configured to
count snoop hit modified bus
traffic using sub-event mask bits
2, 6 and 7.

ESCR restrictions MSR_FSB_ESCR0
MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 06H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

This event may not be supported
in all models of the processor
family.

Response This event can be configured to
count different types of
responses using sub-event mask
bits 1,2, 8, and 9.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3 A-85

PERFORMANCE-MONITORING EVENTS
Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 04H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

This event may not be supported
in all models of the processor
family.

Table A-6. Performance Monitoring Events For Intel NetBurst
Microarchitecture for At-Retirement Counting

Event Name Event Parameters Parameter Value Description

front_end_event This event counts the retirement
of tagged μops, which are
specified through the front-end
tagging mechanism. The event
mask specifies bogus or non-bogus
μops.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 08H ESCR[31:25]

ESCR Event Mask

Bit

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked μops are not bogus.

The marked μops are bogus.

CCCR Select 05H CCCR[15:13]

Can Support PEBS Yes

Require Additional
MSRs for tagging

Selected ESCRs
and/or MSR_TC_
PRECISE_EVENT

See list of metrics supported by
Front_end tagging in Table A-3

Table A-5. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-86 Vol. 3

PERFORMANCE-MONITORING EVENTS
execution_event This event counts the retirement
of tagged μops, which are
specified through the execution
tagging mechanism.

The event mask allows from one
to four types of μops to be
specified as either bogus or non-
bogus μops to be tagged.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 0CH ESCR[31:25]

ESCR Event Mask

Bit

0: NBOGUS0

1: NBOGUS1

2: NBOGUS2

3: NBOGUS3

4: BOGUS0

5: BOGUS1

6: BOGUS2

7: BOGUS3

ESCR[24:9]

The marked μops are not bogus.

The marked μops are not bogus.

The marked μops are not bogus.

The marked μops are not bogus.

The marked μops are bogus.

The marked μops are bogus.

The marked μops are bogus.

The marked μops are bogus.

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

Each of the 4 slots to specify the
bogus/non-bogus μops must be
coordinated with the 4 TagValue
bits in the ESCR (for example,
NBOGUS0 must accompany a ‘1’ in
the lowest bit of the TagValue
field in ESCR, NBOGUS1 must
accompany a ‘1’ in the next but
lowest bit of the TagValue field).

Can Support PEBS Yes

Require Additional
MSRs for tagging

An ESCR for an
upstream event

See list of metrics supported by
execution tagging in Table A-4.

Table A-6. Performance Monitoring Events For Intel NetBurst
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3 A-87

PERFORMANCE-MONITORING EVENTS
replay_event This event counts the retirement
of tagged μops, which are
specified through the replay
tagging mechanism. The event
mask specifies bogus or non-bogus
μops.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 09H ESCR[31:25]

ESCR Event Mask

Bit

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked μops are not bogus.

The marked μops are bogus.

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

Supports counting tagged μops
with additional MSRs.

Can Support PEBS Yes

Require Additional
MSRs for tagging

IA32_PEBS_
ENABLE

MSR_PEBS_
MATRIX_VERT

Selected ESCR

See list of metrics supported by
replay tagging in Table A-5.

instr_retired This event counts instructions that
are retired during a clock cycle.

Mask bits specify bogus or non-
bogus (and whether they are
tagged using the front-end
tagging mechanism).

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 02H ESCR[31:25]

Table A-6. Performance Monitoring Events For Intel NetBurst
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-88 Vol. 3

PERFORMANCE-MONITORING EVENTS
ESCR Event Mask

Bit

0: NBOGUSNTAG

1: NBOGUSTAG

ESCR[24:9]

Non-bogus instructions that are
not tagged.

Non-bogus instructions that are
tagged.

2: BOGUSNTAG

3: BOGUSTAG

Bogus instructions that are not
tagged.

Bogus instructions that are
tagged.

CCCR Select 04H CCCR[15:13]

Event Specific
Notes

1: The event count may vary
depending on the
microarchitectural states of the
processor when the event
detection is enabled.

2: The event may count more
than once for some instructions
with complex uop flows and
were interrupted before
retirement.

Can Support PEBS No

uops_retired This event counts μops that are
retired during a clock cycle. Mask
bits specify bogus or non-bogus.

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 01H ESCR[31:25]

ESCR Event Mask

Bit

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked μops are not bogus.

The marked μops are bogus.

CCCR Select 04H CCCR[15:13]

Event Specific
Notes

P6: EMON_UOPS_RETIRED

Table A-6. Performance Monitoring Events For Intel NetBurst
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3 A-89

PERFORMANCE-MONITORING EVENTS
Can Support PEBS No

uop_type This event is used in conjunction
with the front-end at-retirement
mechanism to tag load and store
μops.

ESCR restrictions MSR_RAT_ESCR0

MSR_RAT_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit

1: TAGLOADS

2: TAGSTORES

ESCR[24:9]

The μop is a load operation.

The μop is a store operation.

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

Setting the TAGLOADS and
TAGSTORES mask bits does not
cause a counter to increment.
They are only used to tag uops.

Can Support PEBS No

branch_retired This event counts the retirement
of a branch. Specify one or more
mask bits to select any
combination of taken, not-taken,
predicted and mispredicted.

ESCR restrictions MSR_CRU_ESCR2
MSR_CRU_ESCR3

See Table 18-17 for the addresses
of the ESCR MSRs

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

The counter numbers associated
with each ESCR are provided. The
performance counters and
corresponding CCCRs can be
obtained from Table 18-17.

ESCR Event Select 06H ESCR[31:25]

Table A-6. Performance Monitoring Events For Intel NetBurst
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-90 Vol. 3

PERFORMANCE-MONITORING EVENTS
ESCR Event Mask

Bit

0: MMNP

1: MMNM

2: MMTP

3: MMTM

ESCR[24:9]

Branch not-taken predicted

Branch not-taken mispredicted

Branch taken predicted

Branch taken mispredicted

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

P6: EMON_BR_INST_RETIRED

Can Support PEBS No

mispred_branch_
retired

This event represents the
retirement of mispredicted branch
instructions.

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 0: NBOGUS

ESCR[24:9]

The retired instruction is not
bogus.

CCCR Select 04H CCCR[15:13]

Can Support PEBS No

x87_assist This event counts the retirement
of x87 instructions that required
special handling.

Specifies one or more event mask
bits to select the type of
assistance.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 03H ESCR[31:25]

Table A-6. Performance Monitoring Events For Intel NetBurst
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3 A-91

PERFORMANCE-MONITORING EVENTS
ESCR Event Mask

Bit

0: FPSU

1: FPSO

ESCR[24:9]

Handle FP stack underflow

Handle FP stack overflow

2: POAO

3: POAU

4: PREA

Handle x87 output overflow

Handle x87 output underflow

Handle x87 input assist

CCCR Select 05H CCCR[15:13]

Can Support PEBS No

machine_clear This event increments according to
the mask bit specified while the
entire pipeline of the machine is
cleared. Specify one of the mask
bit to select the cause.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit

0: CLEAR

ESCR[24:9]

Counts for a portion of the many
cycles while the machine is cleared
for any cause. Use Edge triggering
for this bit only to get a count of
occurrence versus a duration.

2: MOCLEAR

6: SMCLEAR

Increments each time the machine
is cleared due to memory ordering
issues.

Increments each time the machine
is cleared due to self-modifying
code issues.

CCCR Select 05H CCCR[15:13]

Can Support PEBS No

Table A-6. Performance Monitoring Events For Intel NetBurst
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-92 Vol. 3

PERFORMANCE-MONITORING EVENTS
Table A-7. Intel NetBurst Microarchitecture Model-Specific Performance Monitoring
Events (For Model Encoding 3, 4 or 6)

Event Name Event Parameters Parameter Value Description

instr_completed This event counts instructions that
have completed and retired during
a clock cycle. Mask bits specify
whether the instruction is bogus
or non-bogus and whether they
are:

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 07H ESCR[31:25]

ESCR Event Mask

Bit

0: NBOGUS

1: BOGUS

ESCR[24:9]

Non-bogus instructions

Bogus instructions

CCCR Select 04H CCCR[15:13]

Event Specific
Notes

This metric differs from
instr_retired, since it counts
instructions completed, rather
than the number of times that
instructions started.

Can Support PEBS No
Vol. 3 A-93

PERFORMANCE-MONITORING EVENTS
Table A-8. List of Metrics Available for Front_end Tagging
(For Front_end Event Only)

Front-end
metric1

MSR_
TC_PRECISE_EVEN
T MSR Bit field

 Additional MSR Event mask value for
Front_end_event

memory_loads None Set TAGLOADS bit
in ESCR
corresponding to
event Uop_Type.

NBOGUS

memory_stores None Set TAGSTORES bit
in the ESCR
corresponding to
event Uop_Type.

NBOGUS

NOTES:
1. There may be some undercounting of front end events when there is an overflow or underflow of

the floating point stack.

Table A-9. List of Metrics Available for Execution Tagging
(For Execution Event Only)

Execution metric Upstream ESCR TagValue in
Upstream ESCR

Event mask value for
execution_event

packed_SP_retired Set ALL bit in event
mask, TagUop bit in
ESCR of
packed_SP_uop.

1 NBOGUS0

packed_DP_retired Set ALL bit in event
mask, TagUop bit in
ESCR of
packed_DP_uop.

1 NBOGUS0

scalar_SP_retired Set ALL bit in event
mask, TagUop bit in
ESCR of
scalar_SP_uop.

1 NBOGUS0

scalar_DP_retired Set ALL bit in event
mask, TagUop bit in
ESCR of
scalar_DP_uop.

1 NBOGUS0

128_bit_MMX_retired Set ALL bit in event
mask, TagUop bit in
ESCR of
128_bit_MMX_uop.

1 NBOGUS0
A-94 Vol. 3

PERFORMANCE-MONITORING EVENTS
64_bit_MMX_retired Set ALL bit in event
mask, TagUop bit in
ESCR of
64_bit_MMX_uop.

1 NBOGUS0

X87_FP_retired Set ALL bit in event
mask, TagUop bit in
ESCR of
x87_FP_uop.

1 NBOGUS0

X87_SIMD_memory_m
oves_retired

Set ALLP0, ALLP2
bits in event mask,
TagUop bit in ESCR
of X87_SIMD_
moves_uop.

1 NBOGUS0

Table A-10. List of Metrics Available for Replay Tagging
(For Replay Event Only)

Replay metric1

IA32_PEBS_
ENABLE Field
to Set

MSR_PEBS_
MATRIX_VERT
Bit Field to Set

Additional MSR/
Event

Event Mask
Value for
Replay_event

1stL_cache_load
_miss_retired

Bit 0, Bit 24,
Bit 25

Bit 0 None NBOGUS

2ndL_cache_load
_miss_retired2

Bit 1, Bit 24,
Bit 25

Bit 0 None NBOGUS

DTLB_load_miss
_retired

Bit 2, Bit 24,
Bit 25

Bit 0 None NBOGUS

DTLB_store_miss
_retired

Bit 2, Bit 24,
Bit 25

Bit 1 None NBOGUS

DTLB_all_miss
_retired

Bit 2, Bit 24,
Bit 25

Bit 0, Bit 1 None NBOGUS

Tagged_mispred_
branch

Bit 15, Bit 16,
Bit 24, Bit 25

Bit 4 None NBOGUS

MOB_load
_replay_retired3

Bit 9, Bit 24,
Bit 25

Bit 0 Select
MOB_load_replay
event and set
PARTIAL_DATA and
UNALGN_ADDR bit.

NBOGUS

Table A-9. List of Metrics Available for Execution Tagging
(For Execution Event Only) (Contd.)

Execution metric Upstream ESCR TagValue in
Upstream ESCR

Event mask value for
execution_event
Vol. 3 A-95

PERFORMANCE-MONITORING EVENTS
split_load_retired Bit 10, Bit 24,
Bit 25

Bit 0 Select
load_port_replay
event with the
MSR_SAAT_ESCR1
MSR and set the
SPLIT_LD mask bit.

NBOGUS

split_store_retired Bit 10, Bit 24,
Bit 25

Bit 1 Select
store_port_replay
event with the
MSR_SAAT_ESCR0
MSR and set the
SPLIT_ST mask bit.

NBOGUS

NOTES:
1. Certain kinds of μops cannot be tagged. These include I/O operations, UC and locked accesses,

returns, and far transfers.
2. 2nd-level misses retired does not count all 2nd-level misses. It only includes those references that

are found to be misses by the fast detection logic and not those that are later found to be misses.
3. While there are several causes for a MOB replay, the event counted with this event mask setting is

the case where the data from a load that would otherwise be forwarded is not an aligned subset of
the data from a preceding store.

Table A-10. List of Metrics Available for Replay Tagging
(For Replay Event Only) (Contd.)

Replay metric1

IA32_PEBS_
ENABLE Field
to Set

MSR_PEBS_
MATRIX_VERT
Bit Field to Set

Additional MSR/
Event

Event Mask
Value for
Replay_event
A-96 Vol. 3

PERFORMANCE-MONITORING EVENTS
Table A-11. Event Mask Qualification for Logical Processors

Event Type Event Name Event Masks, ESCR[24:9] TS or TI

Non-Retirement BPU_fetch_request Bit 0: TCMISS TS

Non-Retirement BSQ_allocation Bit

0: REQ_TYPE0 TS

1: REQ_TYPE1 TS

2: REQ_LEN0 TS

3: REQ_LEN1 TS

5: REQ_IO_TYPE TS

6: REQ_LOCK_TYPE TS

7: REQ_CACHE_TYPE TS

8: REQ_SPLIT_TYPE TS

9: REQ_DEM_TYPE TS

10: REQ_ORD_TYPE TS

11: MEM_TYPE0 TS

12: MEM_TYPE1 TS

13: MEM_TYPE2 TS

Non-Retirement BSQ_cache_reference Bit

0: RD_2ndL_HITS TS

1: RD_2ndL_HITE TS

2: RD_2ndL_HITM TS

3: RD_3rdL_HITS TS

4: RD_3rdL_HITE TS

5: RD_3rdL_HITM TS

6: WR_2ndL_HIT TS

7: WR_3rdL_HIT TS

8: RD_2ndL_MISS TS

9: RD_3rdL_MISS TS

10: WR_2ndL_MISS TS

11: WR_3rdL_MISS TS
Vol. 3 A-97

PERFORMANCE-MONITORING EVENTS
Non-Retirement memory_cancel Bit

2: ST_RB_FULL TS

3: 64K_CONF TS

Non-Retirement SSE_input_assist Bit 15: ALL TI

Non-Retirement 64bit_MMX_uop Bit 15: ALL TI

Non-Retirement packed_DP_uop Bit 15: ALL TI

Non-Retirement packed_SP_uop Bit 15: ALL TI

Non-Retirement scalar_DP_uop Bit 15: ALL TI

Non-Retirement scalar_SP_uop Bit 15: ALL TI

Non-Retirement 128bit_MMX_uop Bit 15: ALL TI

Non-Retirement x87_FP_uop Bit 15: ALL TI

Non-Retirement x87_SIMD_moves_uop Bit

3: ALLP0 TI

4: ALLP2 TI

Non-Retirement FSB_data_activity Bit

0: DRDY_DRV TI

1: DRDY_OWN TI

2: DRDY_OTHER TI

3: DBSY_DRV TI

4: DBSY_OWN TI

5: DBSY_OTHER TI

Non-Retirement IOQ_allocation Bit

0: ReqA0 TS

1: ReqA1 TS

2: ReqA2 TS

3: ReqA3 TS

4: ReqA4 TS

5: ALL_READ TS

6: ALL_WRITE TS

7: MEM_UC TS

8: MEM_WC TS

Table A-11. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
A-98 Vol. 3

PERFORMANCE-MONITORING EVENTS
9: MEM_WT TS

10: MEM_WP TS

11: MEM_WB TS

13: OWN TS

14: OTHER TS

15: PREFETCH TS

Non-Retirement IOQ_active_entries Bit

0: ReqA0

TS

1:ReqA1 TS

2: ReqA2 TS

3: ReqA3 TS

4: ReqA4 TS

5: ALL_READ TS

6: ALL_WRITE TS

7: MEM_UC TS

8: MEM_WC TS

9: MEM_WT TS

10: MEM_WP TS

11: MEM_WB TS

13: OWN TS

14: OTHER TS

15: PREFETCH TS

Non-Retirement global_power_events Bit 0: RUNNING TS

Non-Retirement ITLB_reference Bit

0: HIT TS

1: MISS TS

2: HIT_UC TS

Table A-11. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
Vol. 3 A-99

PERFORMANCE-MONITORING EVENTS
Non-Retirement MOB_load_replay Bit

1: NO_STA TS

3: NO_STD TS

4: PARTIAL_DATA TS

5: UNALGN_ADDR TS

Non-Retirement page_walk_type Bit

0: DTMISS TI

1: ITMISS TI

Non-Retirement uop_type Bit

1: TAGLOADS TS

2: TAGSTORES TS

Non-Retirement load_port_replay Bit 1: SPLIT_LD TS

Non-Retirement store_port_replay Bit 1: SPLIT_ST TS

Non-Retirement memory_complete Bit

0: LSC TS

1: SSC TS

2: USC TS

3: ULC TS

Non-Retirement retired_mispred_branch_
type

Bit

0: UNCONDITIONAL TS

1: CONDITIONAL TS

2: CALL TS

3: RETURN TS

4: INDIRECT TS

Non-Retirement retired_branch_type Bit

0: UNCONDITIONAL TS

1: CONDITIONAL TS

2: CALL TS

3: RETURN TS

4: INDIRECT TS

Table A-11. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
A-100 Vol. 3

PERFORMANCE-MONITORING EVENTS
Non-Retirement tc_ms_xfer Bit

0: CISC TS

Non-Retirement tc_misc Bit

4: FLUSH TS

Non-Retirement TC_deliver_mode Bit

0: DD TI

1: DB TI

2: DI TI

3: BD TI

4: BB TI

5: BI TI

6: ID TI

7: IB TI

Non-Retirement uop_queue_writes Bit

0: FROM_TC_BUILD TS

1: FROM_TC_DELIVER TS

2: FROM_ROM TS

Non-Retirement resource_stall Bit 5: SBFULL TS

Non-Retirement WC_Buffer Bit TI

0: WCB_EVICTS TI

1: WCB_FULL_EVICT TI

2: WCB_HITM_EVICT TI

At Retirement instr_retired Bit

0: NBOGUSNTAG TS

1: NBOGUSTAG TS

2: BOGUSNTAG TS

3: BOGUSTAG TS

Table A-11. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
Vol. 3 A-101

PERFORMANCE-MONITORING EVENTS
At Retirement machine_clear Bit

0: CLEAR TS

2: MOCLEAR TS

6: SMCCLEAR TS

At Retirement front_end_event Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement replay_event Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement execution_event Bit

0: NONBOGUS0 TS

1: NONBOGUS1 TS

2: NONBOGUS2 TS

3: NONBOGUS3 TS

4: BOGUS0 TS

5: BOGUS1 TS

6: BOGUS2 TS

7: BOGUS3 TS

At Retirement x87_assist Bit

0: FPSU TS

1: FPSO TS

2: POAO TS

3: POAU TS

4: PREA TS

At Retirement branch_retired Bit

0: MMNP TS

1: MMNM TS

2: MMTP TS

3: MMTM TS

At Retirement mispred_branch_retired Bit 0: NBOGUS TS

Table A-11. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
A-102 Vol. 3

PERFORMANCE-MONITORING EVENTS
A.5 PERFORMANCE MONITORING EVENTS FOR
INTEL® PENTIUM® M PROCESSORS

The Pentium M processor’s performance-monitoring events are based on monitoring
events for the P6 family of processors. All of these performance events are model
specific for the Pentium M processor and are not available in this form in other
processors. Table A-12 lists the Performance-Monitoring events that were added in
the Pentium M processor.

At Retirement uops_retired Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement instr_completed Bit

0: NBOGUS TS

1: BOGUS TS

Table A-12. Performance Monitoring Events on Intel® Pentium® M
Processors

Name Hex Values Descriptions

Power Management

EMON_EST_TRANS 58H Number of Enhanced Intel SpeedStep
technology transitions:

Mask = 00H - All transitions

Mask = 02H - Only Frequency
transitions

EMON_THERMAL_TRIP 59H Duration/Occurrences in thermal trip; to
count number of thermal trips: bit 22 in
PerfEvtSel0/1 needs to be set to enable
edge detect.

BPU

BR_INST_EXEC 88H Branch instructions that were executed
(not necessarily retired).

BR_MISSP_EXEC 89H Branch instructions executed that were
mispredicted at execution.

Table A-11. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
Vol. 3 A-103

PERFORMANCE-MONITORING EVENTS
BR_BAC_MISSP_EXEC 8AH Branch instructions executed that were
mispredicted at front end (BAC).

BR_CND_EXEC 8BH Conditional branch instructions that
were executed.

BR_CND_MISSP_EXEC 8CH Conditional branch instructions
executed that were mispredicted.

BR_IND_EXEC 8DH Indirect branch instructions executed.

BR_IND_MISSP_EXEC 8EH Indirect branch instructions executed
that were mispredicted.

BR_RET_EXEC 8FH Return branch instructions executed.

BR_RET_MISSP_EXEC 90H Return branch instructions executed
that were mispredicted at execution.

BR_RET_BAC_MISSP_EXEC 91H Return branch instructions executed
that were mispredicted at front end
(BAC).

BR_CALL_EXEC 92H CALL instruction executed.

BR_CALL_MISSP_EXEC 93H CALL instruction executed and miss
predicted.

BR_IND_CALL_EXEC 94H Indirect CALL instructions executed.

Decoder

EMON_SIMD_INSTR_RETIRED CEH Number of retired MMX instructions.

EMON_SYNCH_UOPS D3H Sync micro-ops

EMON_ESP_UOPS D7H Total number of micro-ops

EMON_FUSED_UOPS_RET DAH Number of retired fused micro-ops:

Mask = 0 - Fused micro-ops

Mask = 1 - Only load+Op micro-ops

Mask = 2 - Only std+sta micro-ops

EMON_UNFUSION DBH Number of unfusion events in the ROB,
happened on a FP exception to a fused
µop.

Table A-12. Performance Monitoring Events on Intel® Pentium® M
Processors (Contd.)

Name Hex Values Descriptions
A-104 Vol. 3

PERFORMANCE-MONITORING EVENTS
A number of P6 family processor performance monitoring events are modified for the
Pentium M processor. Table A-13 lists the performance monitoring events that were
changed in the Pentium M processor, and differ from performance monitoring events
for the P6 family of processors.

Prefetcher

EMON_PREF_RQSTS_UP F0H Number of upward prefetches issued

EMON_PREF_RQSTS_DN F8H Number of downward prefetches issued

Table A-13. Performance Monitoring Events Modified on Intel® Pentium® M
Processors

Name Hex
Values

Descriptions

CPU_CLK_UNHALTED 79H Number of cycles during which the processor is not
halted, and not in a thermal trip.

EMON_SSE_SSE2_INST_
RETIRED

D8H Streaming SIMD Extensions Instructions Retired:

Mask = 0 – SSE packed single and scalar single

Mask = 1 – SSE scalar-single

Mask = 2 – SSE2 packed-double

Mask = 3 – SSE2 scalar-double

EMON_SSE_SSE2_COMP_INST_
RETIRED

D9H Computational SSE Instructions Retired:

Mask = 0 – SSE packed single

Mask = 1 – SSE Scalar-single

Mask = 2 – SSE2 packed-double

Mask = 3 – SSE2 scalar-double

Table A-12. Performance Monitoring Events on Intel® Pentium® M
Processors (Contd.)

Name Hex Values Descriptions
Vol. 3 A-105

PERFORMANCE-MONITORING EVENTS
A.6 P6 FAMILY PROCESSOR PERFORMANCE-
MONITORING EVENTS

Table A-14 lists the events that can be counted with the performance-monitoring
counters and read with the RDPMC instruction for the P6 family processors. The unit
column gives the microarchitecture or bus unit that produces the event; the event
number column gives the hexadecimal number identifying the event; the mnemonic
event name column gives the name of the event; the unit mask column gives the unit
mask required (if any); the description column describes the event; and the
comments column gives additional information about the event.

All of these performance events are model specific for the P6 family processors and
are not available in this form in the Pentium 4 processors or the Pentium processors.
Some events (such as those added in later generations of the P6 family processors)
are only available in specific processors in the P6 family. All performance event
encodings not listed in Table A-14 are reserved and their use will result in undefined
counter results.

See the end of the table for notes related to certain entries in the table.

L2_LD 29H L2 data loads Mask[0] = 1 – count I state lines

Mask[1] = 1 – count S state
lines

Mask[2] = 1 – count E state
lines

Mask[3] = 1 – count M state
lines

Mask[5:4]:

00H – Excluding hardware-
prefetched lines

01H - Hardware-prefetched
lines only

02H/03H – All (HW-prefetched
lines and non HW --Prefetched
lines)

L2_LINES_IN 24H L2 lines
allocated

L2_LINES_OUT 26H L2 lines evicted

L2_M_LINES_OUT 27H Lw M-state lines
evicted

Table A-13. Performance Monitoring Events Modified on Intel® Pentium® M
Processors (Contd.)

Name Hex
Values

Descriptions
A-106 Vol. 3

PERFORMANCE-MONITORING EVENTS
Table A-14. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

Data Cache
Unit (DCU)

43H DATA_MEM_REFS 00H All loads from any
memory type. All stores
to any memory type.
Each part of a split is
counted separately. The
internal logic counts not
only memory loads and
stores, but also internal
retries.

80-bit floating-point
accesses are double
counted, since they are
decomposed into a 16-bit
exponent load and a
64-bit mantissa load.
Memory accesses are
only counted when they
are actually performed
(such as a load that gets
squashed because a
previous cache miss is
outstanding to the same
address, and which finally
gets performed, is only
counted once).

Does not include I/O
accesses, or other
nonmemory accesses.

45H DCU_LINES_IN 00H Total lines allocated in
DCU

46H DCU_M_LINES_IN 00H Number of M state lines
allocated in DCU

47H DCU_M_LINES_
OUT

00H Number of M state lines
evicted from DCU

This includes evictions
via snoop HITM,
intervention or
replacement.
Vol. 3 A-107

PERFORMANCE-MONITORING EVENTS
48H DCU_MISS_
OUTSTANDING

00H Weighted number of
cycles while a DCU miss is
outstanding, incremented
by the number of
outstanding cache
misses at any particular
time.

Cacheable read requests
only are considered.

Uncacheable requests
are excluded.

Read-for-ownerships are
counted, as well as line
fills, invalidates, and
stores.

An access that also
misses the L2 is
short-changed by 2
cycles (i.e., if counts
N cycles, should be
N+2 cycles).

Subsequent loads
to the same cache
line will not result in
any additional
counts.

Count value not
precise, but still
useful.

Instruction
Fetch Unit
(IFU)

80H IFU_IFETCH 00H Number of instruction
fetches, both cacheable
and noncacheable,
including UC fetches

81H IFU_IFETCH_
MISS

00H Number of instruction
fetch misses

All instruction fetches
that do not hit the IFU
(i.e., that produce
memory requests). This
includes UC accesses.

85H ITLB_MISS 00H Number of ITLB misses.

86H IFU_MEM_STALL 00H Number of cycles
instruction fetch is
stalled, for any reason.

Includes IFU cache
misses, ITLB misses, ITLB
faults, and other minor
stalls.

87H ILD_STALL 00H Number of cycles that
the instruction length
decoder is stalled.

Table A-14. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
A-108 Vol. 3

PERFORMANCE-MONITORING EVENTS
L2 Cache1 28H L2_IFETCH MESI
0FH

Number of L2 instruction
fetches.

This event indicates that
a normal instruction
fetch was received by
the L2.

The count includes only
L2 cacheable instruction
fetches; it does not
include UC instruction
fetches.

It does not include ITLB
miss accesses.

29H L2_LD MESI
0FH

Number of L2 data loads.

This event indicates that
a normal, unlocked, load
memory access was
received by the L2.

It includes only L2
cacheable memory
accesses; it does not
include I/O accesses,
other nonmemory
accesses, or memory
accesses such as UC/WT
memory accesses.

It does include L2
cacheable TLB miss
memory accesses.

2AH L2_ST MESI
0FH

Number of L2 data
stores.

This event indicates that
a normal, unlocked, store
memory access was
received by the L2.

Table A-14. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
Vol. 3 A-109

PERFORMANCE-MONITORING EVENTS
it indicates that the DCU
sent a read-for-
ownership request to the
L2. It also includes Invalid
to Modified requests sent
by the DCU to the L2.

It includes only L2
cacheable memory
accesses; it does not
include I/O accesses,
other nonmemory
accesses, or memory
accesses such as UC/WT
memory accesses.

It includes TLB miss
memory accesses.

24H L2_LINES_IN 00H Number of lines allocated
in the L2.

26H L2_LINES_OUT 00H Number of lines removed
from the L2 for any
reason.

25H L2_M_LINES_INM 00H Number of modified lines
allocated in the L2.

27H L2_M_LINES_
OUTM

00H Number of modified lines
removed from the L2 for
any reason.

2EH L2_RQSTS MESI
0FH

Total number of L2
requests.

21H L2_ADS 00H Number of L2 address
strobes.

22H L2_DBUS_BUSY 00H Number of cycles during
which the L2 cache data
bus was busy.

23H L2_DBUS_BUSY_
RD

00H Number of cycles during
which the data bus was
busy transferring read
data from L2 to the
processor.

Table A-14. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
A-110 Vol. 3

PERFORMANCE-MONITORING EVENTS
External
Bus Logic
(EBL)2

62H BUS_DRDY_
CLOCKS

00H
(Self)

20H
(Any)

Number of clocks during
which DRDY# is asserted.

Utilization of the external
system data bus during
data transfers.

Unit Mask = 00H
counts bus clocks
when the processor
is driving DRDY#.

Unit Mask = 20H
counts in processor
clocks when any
agent is driving
DRDY#.

63H BUS_LOCK_
CLOCKS

00H
(Self)

20H
(Any)

Number of clocks during
which LOCK# is asserted
on the external system
bus.3

Always counts in
processor clocks.

60H BUS_REQ_
OUTSTANDING

00H
(Self)

Number of bus requests
outstanding.

This counter is
incremented by the
number of cacheable
read bus requests
outstanding in any given
cycle.

Counts only DCU
full-line cacheable
reads, not RFOs,
writes, instruction
fetches, or anything
else. Counts
“waiting for bus to
complete” (last data
chunk received).

65H BUS_TRAN_BRD 00H
(Self)

20H
(Any)

Number of burst read
transactions.

66H BUS_TRAN_RFO 00H
(Self)

20H
(Any)

Number of completed
read for ownership
transactions.

67H BUS_TRANS_WB 00H
(Self)

20H
(Any)

Number of completed
write back transactions.

Table A-14. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
Vol. 3 A-111

PERFORMANCE-MONITORING EVENTS
68H BUS_TRAN_
IFETCH

00H
(Self)

20H
(Any)

Number of completed
instruction fetch
transactions.

69H BUS_TRAN_INVA
L

00H
(Self)

20H
(Any)

Number of completed
invalidate transactions.

6AH BUS_TRAN_PWR 00H
(Self)

20H
(Any)

Number of completed
partial write
transactions.

6BH BUS_TRANS_P 00H
(Self)

20H
(Any)

Number of completed
partial transactions.

6CH BUS_TRANS_IO 00H
(Self)

20H
(Any)

Number of completed I/O
transactions.

6DH BUS_TRAN_DEF 00H
(Self)

20H
(Any)

Number of completed
deferred transactions.

6EH BUS_TRAN_
BURST

00H
(Self)

20H
(Any)

Number of completed
burst transactions.

70H BUS_TRAN_ANY 00H
(Self)

20H
(Any)

Number of all completed
bus transactions.

Address bus utilization
can be calculated
knowing the minimum
address bus occupancy.

Includes special cycles,
etc.

Table A-14. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
A-112 Vol. 3

PERFORMANCE-MONITORING EVENTS
6FH BUS_TRAN_MEM 00H
(Self)

20H
(Any)

Number of completed
memory transactions.

64H BUS_DATA_RCV 00H
(Self)

Number of bus clock
cycles during which this
processor is receiving
data.

61H BUS_BNR_DRV 00H
(Self)

Number of bus clock
cycles during which this
processor is driving the
BNR# pin.

7AH BUS_HIT_DRV 00H
(Self)

Number of bus clock
cycles during which this
processor is driving the
HIT# pin.

Includes cycles due
to snoop stalls.

The event counts
correctly, but BPMi
(breakpoint
monitor) pins
function as follows
based on the
setting of the PC
bits (bit 19 in the
PerfEvtSel0 and
PerfEvtSel1
registers):

• If the core-clock-
to- bus-clock
ratio is 2:1 or 3:1,
and a PC bit is
set, the BPMi
pins will be
asserted for a
single clock when
the counters
overflow.

Table A-14. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
Vol. 3 A-113

PERFORMANCE-MONITORING EVENTS
• If the PC bit is
clear, the
processor
toggles the BPMi
pins when the
counter
overflows.

• If the clock ratio
is not 2:1 or 3:1,
the BPMi pins
will not function
for these
performance-
monitoring
counter events.

7BH BUS_HITM_DRV 00H
(Self)

Number of bus clock
cycles during which this
processor is driving the
HITM# pin.

Includes cycles due
to snoop stalls.

The event counts
correctly, but BPMi
(breakpoint
monitor) pins
function as follows
based on the
setting of the PC
bits (bit 19 in the
PerfEvtSel0 and
PerfEvtSel1
registers):

• If the core-clock-
to- bus-clock
ratio is 2:1 or 3:1,
and a PC bit is
set, the BPMi
pins will be
asserted for a
single clock when
the counters
overflow.

Table A-14. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
A-114 Vol. 3

PERFORMANCE-MONITORING EVENTS
• If the PC bit is
clear, the
processor
toggles the
BPMipins when
the counter
overflows.

• If the clock ratio
is not 2:1 or 3:1,
the BPMi pins
will not function
for these
performance-
monitoring
counter events.

7EH BUS_SNOOP_
STALL

00H
(Self)

Number of clock cycles
during which the bus is
snoop stalled.

Floating-
Point Unit

C1H FLOPS 00H Number of computational
floating-point operations
retired.

Excludes floating-point
computational operations
that cause traps or
assists.

Includes floating-point
computational operations
executed by the assist
handler.

Includes internal sub-
operations for complex
floating-point
instructions like
transcendentals.

Excludes floating-point
loads and stores.

Counter 0 only.

Table A-14. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
Vol. 3 A-115

PERFORMANCE-MONITORING EVENTS
10H FP_COMP_OPS_
EXE

00H Number of computational
floating-point operations
executed.

The number of FADD,
FSUB, FCOM, FMULs,
integer MULs and IMULs,
FDIVs, FPREMs, FSQRTS,
integer DIVs, and IDIVs.

This number does not
include the number of
cycles, but the number of
operations.

This event does not
distinguish an FADD used
in the middle of a
transcendental flow from
a separate FADD
instruction.

Counter 0 only.

11H FP_ASSIST 00H Number of floating-point
exception cases handled
by microcode.

Counter 1 only.

This event includes
counts due to
speculative
execution.

12H MUL 00H Number of multiplies.

This count includes
integer as well as FP
multiplies and is
speculative.

Counter 1 only.

13H DIV 00H Number of divides.

This count includes
integer as well as FP
divides and is
speculative.

Counter 1 only.

Table A-14. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
A-116 Vol. 3

PERFORMANCE-MONITORING EVENTS
14H CYCLES_DIV_
BUSY

00H Number of cycles during
which the divider is busy,
and cannot accept new
divides.

This includes integer and
FP divides, FPREM,
FPSQRT, etc. and is
speculative.

Counter 0 only.

Memory
Ordering

03H LD_BLOCKS 00H Number of load
operations delayed due
to store buffer blocks.

Includes counts caused
by preceding stores
whose addresses are
unknown, preceding
stores whose addresses
are known but whose
data is unknown, and
preceding stores that
conflicts with the load
but which incompletely
overlap the load.

04H SB_DRAINS 00H Number of store buffer
drain cycles.

Incremented every cycle
the store buffer is
draining.

Draining is caused by
serializing operations like
CPUID, synchronizing
operations like XCHG,
interrupt
acknowledgment, as well
as other conditions (such
as cache flushing).

Table A-14. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
Vol. 3 A-117

PERFORMANCE-MONITORING EVENTS
05H MISALIGN_
MEM_REF

00H Number of misaligned
data memory references.

Incremented by 1 every
cycle, during which either
the processor’s load or
store pipeline dispatches
a misaligned μop.

Counting is performed if
it is the first or second
half, or if it is blocked,
squashed, or missed.

In this context,
misaligned means
crossing a 64-bit
boundary.

MISALIGN_MEM_
REF is only an
approximation to
the true number of
misaligned memory
references.

The value returned
is roughly
proportional to the
number of
misaligned memory
accesses (the size
of the problem).

07H EMON_KNI_PREF
_DISPATCHED

Number of Streaming
SIMD extensions
prefetch/weakly-ordered
instructions dispatched
(speculative prefetches
are included in counting):

Counters 0 and 1.
Pentium III
processor only.

00H

01H

02H

03H

0: prefetch NTA

1: prefetch T1

2: prefetch T2

3: weakly ordered stores

4BH EMON_KNI_PREF
_MISS

Number of
prefetch/weakly-ordered
instructions that miss all
caches:

Counters 0 and 1.
Pentium III
processor only.

00H

01H

02H

03H

0: prefetch NTA

1: prefetch T1

2: prefetch T2

3: weakly ordered stores

Table A-14. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
A-118 Vol. 3

PERFORMANCE-MONITORING EVENTS
Instruction
Decoding
and
Retirement

C0H INST_RETIRED 00H Number of instructions
retired.

A hardware
interrupt received
during/after the
last iteration of the
REP STOS flow
causes the counter
to undercount by 1
instruction.

An SMI received
while executing a
HLT instruction will
cause the
performance
counter to not
count the RSM
instruction and
undercount by 1.

C2H UOPS_RETIRED 00H Number of μops retired.

D0H INST_DECODED 00H Number of instructions
decoded.

D8H EMON_KNI_INST_
RETIRED

00H

01H

Number of Streaming
SIMD extensions retired:

0: packed & scalar

1: scalar

Counters 0 and 1.
Pentium III
processor only.

D9H EMON_KNI_
COMP_
INST_RET

00H

01H

Number of Streaming
SIMD extensions
computation instructions
retired:

0: packed and scalar

1: scalar

Counters 0 and 1.
Pentium III
processor only.

Table A-14. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
Vol. 3 A-119

PERFORMANCE-MONITORING EVENTS
Interrupts C8H HW_INT_RX 00H Number of hardware
interrupts received.

C6H CYCLES_INT_
MASKED

00H Number of processor
cycles for which
interrupts are disabled.

C7H CYCLES_INT_
PENDING_
AND_MASKED

00H Number of processor
cycles for which
interrupts are disabled
and interrupts are
pending.

Branches C4H BR_INST_
RETIRED

00H Number of branch
instructions retired.

C5H BR_MISS_PRED_
RETIRED

00H Number of mispredicted
branches retired.

C9H BR_TAKEN_
RETIRED

00H Number of taken
branches retired.

CAH BR_MISS_PRED_
TAKEN_RET

00H Number of taken
mispredictions branches
retired.

E0H BR_INST_
DECODED

00H Number of branch
instructions decoded.

E2H BTB_MISSES 00H Number of branches for
which the BTB did not
produce a prediction.

E4H BR_BOGUS 00H Number of bogus
branches.

E6H BACLEARS 00H Number of times
BACLEAR is asserted.

This is the number of
times that a static branch
prediction was made, in
which the branch
decoder decided to make
a branch prediction
because the BTB did not.

Table A-14. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
A-120 Vol. 3

PERFORMANCE-MONITORING EVENTS
Stalls A2H RESOURCE_
STALLS

00H Incremented by 1 during
every cycle for which
there is a resource
related stall.

Includes register
renaming buffer entries,
memory buffer entries.

Does not include stalls
due to bus queue full, too
many cache misses, etc.

In addition to resource
related stalls, this event
counts some other
events.

Includes stalls arising
during branch
misprediction recovery,
such as if retirement of
the mispredicted branch
is delayed and stalls
arising while store buffer
is draining from
synchronizing operations.

D2H PARTIAL_RAT_
STALLS

00H Number of cycles or
events for partial stalls.
This includes flag partial
stalls.

Segment
Register
Loads

06H SEGMENT_REG_
LOADS

00H Number of segment
register loads.

Clocks 79H CPU_CLK_
UNHALTED

00H Number of cycles during
which the processor is
not halted.

Table A-14. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
Vol. 3 A-121

PERFORMANCE-MONITORING EVENTS
MMX Unit B0H MMX_INSTR_
EXEC

00H Number of MMX
Instructions Executed.

Available in Intel
Celeron, Pentium II
and Pentium II Xeon
processors only.

Does not account
for MOVQ and
MOVD stores from
register to memory.

B1H MMX_SAT_
INSTR_EXEC

00H Number of MMX
Saturating Instructions
Executed.

Available in Pentium

II and Pentium III
processors only.

B2H MMX_UOPS_
EXEC

0FH Number of MMX μops
Executed.

Available in Pentium

II and Pentium III
processors only.

B3H MMX_INSTR_
TYPE_EXEC

01H

02H

04H

MMX packed multiply
instructions executed.

MMX packed shift
instructions executed.

MMX pack operation
instructions executed.

Available in Pentium

II and Pentium III
processors only.

08H

10H

20H

MMX unpack operation
instructions executed.

MMX packed logical
instructions executed.

MMX packed arithmetic
instructions executed.

CCH FP_MMX_TRANS 00H

01H

Transitions from MMX
instruction to floating-
point instructions.

Transitions from floating-
point instructions to
MMX instructions.

Available in Pentium

II and Pentium III
processors only.

CDH MMX_ASSIST 00H Number of MMX Assists
(that is, the number of
EMMS instructions
executed).

Available in Pentium

II and Pentium III
processors only.

CEH MMX_INSTR_RET 00H Number of MMX
Instructions Retired.

Available in Pentium

II processors only.

Table A-14. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
A-122 Vol. 3

PERFORMANCE-MONITORING EVENTS
Segment
Register
Renaming

D4H SEG_RENAME_
STALLS

Number of Segment
Register Renaming Stalls:

Available in Pentium

II and Pentium III
processors only.

02H

04H

08H

0FH

Segment register ES

Segment register DS

Segment register FS

Segment register FS

Segment registers
ES + DS + FS + GS

D5H SEG_REG_
RENAMES

Number of Segment
Register Renames:

Available in Pentium

II and Pentium III
processors only.

01H

02H

04H

08H

0FH

Segment register ES

Segment register DS

Segment register FS

Segment register FS

Segment registers
ES + DS + FS + GS

D6H RET_SEG_
RENAMES

00H Number of segment
register rename events
retired.

Available in Pentium

II and Pentium III
processors only.

NOTES:
1. Several L2 cache events, where noted, can be further qualified using the Unit Mask (UMSK) field

in the PerfEvtSel0 and PerfEvtSel1 registers. The lower 4 bits of the Unit Mask field are used in
conjunction with L2 events to indicate the cache state or cache states involved.
The P6 family processors identify cache states using the “MESI” protocol and consequently each
bit in the Unit Mask field represents one of the four states: UMSK[3] = M (8H) state, UMSK[2] = E
(4H) state, UMSK[1] = S (2H) state, and UMSK[0] = I (1H) state. UMSK[3:0] = MESI” (FH) should be
used to collect data for all states; UMSK = 0H, for the applicable events, will result in nothing
being counted.

2. All of the external bus logic (EBL) events, except where noted, can be further qualified using the
Unit Mask (UMSK) field in the PerfEvtSel0 and PerfEvtSel1 registers.
Bit 5 of the UMSK field is used in conjunction with the EBL events to indicate whether the pro-
cessor should count transactions that are self- generated (UMSK[5] = 0) or transactions that
result from any processor on the bus (UMSK[5] = 1).

3. L2 cache locks, so it is possible to have a zero count.

Table A-14. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
Vol. 3 A-123

PERFORMANCE-MONITORING EVENTS
A.7 PENTIUM PROCESSOR PERFORMANCE-
MONITORING EVENTS

Table A-15 lists the events that can be counted with the performance-monitoring
counters for the Pentium processor. The Event Number column gives the hexadec-
imal code that identifies the event and that is entered in the ES0 or ES1 (event
select) fields of the CESR MSR. The Mnemonic Event Name column gives the name of
the event, and the Description and Comments columns give detailed descriptions of
the events. Most events can be counted with either counter 0 or counter 1; however,
some events can only be counted with only counter 0 or only counter 1 (as noted).

NOTE
The events in the table that are shaded are implemented only in the
Pentium processor with MMX technology.

Table A-15. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters

Event
Num.

Mnemonic Event
Name Description Comments

00H DATA_READ Number of memory data
reads (internal data
cache hit and miss
combined)

Split cycle reads are counted
individually. Data Memory Reads that
are part of TLB miss processing are
not included. These events may
occur at a maximum of two per clock.
I/O is not included.

01H DATA_WRITE Number of memory data
writes (internal data
cache hit and miss
combined); I/O not
included

Split cycle writes are counted
individually. These events may occur
at a maximum of two per clock. I/O is
not included.

0H2 DATA_TLB_MISS Number of misses to the
data cache translation
look-aside buffer
A-124 Vol. 3

PERFORMANCE-MONITORING EVENTS
03H DATA_READ_MISS Number of memory read
accesses that miss the
internal data cache
whether or not the
access is cacheable or
noncacheable

Additional reads to the same cache
line after the first BRDY# of the
burst line fill is returned but before
the final (fourth) BRDY# has been
returned, will not cause the counter
to be incremented additional times.

Data accesses that are part of TLB
miss processing are not included.
Accesses directed to I/O space are
not included.

04H DATA WRITE MISS Number of memory
write accesses that miss
the internal data cache
whether or not the
access is cacheable or
noncacheable

Data accesses that are part of TLB
miss processing are not included.
Accesses directed to I/O space are
not included.

05H WRITE_HIT_TO_
M-_OR_E-
STATE_LINES

Number of write hits to
exclusive or modified
lines in the data cache

These are the writes that may be
held up if EWBE# is inactive. These
events may occur a maximum of two
per clock.

06H DATA_CACHE_
LINES_
WRITTEN_BACK

Number of dirty lines
(all) that are written
back, regardless of the
cause

Replacements and internal and
external snoops can all cause
writeback and are counted.

07H EXTERNAL_
SNOOPS

Number of accepted
external snoops
whether they hit in the
code cache or data
cache or neither

Assertions of EADS# outside of the
sampling interval are not counted,
and no internal snoops are counted.

08H EXTERNAL_DATA_
CACHE_SNOOP_
HITS

Number of external
snoops to the data
cache

Snoop hits to a valid line in either the
data cache, the data line fill buffer, or
one of the write back buffers are all
counted as hits.

09H MEMORY ACCESSES
IN BOTH PIPES

Number of data memory
reads or writes that are
paired in both pipes of
the pipeline

These accesses are not necessarily
run in parallel due to cache misses,
bank conflicts, etc.

0AH BANK CONFLICTS Number of actual bank
conflicts

Table A-15. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
Vol. 3 A-125

PERFORMANCE-MONITORING EVENTS
0BH MISALIGNED DATA
MEMORY OR I/O
REFERENCES

Number of memory or
I/O reads or writes that
are misaligned

A 2- or 4-byte access is misaligned
when it crosses a 4-byte boundary;
an 8-byte access is misaligned when
it crosses an 8-byte boundary. Ten
byte accesses are treated as two
separate accesses of 8 and 2 bytes
each.

0CH CODE READ Number of instruction
reads; whether the read
is cacheable or
noncacheable

Individual 8-byte noncacheable
instruction reads are counted.

0DH CODE TLB MISS Number of instruction
reads that miss the code
TLB whether the read is
cacheable or
noncacheable

Individual 8-byte noncacheable
instruction reads are counted.

0EH CODE CACHE MISS Number of instruction
reads that miss the
internal code cache;
whether the read is
cacheable or
noncacheable

Individual 8-byte noncacheable
instruction reads are counted.

0FH ANY SEGMENT
REGISTER LOADED

Number of writes into
any segment register in
real or protected mode
including the LDTR,
GDTR, IDTR, and TR

Segment loads are caused by explicit
segment register load instructions,
far control transfers, and task
switches. Far control transfers and
task switches causing a privilege
level change will signal this event
twice. Interrupts and exceptions may
initiate a far control transfer.

10H Reserved

11H Reserved

Table A-15. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
A-126 Vol. 3

PERFORMANCE-MONITORING EVENTS
12H Branches Number of taken and
not taken branches,
including: conditional
branches, jumps, calls,
returns, software
interrupts, and interrupt
returns

 Also counted as taken branches are
serializing instructions, VERR and
VERW instructions, some segment
descriptor loads, hardware interrupts
(including FLUSH#), and
programmatic exceptions that invoke
a trap or fault handler. The pipe is
not necessarily flushed.

The number of branches actually
executed is measured, not the
number of predicted branches.

13H BTB_HITS Number of BTB hits that
occur

Hits are counted only for those
instructions that are actually
executed.

14H TAKEN_BRANCH_
OR_BTB_HIT

Number of taken
branches or BTB hits
that occur

This event type is a logical OR of
taken branches and BTB hits. It
represents an event that may cause
a hit in the BTB. Specifically, it is
either a candidate for a space in the
BTB or it is already in the BTB.

15H PIPELINE FLUSHES Number of pipeline
flushes that occur

Pipeline flushes are
caused by BTB misses
on taken branches,
mispredictions,
exceptions, interrupts,
and some segment
descriptor loads.

The counter will not be incremented
for serializing instructions (serializing
instructions cause the prefetch
queue to be flushed but will not
trigger the Pipeline Flushed event
counter) and software interrupts
(software interrupts do not flush the
pipeline).

Table A-15. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
Vol. 3 A-127

PERFORMANCE-MONITORING EVENTS
16H INSTRUCTIONS_
EXECUTED

Number of instructions
executed (up to two per
clock)

Invocations of a fault handler are
considered instructions. All hardware
and software interrupts and
exceptions will also cause the count
to be incremented. Repeat prefixed
string instructions will only
increment this counter once despite
the fact that the repeat loop
executes the same instruction
multiple times until the loop criteria
is satisfied.

This applies to all the Repeat string
instruction prefixes (i.e., REP, REPE,
REPZ, REPNE, and REPNZ). This
counter will also only increment once
per each HLT instruction executed
regardless of how many cycles the
processor remains in the HALT state.

17H INSTRUCTIONS_
EXECUTED_ V PIPE

Number of instructions
executed in the V_pipe

The event indicates the
number of instructions
that were paired.

This event is the same as the 16H
event except it only counts the
number of instructions actually
executed in the V-pipe.

18H BUS_CYCLE_
DURATION

Number of clocks while
a bus cycle is in progress

This event measures
bus use.

The count includes HLDA, AHOLD,
and BOFF# clocks.

19H WRITE_BUFFER_
FULL_STALL_
DURATION

Number of clocks while
the pipeline is stalled
due to full write buffers

Full write buffers stall data memory
read misses, data memory write
misses, and data memory write hits
to S-state lines. Stalls on I/O
accesses are not included.

1AH WAITING_FOR_
DATA_MEMORY_
READ_STALL_
DURATION

Number of clocks while
the pipeline is stalled
while waiting for data
memory reads

Data TLB Miss processing is also
included in the count. The pipeline
stalls while a data memory read is in
progress including attempts to read
that are not bypassed while a line is
being filled.

Table A-15. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
A-128 Vol. 3

PERFORMANCE-MONITORING EVENTS
1BH STALL ON WRITE
TO AN E- OR M-
STATE LINE

Number of stalls on
writes to E- or M-state
lines

1CH LOCKED BUS CYCLE Number of locked bus
cycles that occur as the
result of the LOCK prefix
or LOCK instruction,
page-table updates, and
descriptor table updates

Only the read portion of the locked
read-modify-write is counted. Split
locked cycles (SCYC active) count as
two separate accesses. Cycles
restarted due to BOFF# are not re-
counted.

1DH I/O READ OR WRITE
CYCLE

Number of bus cycles
directed to I/O space

Misaligned I/O accesses will generate
two bus cycles. Bus cycles restarted
due to BOFF# are not re-counted.

1EH NONCACHEABLE_
MEMORY_READS

Number of
noncacheable
instruction or data
memory read bus cycles.

The count includes read
cycles caused by TLB
misses, but does not
include read cycles to
I/O space.

Cycles restarted due to BOFF# are
not re-counted.

1FH PIPELINE_AGI_
STALLS

Number of address
generation interlock
(AGI) stalls

An AGI occurring in both
the U- and V- pipelines
in the same clock signals
this event twice.

An AGI occurs when the instruction
in the execute stage of either of U-
or V-pipelines is writing to either the
index or base address register of an
instruction in the D2 (address
generation) stage of either the U- or
V- pipelines.

20H Reserved

21H Reserved

Table A-15. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
Vol. 3 A-129

PERFORMANCE-MONITORING EVENTS
22H FLOPS Number of floating-
point operations that
occur

Number of floating-point adds,
subtracts, multiplies, divides,
remainders, and square roots are
counted. The transcendental
instructions consist of multiple adds
and multiplies and will signal this
event multiple times. Instructions
generating the divide-by-zero,
negative square root, special
operand, or stack exceptions will not
be counted.

Instructions generating all other
floating-point exceptions will be
counted. The integer multiply
instructions and other instructions
which use the x87 FPU will be
counted.

23H BREAKPOINT
MATCH ON DR0
REGISTER

Number of matches on
register DR0 breakpoint

The counters is incremented
regardless if the breakpoints are
enabled or not. However, if
breakpoints are not enabled, code
breakpoint matches will not be
checked for instructions executed in
the V-pipe and will not cause this
counter to be incremented. (They are
checked on instruction executed in
the U-pipe only when breakpoints
are not enabled.)

These events correspond to the
signals driven on the BP[3:0] pins.
Refer to Chapter 18, “Debugging and
Performance Monitoring” for more
information.

24H BREAKPOINT
MATCH ON DR1
REGISTER

Number of matches on
register DR1 breakpoint

See comment for 23H event.

25H BREAKPOINT
MATCH ON DR2
REGISTER

Number of matches on
register DR2 breakpoint

See comment for 23H event.

Table A-15. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
A-130 Vol. 3

PERFORMANCE-MONITORING EVENTS
26H BREAKPOINT
MATCH ON DR3
REGISTER

Number of matches on
register DR3 breakpoint

See comment for 23H event.

27H HARDWARE
INTERRUPTS

Number of taken INTR
and NMI interrupts

28H DATA_READ_OR_
WRITE

Number of memory data
reads and/or writes
(internal data cache hit
and miss combined)

Split cycle reads and writes are
counted individually. Data Memory
Reads that are part of TLB miss
processing are not included. These
events may occur at a maximum of
two per clock. I/O is not included.

29H DATA_READ_MISS
OR_WRITE MISS

Number of memory read
and/or write accesses
that miss the internal
data cache, whether or
not the access is
cacheable or
noncacheable

Additional reads to the same cache
line after the first BRDY# of the
burst line fill is returned but before
the final (fourth) BRDY# has been
returned, will not cause the counter
to be incremented additional times.

Data accesses that are part of TLB
miss processing are not included.
Accesses directed to I/O space are
not included.

2AH BUS_OWNERSHIP_
LATENCY
(Counter 0)

The time from LRM bus
ownership request to
bus ownership granted
(that is, the time from
the earlier of a PBREQ
(0), PHITM# or HITM#
assertion to a PBGNT
assertion)

The ratio of the 2AH events counted
on counter 0 and counter 1 is the
average stall time due to bus
ownership conflict.

2AH BUS OWNERSHIP
TRANSFERS
(Counter 1)

The number of buss
ownership transfers
(that is, the number of
PBREQ (0) assertions

The ratio of the 2AH events counted
on counter 0 and counter 1 is the
average stall time due to bus
ownership conflict.

2BH MMX_
INSTRUCTIONS_
EXECUTED_
U-PIPE (Counter 0)

Number of MMX
instructions executed in
the U-pipe

Table A-15. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
Vol. 3 A-131

PERFORMANCE-MONITORING EVENTS
2BH MMX_
INSTRUCTIONS_
EXECUTED_
V-PIPE (Counter 1)

Number of MMX
instructions executed in
the V-pipe

2CH CACHE_M-
STATE_LINE_
SHARING
(Counter 0)

Number of times a
processor identified a
hit to a modified line due
to a memory access in
the other processor
(PHITM (O))

If the average memory latencies of
the system are known, this event
enables the user to count the Write
Backs on PHITM(O) penalty and the
Latency on Hit Modified(I) penalty.

2CH CACHE_LINE_
SHARING
(Counter 1)

Number of shared data
lines in the L1 cache
(PHIT (O))

2DH EMMS_
INSTRUCTIONS_
EXECUTED (Counter
0)

Number of EMMS
instructions executed

2DH TRANSITIONS_
BETWEEN_MMX_
AND_FP_
INSTRUCTIONS
(Counter 1)

Number of transitions
between MMX and
floating-point
instructions or vice
versa

An even count indicates
the processor is in MMX
state. an odd count
indicates it is in FP state.

This event counts the first floating-
point instruction following an MMX
instruction or first MMX instruction
following a floating-point instruction.

The count may be used to estimate
the penalty in transitions between
floating-point state and MMX state.

2EH BUS_UTILIZATION_
DUE_TO_
PROCESSOR_
ACTIVITY
(Counter 0)

Number of clocks the
bus is busy due to the
processor’s own activity
(the bus activity that is
caused by the
processor)

2EH WRITES_TO_
NONCACHEABLE_
MEMORY
(Counter 1)

Number of write
accesses to
noncacheable memory

The count includes write cycles
caused by TLB misses and I/O write
cycles.

Cycles restarted due to BOFF# are
not re-counted.

Table A-15. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
A-132 Vol. 3

PERFORMANCE-MONITORING EVENTS
2FH SATURATING_
MMX_
INSTRUCTIONS_
EXECUTED (Counter
0)

Number of saturating
MMX instructions
executed,
independently of
whether they actually
saturated.

2FH SATURATIONS_
PERFORMED
(Counter 1)

Number of MMX
instructions that used
saturating arithmetic
when at least one of its
results actually
saturated

If an MMX instruction operating on 4
doublewords saturated in three out
of the four results, the counter will
be incremented by one only.

30H NUMBER_OF_
CYCLES_NOT_IN_
HALT_STATE
(Counter 0)

Number of cycles the
processor is not idle due
to HLT instruction

This event will enable the user to
calculate “net CPI”. Note that during
the time that the processor is
executing the HLT instruction, the
Time-Stamp Counter is not disabled.
Since this event is controlled by the
Counter Controls CC0, CC1 it can be
used to calculate the CPI at CPL=3,
which the TSC cannot provide.

30H DATA_CACHE_
TLB_MISS_
STALL_DURATION
(Counter 1)

Number of clocks the
pipeline is stalled due to
a data cache translation
look-aside buffer (TLB)
miss

31H MMX_
INSTRUCTION_
DATA_READS
(Counter 0)

Number of MMX
instruction data reads

31H MMX_
INSTRUCTION_
DATA_READ_
MISSES
(Counter 1)

Number of MMX
instruction data read
misses

32H FLOATING_POINT_S
TALLS_DURATION
(Counter 0)

Number of clocks while
pipe is stalled due to a
floating-point freeze

Table A-15. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
Vol. 3 A-133

PERFORMANCE-MONITORING EVENTS
32H TAKEN_BRANCHES
(Counter 1)

Number of taken
branches

33H D1_STARVATION_
AND_FIFO_IS_
EMPTY
(Counter 0)

Number of times D1
stage cannot issue ANY
instructions since the
FIFO buffer is empty

The D1 stage can issue 0, 1, or 2
instructions per clock if those are
available in an instructions FIFO
buffer.

33H D1_STARVATION_
AND_ONLY_ONE_
INSTRUCTION_IN_
FIFO
(Counter 1)

Number of times the D1
stage issues a single
instruction (since the
FIFO buffer had just one
instruction ready)

The D1 stage can issue 0, 1, or 2
instructions per clock if those are
available in an instructions FIFO
buffer.

When combined with the previously
defined events, Instruction Executed
(16H) and Instruction Executed in
the V-pipe (17H), this event enables
the user to calculate the numbers of
time pairing rules prevented issuing
of two instructions.

34H MMX_
INSTRUCTION_
DATA_WRITES
(Counter 0)

Number of data writes
caused by MMX
instructions

34H MMX_
INSTRUCTION_
DATA_WRITE_
MISSES
(Counter 1)

Number of data write
misses caused by MMX
instructions

Table A-15. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
A-134 Vol. 3

PERFORMANCE-MONITORING EVENTS
35H PIPELINE_
FLUSHES_DUE_
TO_WRONG_
BRANCH_
PREDICTIONS
(Counter 0)

Number of pipeline
flushes due to wrong
branch predictions
resolved in either the E-
stage or the WB-stage

The count includes any pipeline flush
due to a branch that the pipeline did
not follow correctly. It includes cases
where a branch was not in the BTB,
cases where a branch was in the BTB
but was mispredicted, and cases
where a branch was correctly
predicted but to the wrong address.

Branches are resolved in either the
Execute stage (E-stage) or the
Writeback stage (WB-stage). In the
later case, the misprediction penalty
is larger by one clock. The difference
between the 35H event count in
counter 0 and counter 1 is the
number of E-stage resolved
branches.

35H PIPELINE_
FLUSHES_DUE_
TO_WRONG_
BRANCH_
PREDICTIONS_
RESOLVED_IN_
WB-STAGE
(Counter 1)

Number of pipeline
flushes due to wrong
branch predictions
resolved in the WB-
stage

See note for event 35H (Counter 0).

36H MISALIGNED_
DATA_MEMORY_
REFERENCE_ON_
MMX_
INSTRUCTIONS
(Counter 0)

Number of misaligned
data memory references
when executing MMX
instructions

36H PIPELINE_
ISTALL_FOR_MMX_
INSTRUCTION_
DATA_MEMORY_
READS
(Counter 1)

Number clocks during
pipeline stalls caused by
waits form MMX
instruction data memory
reads

T3:

Table A-15. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
Vol. 3 A-135

PERFORMANCE-MONITORING EVENTS
37H MISPREDICTED_
OR_
UNPREDICTED_
RETURNS
(Counter 1)

Number of returns
predicted incorrectly or
not predicted at all

The count is the difference between
the total number of executed returns
and the number of returns that were
correctly predicted. Only RET
instructions are counted (for
example, IRET instructions are not
counted).

37H PREDICTED_
RETURNS
(Counter 1)

Number of predicted
returns (whether they
are predicted correctly
and incorrectly

Only RET instructions are counted
(for example, IRET instructions are
not counted).

38H MMX_MULTIPLY_
UNIT_INTERLOCK
(Counter 0)

Number of clocks the
pipe is stalled since the
destination of previous
MMX multiply
instruction is not ready
yet

The counter will not be incremented
if there is another cause for a stall.
For each occurrence of a multiply
interlock, this event will be counted
twice (if the stalled instruction
comes on the next clock after the
multiply) or by once (if the stalled
instruction comes two clocks after
the multiply).

38H MOVD/MOVQ_
STORE_STALL_
DUE_TO_
PREVIOUS_MMX_
OPERATION
(Counter 1)

Number of clocks a
MOVD/MOVQ instruction
store is stalled in D2
stage due to a previous
MMX operation with a
destination to be used in
the store instruction.

39H RETURNS
(Counter 0)

Number or returns
executed.

Only RET instructions are counted;
IRET instructions are not counted.
Any exception taken on a RET
instruction and any interrupt
recognized by the processor on the
instruction boundary prior to the
execution of the RET instruction will
also cause this counter to be
incremented.

39H Reserved

Table A-15. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
A-136 Vol. 3

PERFORMANCE-MONITORING EVENTS
3AH BTB_FALSE_
ENTRIES
(Counter 0)

Number of false entries
in the Branch Target
Buffer

False entries are causes for
misprediction other than a wrong
prediction.

3AH BTB_MISS_
PREDICTION_ON_
NOT-TAKEN_
BRANCH
(Counter 1)

Number of times the
BTB predicted a not-
taken branch as taken

3BH FULL_WRITE_
BUFFER_STALL_
DURATION_
WHILE_
EXECUTING_MMX_I
NSTRUCTIONS
(Counter 0)

Number of clocks while
the pipeline is stalled
due to full write buffers
while executing MMX
instructions

3BH STALL_ON_MMX_
INSTRUCTION_
WRITE_TO E-_OR_
M-STATE_LINE
(Counter 1)

Number of clocks during
stalls on MMX
instructions writing to
E- or M-state lines

Table A-15. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
Vol. 3 A-137

PERFORMANCE-MONITORING EVENTS
A-138 Vol. 3

APPENDIX B
MODEL-SPECIFIC REGISTERS (MSRS)

This appendix lists MSRs provided in Intel Core 2 processor family, Intel Core Duo,
Intel Core Solo, Pentium 4 and Intel Xeon processors, P6 family processors, and
Pentium processors in Tables B-2, B-7, and B-8, respectively. All MSRs listed can be
read with the RDMSR and written with the WRMSR instructions.

Register addresses are given in both hexadecimal and decimal. The register name is
the mnemonic register name and the bit description describes individual bits in
registers.

Table B-9 lists the architectural MSRs.

B.1 MSRS IN THE INTEL® CORE™ 2 PROCESSOR FAMILY
Model-specific registers (MSRs) for Intel Core 2 processor family and for Intel Xeon
processors based on Intel Core microarchitecture are listed in Table B-1. The column
“Shared/Unique” applies to multi-core processors based on Intel Core microarchitec-
ture. “Unique” means each processor core has a separate MSR, or a bit field in an
MSR governs only a core independently. “Shared” means the MSR or the bit field in
an MSR address governs the operation of both processor cores.

Table B-1. MSRs in Processors Based on Intel Core Microarchitecture

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 IA32_P5_MC_
ADDR

Unique See Appendix B.6, “MSRs in Pentium
Processors.”

1H 1 IA32_P5_MC_
TYPE

Unique See Appendix B.6, “MSRs in Pentium
Processors.”

6H 6 IA32_MONITOR_
FILTER_SIZE

Unique See Section 7.11.5, “Monitor/Mwait Address
Range Determination.”

10H 16 IA32_TIME_
STAMP_COUNTER

Unique See Section 18.10, “Time-Stamp Counter.”

17H 23 IA32_PLATFORM_
ID

Shared Platform ID. (R)
The operating system can use this MSR to
determine “slot” information for the processor
and the proper microcode update to load.

49:0 Reserved.
Vol. 3 B-1

MODEL-SPECIFIC REGISTERS (MSRS)
52:50 Platform Id. (R)

Contains information concerning the intended
platform for the processor.
52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved.

17H 23 MSR_PLATFORM_I
D

Unique See Section 8.4.4, “Local APIC Status and
Location.”

7:0 Reserved.

12:8 Maximum Qualified Ratio. (R)
The maximum allowed bus ratio.

63:13 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 8.4.4, “Local APIC Status and
Location.”

2AH 42 MSR_EBL_CR_
POWERON

Shared Processor Hard Power-On Configuration.
(R/W)

Enables and disables processor features; (R)
indicates current processor configuration.

0 Reserved

1 Data Error Checking Enable. (R/W)
1 = Enabled
0 = Disabled
Always 0 on the Pentium M processor.

2 Response Error Checking Enable. (R/W)
FRCERR Observation Enable:

1 = Enabled
0 = Disabled
Always 0 on the Pentium M processor.

Table B-1. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-2 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
3 AERR# Drive Enable. (R/W)

1 = Enabled
0 = Disabled
Always 0 on the Pentium M processor.

4 BERR# Enable for initiator bus requests.
(R/W)

1 = Enabled
0 = Disabled
Always 0 on the Pentium M processor.

5 Reserved

6 BERR# Driver Enable for initiator internal
errors. (R/W)

1 = Enabled
0 = Disabled
Always 0 on the Pentium M processor.

7 BINIT# Driver Enable. (R/W)

1 = Enabled
0 = Disabled
Always 0 on the Pentium M processor.

8 Output Tri-state Enabled. (R/O)

1 = Enabled
0 = Disabled

9 Execute BIST. (R/O)

1 = Enabled
0 = Disabled

10 AERR# Observation Enabled. (R/O)

1 = Enabled
0 = Disabled
Always 0 on the Pentium M processor.

11 Reserved

Table B-1. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3 B-3

MODEL-SPECIFIC REGISTERS (MSRS)
12 BINIT# Observation Enabled. (R/O)

1 = Enabled
0 = Disabled
Always 0 on the Pentium M processor.

13 In Order Queue Depth. (R/O)

1 = 1
0 = 8

14 1 MByte Power on Reset Vector. (R/O)

1 = 1 MByte
0 = 4 GBytes
Always 0 on the Pentium M processor.

15 Reserved

17:16 APIC Cluster ID. (R/O)

Always 00B on the Pentium M processor.

18 System Bus Frequency. (R/O)

0 = 100 MHz
1 = Reserved
Always 0 on the Pentium M processor.

19 Reserved.

21: 20 Symmetric Arbitration ID. (R/O)

Always 00B on the Pentium M processor.

26:22 Clock Frequency Ratio. (R/O)

3AH 58 IA32_FEATURE_
CONTROL

Unique Control Features in IA-32 Processor. (R/W)

(If CPUID.1:ECX.[bit 5] or CPUID.1:ECX.[bit 6] is
set)

Table B-1. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-4 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
40H 64 MSR_
LASTBRANCH_0_
FROM_IP

Unique Last Branch Record 0 From IP. (R/W)

One of four pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
source instruction for one of the last four
branches, exceptions, or interrupts taken by
the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 18.8, “Last Branch, Interrupt, and

Exception Recording (Pentium M
Processors).”

41H 65 MSR_
LASTBRANCH_1_
FROM_IP

Unique Last Branch Record 1 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_
FROM_IP

Unique Last Branch Record 2 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

43H 67 MSR_
LASTBRANCH_3_
FROM_IP

Unique Last Branch Record 3 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_
TO_LIP

Unique Last Branch Record 0 To IP. (R/W)

One of four pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
destination instruction for one of the last four
branches, exceptions, or interrupts taken by
the processor.

61H 97 MSR_
LASTBRANCH_1_
TO_LIP

Unique Last Branch Record 1 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

62H 98 MSR_
LASTBRANCH_2_
TO_LIP

Unique Last Branch Record 2 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

63H 99 MSR_
LASTBRANCH_3_
TO_LIP

Unique Last Branch Record 3 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

Table B-1. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3 B-5

MODEL-SPECIFIC REGISTERS (MSRS)
79H 121 IA32_BIOS_
UPDT_TRIG

Unique BIOS Update Trigger Register. (R/W)

8BH 139 IA32_BIOS_
SIGN_ID

Unique BIOS Update Signature ID. (RO)

C1H 193 IA32_PMC0 Unique Performance counter register.

C2H 194 IA32_PMC1 Unique Performance counter register.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO).

This field indicates the scaleable bus clock
speed:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)

133.33 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 101B.

166.67 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 001B.

266.67 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 000B.

333.33 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 100B.

63:3 Reserved

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock
Count. (RW)

63:0 C0_MCNT: C0 Maximum Frequency Clock
Count.

Increments at fixed interval when core is in
C0.

Cleared upon overflow/wrap-around of
IA32_APERF.

Table B-1. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-6 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count.
(RW)

63:0 C0_ACNT: C0 Actual Frequency Clock Count.

Accumulates core clock counts at the
coordinated clock frequency, when the core is
in C0.

Cleared upon overflow/wrap-around of
IA32_MPERF.

FEH 254 IA32_MTRRCAP Unique

11EH 281 MSR_BBL_CR_
CTL3

Shared

0 L2 Hardware Enabled. (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

4:1 Reserved.

5 ECC Check Enable. (RO)

This bit enables ECC checking on the cache
data bus. ECC is always generated on write
cycles.

0 = Disabled (default)
1 = Enabled

7:6 Reserved.

8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not
respond to the WBINVD instruction or the
assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present. (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

Table B-1. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3 B-7

MODEL-SPECIFIC REGISTERS (MSRS)
174H 372 IA32_SYSENTER_
CS

Unique

175H 373 IA32_SYSENTER_
ESP

Unique

176H 374 IA32_SYSENTER_
EIP

Unique

179H 377 IA32_MCG_CAP Unique

7:0 Count. (RO)

Indicates the number of hardware unit error
reporting banks available in the processor

8 IA32_MCG_CTL Present. (RO)

1 = Indicates that the processor implements
the MSR_MCG_CTL register found at
MSR 17BH.

0 = Not supported.

63:9 Reserved.

17AH 378 IA32_MCG_
STATUS

Unique

0 RIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) can be used to restart the
program. If cleared, the program cannot be
reliably restarted

1 EIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) is directly associated with the
error.

Table B-1. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-8 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
2 MCIP.

When set, bit indicates that a machine check
has been generated. If a second machine
check is detected while this bit is still set, the
processor enters a shutdown state. Software
should write this bit to 0 after processing a
machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Unique

187H 391 IA32_
PERFEVTSEL1

Unique

198H 408 IA32_PERF_STAT Shared

15:0 Current Performance State Value.

63:16 Reserved.

198H 408 MSR_PERF_STAT Shared

15:0 Current Performance State Value.

30:16 Reserved.

31 XE Operation (R/O).

If set, XE operation is enabled. Default is
cleared.

39:32 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for
the processor.

63:45 Reserved.

199H 409 IA32_PERF_CTL Unique

15:0 Target Performance State Value.

31:16 Reserved.

32 IDA Engage. (R/W)

When set to 1: disengages IDA.

63:33 Reserved.

Table B-1. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3 B-9

MODEL-SPECIFIC REGISTERS (MSRS)
19AH 410 IA32_CLOCK_
MODULATION

Unique Clock Modulation. (R/W)

Enables and disables on-demand clock
modulation and allows the selection of the on-
demand clock modulation duty cycle. See
Section 13.5.3, “Software Controlled Clock
Modulation.”

IA32_CLOCK_MODULATION MSR was
originally named IA32_THERM_CONTROL
MSR.

19BH 411 IA32_THERM_
INTERRUPT

Unique Thermal Interrupt Control. (R/W)

Enables and disables the generation of an
interrupt on temperature transitions detected
with the processor’s thermal sensors and
thermal monitor.

See Section 13.5.2, “Thermal Monitor.”

19CH 412 IA32_THERM_
STATUS

Unique Thermal Monitor Status. (R/W)

Contains status information about the
processor’s thermal sensor and automatic
thermal monitoring facilities.

See Section 13.5.2, “Thermal Monitor”.

19DH 413 MSR_THERM2_
CTL

Unique

15:0 Reserved.

16 TM_SELECT. (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated
on-die modulation of the stop-clock duty
cycle)

1 = Thermal Monitor 2 (thermally-initiated
frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is
cleared, TM_SELECT has no effect. Neither
TM1 nor TM2 are enabled.

63:16 Reserved.

Table B-1. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-10 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
1A0 416 IA32_MISC_
ENABLE

Enable Misc. Processor Features. (R/W)

Allows a variety of processor functions to be
enabled and disabled.

0 Fast-Strings Enable.

When set, the fast-strings feature (for REP
MOVS and REP STORS) is enabled (default);
when clear, fast-strings are disabled.

2:1 Reserved.

3 Unique Automatic Thermal Control Circuit Enable.
(R/W)

1 = Setting this bit enables the thermal
control circuit (TCC) portion of the Intel
Thermal Monitor feature. This allows
processor clocks to be automatically
modulated based on the processor's
thermal sensor operation.

0 = Disabled (default).
The automatic thermal control circuit enable
bit determines if the thermal control circuit
(TCC) will be activated when the processor's
internal thermal sensor determines the
processor is about to exceed its maximum
operating temperature.

When the TCC is activated and TM1 is enabled,
processors clocks are forced to a 50% duty
cycle. BIOS must enable this feature.

Do not confuse the bit with the on-demand
thermal control circuit enable bit.

6:4 Reserved.

7 Shared Performance Monitoring Available. (R)

1 = Performance monitoring enabled
0 = Performance monitoring disabled

8 Reserved.

Table B-1. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3 B-11

MODEL-SPECIFIC REGISTERS (MSRS)
9 Hardware Prefetcher Disable. (R/W)

When set, disables the hardware prefetcher
operation on streams of data. When clear
(default), enables the prefetch queue.

Disabling of the hardware prefetcher may
impact processor performance.

10 Shared FERR# Multiplexing Enable. (R/W)

1 = FERR# asserted by the processor to
indicate a pending break event within
the processor

0 = Indicates compatible FERR# signaling
behavior

This bit must be set to 1 to support XAPIC
interrupt model usage.

11 Shared Branch Trace Storage Unavailable. (RO)

1 = Processor doesn’t support branch trace
storage (BTS)

0 = BTS is supported

12 Shared Precise Event Based Sampling Unavailable.
(RO)

1 = Processor does not support precise
event-based sampling (PEBS);

0 = PEBS is supported.
The Intel Core Solo and Intel Core Duo
processors do not support PEBS.

13 Shared TM2 Enable. (R/W)

When this bit is set (1) and the thermal sensor
indicates that the die temperature is at the
pre-determined threshold, the Thermal
Monitor 2 mechanism is engaged. TM2 will
reduce the bus to core ratio and voltage
according to the value last written to
MSR_THERM2_CTL bits 15:0.

Table B-1. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-12 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
When this bit is clear (0, default), the
processor does not change the VID signals or
the bus to core ratio when the processor
enters a thermally managed state.

The BIOS must enable this feature if the TM2
feature flag (CPUID.1:ECX[8]) is set; if the TM2
feature flag is not set, this feature is not
supported and BIOS must not alter the
contents of the TM2 bit location.

The processor is operating out of specification
if both this bit and the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology
Enable. (R/W)

0= Enhanced Intel SpeedStep Technology
disabled

1 = Enhanced Intel SpeedStep Technology
enabled

18 Shared ENABLE MONITOR FSM. (R/W)

When this bit is set to 0, the MONITOR feature
flag is not set (CPUID.01H:ECX[bit 3] = 0). This
indicates that MONITOR/MWAIT are not
supported. An Illegal Instruction exception is
generated if software attempts to execute
MONITOR/MWAIT when this bit is 0.

When this bit is set to 1 (default),
MONITOR/MWAIT are supported
(CPUID.01H:ECX[bit 3] = 1).

If the SSE3 feature flag ECX[0] is not set
(CPUID.01H:ECX[bit 0] = 0), the OS must not
attempt to alter this bit. BIOS must leave it in
the default state. Writing this bit when the
SSE3 feature flag is set to 0 may generate a
#GP exception.

Table B-1. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3 B-13

MODEL-SPECIFIC REGISTERS (MSRS)
19 Shared Adjacent Cache Line Prefetch Disable.
(R/W)

When set to 1, the processor fetches the
cache line that contains data currently
required by the processor. When set to 0, the
processor fetches cache lines that comprise a
cache line pair (128 bytes).

Single processor platforms should not set this
bit. Server platforms should set or clear this
bit based on platform performance observed
in validation and testing.

BIOS may contain a setup option that controls
the setting of this bit.

20 Shared Enhanced Intel SpeedStep Technology
Select Lock. (R/WO)

When set, this bit causes the following bits to
become read-only:

• Enhanced Intel SpeedStep Technology
Select Lock (this bit),

• Enhanced Intel SpeedStep Technology
Enable bit.

The bit must be set before an Enhanced Intel
SpeedStep Technology transition is requested.
This bit is cleared on reset.

21 Reserved.

22 Shared Limit CPUID Maxval. (R/W)

When this bit is set to 1, CPUID.00H returns a
maximum value in EAX[7:0] of 3. When set to
a 0 (default), CPUID.00H returns the number
of the maximum standard function supported
in EAX[7:0].

BIOS should contain a setup question that
allows users to specify when the installed OS
does not support CPUID functions greater
than 3.

Table B-1. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-14 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
Before setting this bit, BIOS must execute the
CPUID.01H and examine the maximum value
returned in EAX[7:0]. If the maximum value is
greater than 3, the bit is supported.
Otherwise, the bit is not supported. Writing to
this bit when the maximum value is greater
than 3 may generate a #GP exception.

Setting this bit may cause behavior in
software that depends on the availability of
CPUID leaves greater than 3.

23 Shared xTPR Message Disable. (R/W)

When set to 1, xTPR messages are disabled.
xTPR messages are optional messages that
allow the processor to inform the chipset of
its priority.

33:24 Reserved.

34 Unique XD Bit Disable. (R/W)

When set to 1, the Execute Disable Bit feature
(XD Bit) is disabled and the XD Bit extended
feature flag will be clear (CPUID.80000001H:
EDX[20]=0).

When set to a 0 (default), the Execute Disable
Bit feature (if available) allows the OS to
enable PAE paging and take advantage of data
only pages.

Assuming this bit is not set to 1 and if
CPUID.80000001H:EDX[20]=0, this feature is
not supported and BIOS must not alter the
contents of this bit location. Writing this bit to
1 when the XD Bit extended feature flag is
set to 0 may generate a #GP exception.

36:35 Reserved.

Table B-1. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3 B-15

MODEL-SPECIFIC REGISTERS (MSRS)
37 Unique DCU Prefetcher Disable. (R/W)

When set to 1, The DCU L1 data cache
prefetcher is disabled. The default value after
reset is 0. BIOS may write ‘1’ to disable this
feature.

The DCU prefetcher is an L1 data cache
prefetcher. When the DCU prefetcher detects
multiple loads from the same line done within
a time limit, the DCU prefetcher assumes the
next line will be required. The next line is
prefetched in to the L1 data cache from
memory or L2.

38 Shared IDA Disable. (R/W)

When set to 1 on processors that support IDA,
the Intel Dynamic Acceleration feature (IDA) is
disabled and the IDA_Enable feature flag will
be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support
IDA, CPUID.06H: EAX[1] reports the
processor’s support of IDA is enabled.

Note: the power-on default value is used by
BIOS to detect hardware support of IDA. If
power-on default value is 1, IDA is available in
the processor. If power-on default value is 0,
IDA is not available.

39 Unique IP Prefetcher Disable. (R/W)

When set to 1, The IP prefetcher is disabled.
The default value after reset is 0. BIOS may
write ‘1’ to disable this feature.

The IP prefetcher is an L1 data cache
prefetcher. The IP prefetcher looks for
sequential load history to determine whether
to prefetch the next expected data into the
L1 cache from memory or L2.

63:40 Reserved.

Table B-1. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-16 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
1C9H 457 MSR_
LASTBRANCH_
TOS

Unique Last Branch Record Stack TOS. (R)

Contains an index (bits 0-3) that points to the
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0 (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control. (R/W)

Controls how several debug features are used.
Bit definitions are discussed in the referenced
section.

1DDH 477 MSR_LER_FROM_
LIP

Unique Last Exception Record From Linear IP. (R)

Contains a pointer to the last branch
instruction that the processor executed prior
to the last exception that was generated or
the last interrupt that was handled.

1DEH 478 MSR_LER_TO_
LIP

Unique Last Exception Record To Linear IP. (R)

This area contains a pointer to the target of
the last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was
handled.

200H 512 MTRRphysBase0 Unique

201H 513 MTRRphysMask0 Unique

202H 514 MTRRphysBase1 Unique

203H 515 MTRRphysMask1 Unique

204H 516 MTRRphysBase2 Unique

205H 517 MTRRphysMask2 Unique

206H 518 MTRRphysBase3 Unique

207H 519 MTRRphysMask3 Unique

208H 520 MTRRphysBase4 Unique

209H 521 MTRRphysMask4 Unique

20AH 522 MTRRphysBase5 Unique

20BH 523 MTRRphysMask5 Unique

20CH 524 MTRRphysBase6 Unique

20DH 525 MTRRphysMask6 Unique

Table B-1. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3 B-17

MODEL-SPECIFIC REGISTERS (MSRS)
20EH 526 MTRRphysBase7 Unique

20FH 527 MTRRphysMask7 Unique

250H 592 MTRRfix64K_
00000

Unique

258H 600 MTRRfix16K_
80000

Unique

259H 601 MTRRfix16K_
A0000

Unique

268H 616 MTRRfix4K_
C0000

Unique

269H 617 MTRRfix4K_
C8000

Unique

26AH 618 MTRRfix4K_
D0000

Unique

26BH 619 MTRRfix4K_
D8000

Unique

26CH 620 MTRRfix4K_
E0000

Unique

26DH 621 MTRRfix4K_
E8000

Unique

26EH 622 MTRRfix4K_
F0000

Unique

26FH 623 MTRRfix4K_
F8000

Unique

2FFH 767 IA32_MTRR_DEF_
TYPE

Unique Default Memory Types. (R/W)

Sets the memory type for the regions of
physical memory that are not mapped by the
MTRRs.

See Section 10.11.2.1,
“IA32_MTRR_DEF_TYPE MSR.”

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter
Register 0. (R/W)

When enabled, this performance counter
counts instruction retired event.

Table B-1. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-18 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
309H 777 MSR_PERF_FIXED
_CTR0

Unique Fixed-Function Performance Counter
Register 0. (R/W)

When enabled, this performance counter
counts instruction retired event.

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter
Register 1. (R/W)

When enabled, this performance counter
counts unhalted core cycle event.

30AH 778 MSR_PERF_FIXED
_CTR1

Unique Fixed-Function Performance Counter
Register 1. (R/W)

When enabled, this performance counter
counts unhalted core cycle event.

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter
Register 2. (R/W)

When enabled, this performance counter
counts unhalted reference cycle event.

30BH 779 MSR_PERF_FIXED
_CTR2

Unique Fixed-Function Performance Counter
Register 2. (R/W)

When enabled, this performance counter
counts unhalted reference cycle event.

345H 837 IA32_PERF_CAPA
BILITIES

Unique See Section 18.5.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_
CTRL

Unique Fixed-Function-Counter Control Register.
(R/W)

This register contains bit fields that configure
the fixed-function performance counter
registers.

38DH 909 MSR_PERF_FIXED
_CTR_CTRL

Unique Fixed-Function-Counter Control Register.
(R/W)

This register contains bit fields that configure
the fixed-function performance counter
registers.

38EH 910 IA32_PERF_
GLOBAL_STAUS

Unique See Section 18.14.2, “Global Counter Control
Facilities.”

38EH 910 MSR_PERF_
GLOBAL_STAUS

Unique See Section 18.14.2, “Global Counter Control
Facilities.”

Table B-1. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3 B-19

MODEL-SPECIFIC REGISTERS (MSRS)
38FH 911 IA32_PERF_
GLOBAL_CTRL

Unique See Section 18.14.2, “Global Counter Control
Facilities.”

38FH 911 MSR_PERF_
GLOBAL_CTRL

Unique See Section 18.14.2, “Global Counter Control
Facilities.”

390H 912 IA32_PERF_
GLOBAL_OVF_
CTRL

Unique See Section 18.14.2, “Global Counter Control
Facilities.”

390H 912 MSR_PERF_
GLOBAL_OVF_
CTRL

Unique See Section 18.14.2, “Global Counter Control
Facilities.”

3F1H 1009 IA32_PEBS_
ENABLE

Unique See Section 18.14.4, “Precise Even Based
Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Unique See Section 14.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_
STATUS

Unique See Section 14.3.2.2, “IA32_MCi_STATUS
MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 14.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC0_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

404H 1028 IA32_MC1_CTL Unique See Section 14.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Unique See Section 14.3.2.2, “IA32_MCi_STATUS
MSRS.”

406H 1030 IA32_MC1_ADDR Unique See Section 14.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC1_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

Table B-1. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-20 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
408H 1032 IA32_MC2_CTL Unique See Section 14.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Unique See Section 14.3.2.2, “IA32_MCi_STATUS
MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 14.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC2_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

40CH 1036 MSR_MC4_CTL Unique See Section 14.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_
STATUS

Unique See Section 14.3.2.2, “IA32_MCi_STATUS
MSRS.”

40EH 1038 MSR_MC4_ADDR Unique See Section 14.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC4_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

410H 1040 MSR_MC3_CTL See Section 14.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_
STATUS

See Section 14.3.2.2, “IA32_MCi_STATUS
MSRS.”

412H 1042 MSR_MC3_ADDR Unique See Section 14.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC3_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

413H 1043 MSR_MC3_MISC Unique

414H 1044 MSR_MC5_CTL Unique

Table B-1. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3 B-21

MODEL-SPECIFIC REGISTERS (MSRS)
415H 1045 MSR_MC5_
STATUS

Unique

416H 1046 MSR_MC5_ADDR Unique

417H 1047 MSR_MC5_MISC Unique

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX
Capabilities. (R/O)

See Appendix G.1, “Basic VMX Information”

(If CPUID.01H:ECX.[bit 9])

481H 1153 IA32_VMX_PINBA
SED_CTLS

Unique Capability Reporting Register of Pin-based
VM-execution Controls. (R/O)

See Appendix G.2, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9])

482H 1154 IA32_VMX_PROCB
ASED_CTLS

Unique Capability Reporting Register of Primary
Processor-based VM-execution Controls.
(R/O)

See Appendix G.2, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9])

483H 1155 IA32_VMX_EXIT_
CTLS

Unique Capability Reporting Register of VM-exit
Controls. (R/O)

See Appendix G.3, “VM-Exit Controls”

(If CPUID.01H:ECX.[bit 9])

484H 1156 IA32_VMX_
ENTRY_CTLS

Unique Capability Reporting Register of VM-entry
Controls. (R/O)

See Appendix G.4, “VM-Entry Controls”

(If CPUID.01H:ECX.[bit 9])

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX
Capabilities. (R/O)

See Appendix G.5, “Miscellaneous Data”

(If CPUID.01H:ECX.[bit 9])

486H 1158 IA32_VMX_CR0_
FIXED0

Unique Capability Reporting Register of CR0 Bits
Fixed to 0. (R/O)

See Appendix G.6, “VMX-Fixed Bits in CR0”

(If CPUID.01H:ECX.[bit 9])

Table B-1. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-22 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
487H 1159 IA32_VMX_CR0_
FIXED1

Unique Capability Reporting Register of CR0 Bits
Fixed to 1. (R/O)

See Appendix G.6, “VMX-Fixed Bits in CR0”

(If CPUID.01H:ECX.[bit 9])

488H 1160 IA32_VMX_CR4_FI
XED0

Unique Capability Reporting Register of CR4 Bits
Fixed to 0. (R/O)

See Appendix G.7, “VMX-Fixed Bits in CR4”

(If CPUID.01H:ECX.[bit 9])

489H 1161 IA32_VMX_CR4_FI
XED1

Unique Capability Reporting Register of CR4 Bits
Fixed to 1. (R/O)

See Appendix G.7, “VMX-Fixed Bits in CR4”

(If CPUID.01H:ECX.[bit 9])

48AH 1162 IA32_VMX_
VMCS_ENUM

Unique Capability Reporting Register of VMCS Field
Enumeration. (R/O).

See Appendix G.8, “VMCS Enumeration”

(If CPUID.01H:ECX.[bit 9])

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Unique Capability Reporting Register of Secondary
Processor-based VM-execution Controls.
(R/O)

See Appendix G.2, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9] and
IA32_VMX_PROCBASED_CTLS[bit 63])

600H 1536 IA32_DS_AREA Unique DS Save Area. (R/W)

Points to the DS buffer management area,
which is used to manage the BTS and PEBS
buffers.

See Section 18.15.4, “Debug Store (DS)
Mechanism.”

31:0 DS Buffer Management Area.

Linear address of the first byte of the DS
buffer management area.

63:32 Reserved.

C000_
0080H

IA32_EFER Unique

Table B-1. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3 B-23

MODEL-SPECIFIC REGISTERS (MSRS)
0 SYSCALL Enable. (R/W)

Enables SYSCALL/SYSRET instructions in 64-
bit mode.

7:1 Reserved.

8 IA-32e Mode Enable. (R/W)

Enables IA-32e mode operation.

9 Reserved.

10 IA-32e Mode Active. (R)

Indicates IA-32e mode is active when set.

11 Execute Disable Bit Enable.

63:12 Reserved

C000_
0081H

IA32_STAR Unique System Call Target Address. (R/W)

(If CPUID.80000001.EDX.[bit 29])

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address.
(R/W)

(If CPUID.80000001.EDX.[bit 29])

C000_
0084H

IA32_FMASK Unique System Call Flag Mask. (R/W)

(If CPUID.80000001.EDX.[bit 29])

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS. (R/W)

(If CPUID.80000001.EDX.[bit 29])

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS. (R/W)

(If CPUID.80000001.EDX.[bit 29])

C000_
0102H

IA32_KERNEL_GS
BASE

Unique Swap Target of BASE Address of GS. (R/W)

(If CPUID.80000001.EDX.[bit 29])

Table B-1. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-24 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
B.2 MSRS IN THE PENTIUM® 4 AND INTEL® XEON®
PROCESSORS

The following MSRs are defined for the Pentium 4 and Intel Xeon processors based on
Intel NetBurst microarchitecture:

• MSRs with an “IA32_” prefix are designated as “architectural.” This means that
the functions of these MSRs and their addresses remain the same for succeeding
families of IA-32 processors.

• MSRs with an “MSR_” prefix are model specific with respect to address function-
alities. The column “Model Availability” lists the model encoding value(s) within
the Pentium 4 and Intel Xeon processor family at the specified register address.
The model encoding value of a processor can be queried using CPUID. See
“CPUID—CPU Identification” in Chapter 3 of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR 0, 1, 2,
3, 4, 6

Shared See Appendix B.6, “MSRs in
Pentium Processors.”

1H 1 IA32_P5_MC_TYPE 0, 1, 2,
3, 4, 6

Shared See Appendix B.6, “MSRs in
Pentium Processors.”

6H 6 IA32_MONITOR_
FILTER_LINE_SIZE

3, 4, 6 Shared See Section 7.11.5,
“Monitor/Mwait Address Range
Determination.”

15:0 Monitor filter line size. (R/W)

Specifies the number of bytes in a
cache line or chipset line buffer. A
value of 40H (default) specifies a
size of 64 bytes.

This register field is used to
specify the size of the semaphore
spacing and alignment for the
MONITOR and MWAIT instructions.

BIOS reads this field and the
chipset line buffer register. BIOS
then programs this register field
with the larger of the two values.

63:16 Reserved.
Vol. 3 B-25

MODEL-SPECIFIC REGISTERS (MSRS)
10H 16 IA32_TIME_STAMP_
COUNTER

0, 1, 2,
3, 4, 6

Unique Time Stamp Counter.

See Section 18.10, “Time-Stamp
Counter.”

63:0 Timestamp Count Value.

A 64-bit register accessed when
referenced as a qword through a
RDMSR, WRMSR or RDTSC
instruction. Returns the current
time stamp count value. All 64 bits
are readable.

On earlier processors, only the
lower 32 bits are writable. On any
write to the lower 32 bits, the
upper 32 bits are cleared. For
processor family 0FH, models 3
and 4: all 64 bits are writable.

17H 23 IA32_PLATFORM_ID 0, 1, 2,
3, 4, 6

Shared Platform ID. (R)

The operating system can use this
MSR to determine “slot”
information for the processor and
the proper microcode update to
load.

49:0 Reserved.

52:50 Platform Id. (R)

Contains information concerning
the intended platform for the
processor.
52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-26 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
1BH 27 IA32_APIC_BASE 0, 1, 2,
3, 4, 6

Unique APIC Location and Status. (R/W)

Contains location and status
information about the APIC. See
Section 8.4.4, “Local APIC Status
and Location.”

7:0 Reserved.

8 Bootstrap Processor. (BSP)

Set if the processor is the BSP.

10:9 Reserved.

11 APIC Global Enable.

Set if enabled; cleared if disabled.

31:12 APIC Base Address.

The base address of the xAPIC
memory map.

63:32 Reserved.

2AH 42 MSR_EBC_HARD_
POWERON

0, 1, 2,
3, 4, 6

Shared Processor Hard Power-On
Configuration.

(R/W) Enables and disables
processor features; (R) indicates
current processor configuration.

0 Output Tri-state Enabled. (R)

Indicates whether tri-state output
is enabled (1) or disabled (0) as set
by the strapping of SMI#. The
value in this bit is written on the
deassertion of RESET#; the bit is
set to 1 when the address bus
signal is asserted.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3 B-27

MODEL-SPECIFIC REGISTERS (MSRS)
1 Execute BIST. (R)

Indicates whether the execution
of the BIST is enabled (1) or
disabled (0) as set by the
strapping of INIT#. The value in
this bit is written on the
deassertion of RESET#; the bit is
set to 1 when the address bus
signal is asserted.

2 In Order Queue Depth. (R)

Indicates whether the in order
queue depth for the system bus is
1 (1) or up to 12 (0) as set by the
strapping of A7#. The value in this
bit is written on the deassertion of
RESET#; the bit is set to 1 when
the address bus signal is asserted.

3 MCERR# Observation Disabled.
(R)

Indicates whether MCERR#
observation is enabled (0) or
disabled (1) as determined by the
strapping of A9#. The value in this
bit is written on the deassertion of
RESET#; the bit is set to 1 when
the address bus signal is asserted.

4 BINIT# Observation Enabled. (R)

Indicates whether BINIT#
observation is enabled (0) or
disabled (1) as determined by the
strapping of A10#. The value in
this bit is written on the
deassertion of RESET#; the bit is
set to 1 when the address bus
signal is asserted.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-28 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
6:5 APIC Cluster ID. (R)

Contains the logical APIC cluster ID
value as set by the strapping of
A12# and A11#. The logical
cluster ID value is written into the
field on the deassertion of
RESET#; the field is set to 1 when
the address bus signal is asserted.

7 Bus Park Disable. (R)

Indicates whether bus park is
enabled (0) or disabled (1) as set
by the strapping of A15#. The
value in this bit is written on the
deassertion of RESET#; the bit is
set to 1 when the address bus
signal is asserted.

11:8 Reserved.

13:12 Agent ID. (R)

Contains the logical agent ID value
as set by the strapping of BR[3:0].
The logical ID value is written into
the field on the deassertion of
RESET#; the field is set to 1 when
the address bus signal is asserted.

63:14 Reserved.

2BH 43 MSR_EBC_SOFT_
POWERON

0, 1, 2,
3, 4, 6

Shared Processor Soft Power-On
Configuration. (R/W)

Enables and disables processor
features.

0 RCNT/SCNT On Request
Encoding Enable. (R/W)

Controls the driving of RCNT/SCNT
on the request encoding. Set to
enable (1); clear to disabled (0,
default).

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3 B-29

MODEL-SPECIFIC REGISTERS (MSRS)
1 Data Error Checking Disable.
(R/W)

Set to disable system data bus
parity checking; clear to enable
parity checking.

2 Response Error Checking
Disable. (R/W)

Set to disable (default); clear to
enable.

3 Address/Request Error Checking
Disable. (R/W)

Set to disable (default); clear to
enable.

4 Initiator MCERR# Disable. (R/W)

Set to disable MCERR# driving for
initiator bus requests (default);
clear to enable.

5 Internal MCERR# Disable. (R/W)

Set to disable MCERR# driving for
initiator internal errors (default);
clear to enable.

6 BINIT# Driver Disable. (R/W)

Set to disable BINIT# driver
(default); clear to enable driver.

63:7 Reserved.

2CH 44 MSR_EBC_
FREQUENCY_ID

2,3, 4,
6

Shared Processor Frequency
Configuration.

The bit field layout of this MSR
varies according to the MODEL
value in the CPUID version
information. The following bit field
layout applies to Pentium 4 and
Xeon Processors with MODEL
encoding equal or greater than 2.

(R) The field Indicates the current
processor frequency configuration.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-30 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
15:0 Reserved.

18:16 Scalable Bus Speed. (R/W)

Indicates the intended scalable
bus speed:
Encoding Scalable Bus Speed
000B 100 MHz (Model 2)
000B 266 MHz (Model 3 or 4)
001B 133 MHz
010B 200 MHz
011B 166 MHz
100B 333 MHz (Model 6)

133.33 MHz should be utilized if
performing calculation with
System Bus Speed when encoding
is 001B.

166.67 MHz should be utilized if
performing calculation with
System Bus Speed when encoding
is 011B.

266.67 MHz should be utilized if
performing calculation with
System Bus Speed when encoding
is 000B and model encoding = 3
or 4.

333.33 MHz should be utilized if
performing calculation with
System Bus Speed when encoding
is 100B and model encoding = 6.

All other values are reserved.

23:19 Reserved

31:24 Core Clock Frequency to System
Bus Frequency Ratio. (R)

The processor core clock
frequency to system bus
frequency ratio observed at the
de-assertion of the reset pin.

63:25 Reserved.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3 B-31

MODEL-SPECIFIC REGISTERS (MSRS)
2CH 44 MSR_EBC_
FREQUENCY_ID

0, 1 Shared Processor Frequency
Configuration. (R)

The bit field layout of this MSR
varies according to the MODEL
value of the CPUID version
information. This bit field layout
applies to Pentium 4 and Xeon
Processors with MODEL encoding
less than 2.

Indicates current processor
frequency configuration.

20:0 Reserved.

23:21 Scalable Bus Speed. (R/W)

Indicates the intended scalable
bus speed:
Encoding Scalable Bus Speed
000B 100 MHz

All others values reserved.

63:24 Reserved.

3AH 58 IA32_FEATURE_
CONTROL

3, 4, 6 Unique Control Features in IA-32
Processor. (R/W)

(If CPUID.01H:ECX.[bit 5])

79H 121 IA32_BIOS_UPDT_
TRIG

0, 1, 2,
3, 4, 6

Shared BIOS Update Trigger Register.
(R/W)

Executing a WRMSR instruction to
this MSR causes a microcode
update to be loaded into the
processor. See Section 9.11.6,
“Microcode Update Loader.”

A processor may prevent writing
to this MSR when loading guest
states on VM entries or saving
guest states on VM exits.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-32 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
8BH 139 IA32_BIOS_SIGN_ID 0, 1, 2,
3, 4, 6

Unique BIOS Update Signature ID. (R/W)

Returns the microcode update
signature following the execution
of CPUID.01H.

A processor may prevent writing
to this MSR when loading guest
states on VM entries or saving
guest states on VM exits.

31:0 Reserved.

63:32 Microcode Update Signature.
(R/W)

It is recommended that this field
be pre-loaded with 0 prior to
executing CPUID.

If the field remains 0 following the
execution of CPUID; this indicates
that no microcode update is
loaded. Any non-zero value is the
microcode update signature.

9BH 155 IA32_SMM_MONITOR_
CTL

3, 4, 6 Unique SMM Monitor Configuration.
(R/W).

(If CPUID.1.ECX.[bit 9] and
IA32_VMX_BASIC[bit 49];
writeable only in SMM)

FEH 254 IA32_MTRRCAP 0, 1, 2,
3, 4, 6

Unique MTRR Information.

See Section 10.11.1, “MTRR
Feature Identification.”.

174H 372 IA32_SYSENTER_CS 0, 1, 2,
3, 4, 6

Unique CS register target for CPL 0
code. (R/W)

Used by SYSENTER and SYSEXIT
instructions. See Section 4.8.7,
“Performing Fast Calls to System
Procedures with the SYSENTER
and SYSEXIT Instructions.”

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3 B-33

MODEL-SPECIFIC REGISTERS (MSRS)
175H 373 IA32_SYSENTER_ESP 0, 1, 2,
3, 4, 6

Unique Stack pointer for CPL 0 stack.
(R/W)

Used by SYSENTER and SYSEXIT
instructions. See Section 4.8.7,
“Performing Fast Calls to System
Procedures with the SYSENTER
and SYSEXIT Instructions.”

176H 374 IA32_SYSENTER_EIP 0, 1, 2,
3, 4, 6

Unique CPL 0 code entry point. (R/W)

Used by SYSENTER and SYSEXIT
instructions. See Section 4.8.7,
“Performing Fast Calls to System
Procedures with the SYSENTER
and SYSEXIT Instructions.”

179H 377 IA32_MCG_CAP 0, 1, 2,
3, 4, 6

Unique Machine Check Capabilities. (R)

Returns the capabilities of the
machine check architecture for the
processor. See Section 14.3.1.1,
“IA32_MCG_CAP MSR.”

17AH 378 IA32_MCG_STATUS 0, 1, 2,
3, 4, 6

Unique Machine Check Status. (R)

Returns machine check state
following the generation of a
machine check exception. See
Section 14.3.1.2,
“IA32_MCG_STATUS MSR.”

17BH 379 IA32_MCG_CTL Machine Check Feature Enable.
(R/W)

Enables machine check capability.
See Section 14.3.1.3,
“IA32_MCG_CTL MSR.”

180H 384 IA32_MCG_RAX 0, 1, 2,
3, 4, 6

Unique Machine Check EAX/RAX Save
State.

See Section 14.3.2.5, “IA32_MCG
Extended Machine Check State
MSRs.”

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-34 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

181H 385 IA32_MCG_RBX 0, 1, 2,
3, 4, 6

Unique Machine Check EBX/RBX Save
State.

See Section 14.3.2.5, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

182H 386 IA32_MCG_RCX 0, 1, 2,
3, 4, 6

Unique Machine Check ECX/RCX Save
State.

See Section 14.3.2.5, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

183H 387 IA32_MCG_RDX 0, 1, 2,
3, 4, 6

Unique Machine Check EDX/RDX Save
State.

See Section 14.3.2.5, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3 B-35

MODEL-SPECIFIC REGISTERS (MSRS)
184H 388 IA32_MCG_RSI 0, 1, 2,
3, 4, 6

Unique Machine Check ESI/RSI Save
State.

See Section 14.3.2.5, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

185H 389 IA32_MCG_RDI 0, 1, 2,
3, 4, 6

Unique Machine Check EDI/RDI Save
State.

See Section 14.3.2.5, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

186H 390 IA32_MCG_RBP 0, 1, 2,
3, 4, 6

Unique Machine Check EBP/RBP Save
State.

See Section 14.3.2.5, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

187H 391 IA32_MCG_RSP 0, 1, 2,
3, 4, 6

Unique Machine Check ESP/RSP Save
State.

See Section 14.3.2.5, “IA32_MCG
Extended Machine Check State
MSRs.”

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-36 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

188H 392 IA32_MCG_RFLAGS 0, 1, 2,
3, 4, 6

Unique Machine Check EFLAGS/RFLAG
Save State.

See Section 14.3.2.5, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

189H 393 IA32_MCG_RIP 0, 1, 2,
3, 4, 6

Unique Machine Check EIP/RIP Save
State.

See Section 14.3.2.5, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

18AH 394 IA32_MCG_MISC 0, 1, 2,
3, 4, 6

Unique Machine Check Miscellaneous.

See Section 14.3.2.5, “IA32_MCG
Extended Machine Check State
MSRs.”

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3 B-37

MODEL-SPECIFIC REGISTERS (MSRS)
0 DS.

When set, the bit indicates that a
page assist or page fault occurred
during DS normal operation. The
processors response is to shut
down.

The bit is used as an aid for
debugging DS handling code. It is
the responsibility of the user (BIOS
or operating system) to clear this
bit for normal operation.

63:1 Reserved.

18BH 395 IA32_MCG_
RESERVED1

Reserved.

18CH 396 IA32_MCG_
RESERVED2

Reserved.

18DH 397 IA32_MCG_
RESERVED3

Reserved.

18EH 398 IA32_MCG_
RESERVED4

Reserved.

18FH 399 IA32_MCG_
RESERVED5

Reserved.

190H 400 IA32_MCG_R8 0, 1, 2,
3, 4, 6

Unique Machine Check R8.

See Section 14.3.2.5, “IA32_MCG
Extended Machine Check State
MSRs.”

63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-38 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
191H 401 IA32_MCG_R9 0, 1, 2,
3, 4, 6

Unique Machine Check R9D/R9.

See Section 14.3.2.5, “IA32_MCG
Extended Machine Check State
MSRs.”

63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

192H 402 IA32_MCG_R10 0, 1, 2,
3, 4, 6

Unique Machine Check R10.

See Section 14.3.2.5, “IA32_MCG
Extended Machine Check State
MSRs.”

63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

193H 403 IA32_MCG_R11 0, 1, 2,
3, 4, 6

Unique Machine Check R11.

See Section 14.3.2.5, “IA32_MCG
Extended Machine Check State
MSRs.”

63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

194H 404 IA32_MCG_R12 0, 1, 2,
3, 4, 6

Unique Machine Check R12.

See Section 14.3.2.5, “IA32_MCG
Extended Machine Check State
MSRs.”

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3 B-39

MODEL-SPECIFIC REGISTERS (MSRS)
63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

195H 405 IA32_MCG_R13 0, 1, 2,
3, 4, 6

Unique Machine Check R13.

See Section 14.3.2.5, “IA32_MCG
Extended Machine Check State
MSRs.”

63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

196H 406 IA32_MCG_R14 0, 1, 2,
3, 4, 6

Unique Machine Check R14.

See Section 14.3.2.5, “IA32_MCG
Extended Machine Check State
MSRs.”

63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

197H 407 IA32_MCG_R15 0, 1, 2,
3, 4, 6

Unique Machine Check R15.

See Section 14.3.2.5, “IA32_MCG
Extended Machine Check State
MSRs.”

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-40 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

198H 408 IA32_PERF_STATUS 3, 4, 6 Unique See Section 13.1, “Enhanced Intel
Speedstep® Technology.”

15:0 Current Performance State
Value. (RO)

63:16 Reserved

199H 409 IA32_PERF_CTL 3, 4, 6 Unique See Section 13.1, “Enhanced Intel
Speedstep® Technology.”

15:0 Target Performance State Value.
(R/W)

63:16 Reserved

19AH 410 IA32_CLOCK_
MODULATION

0, 1, 2,
3, 4, 6

Unique Thermal Monitor Control. (R/W)

Enables and disables on-demand
clock modulation and allows
selection of the on-demand clock
modulation duty cycle.

See Section 13.5.3, “Software
Controlled Clock Modulation.”

19BH 411 IA32_THERM_
INTERRUPT

0, 1, 2,
3, 4, 6

Unique Thermal Interrupt Control. (R/W)

Enables and disables the
generation of an interrupt on
temperature transitions detected
with the processor’s thermal
sensor and thermal monitor.

See Section 13.5.2, “Thermal
Monitor.”

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3 B-41

MODEL-SPECIFIC REGISTERS (MSRS)
19CH 412 IA32_THERM_STATUS 0, 1, 2,
3, 4, 6

Shared Thermal Monitor Status. (R/W)

Contains status information about
the processor’s thermal sensor
and automatic thermal monitoring
facilities.

See Section 13.5.2, “Thermal
Monitor.”

19DH 413 IMSR_THERM2_CTL Thermal Monitor 2 Control.

3 Shared For Family F, Model 3 processors:
When read, specifies the value of
the target TM2 transition last
written. When set, it sets the next
target value for TM2 transition.

4, 6 Shared For Family F, Model 4 and Model 6
processors: When read, specifies
the value of the target TM2
transition last written. Writes may
cause #GP exceptions.

1A0H 416 IA32_MISC_ENABLE 0, 1, 2,
3, 4, 6

Shared Enable Miscellaneous Processor
Features. (R/W)

Allows a variety of processor
functions to be enabled and
disabled.

0 Fast-Strings Enable.

When set, the fast-strings feature
on the Pentium 4 processor is
enabled (default); when clear, fast-
strings are disabled.

1 Reserved.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-42 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
2 x87 FPU Fopcode Compatibility
Mode Enable.

When set, fopcode compatibility
mode is enabled; when clear
(default), mode is disabled.

See “Fopcode Compatibility Mode“
in Chapter 8 of the Intel® 64 and
IA-32 Architectures Software
Developer’s Manual, Volume 1.

3 Thermal Monitor 1 Enable.

When set, clock modulation
controlled by the processor’s
internal thermal sensor is enabled;
when clear (default), automatic
clock modulation is disabled.

See Section 13.5.2, “Thermal
Monitor.”

4 Split-Lock Disable.

This debug feature is specific to
the Pentium 4 processor.

When set, the bit causes an #AC
exception to be issued instead of a
split-lock cycle. Operating systems
that set this bit must align system
structures to avoid split-lock
scenarios.

When the bit is clear (default),
normal split-locks are issued to the
bus.

5 Reserved.

6 Third-Level Cache Disable. (R/W)

When set, the third-level cache is
disabled; when clear (default) the
third-level cache is enabled. This
flag is reserved for processors
that do not have a third-level
cache.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3 B-43

MODEL-SPECIFIC REGISTERS (MSRS)
Note that the bit controls only the
third-level cache; and only if
overall caching is enabled through
the CD flag of control register CR0,
the page-level cache controls,
and/or the MTRRs.

See Section 10.5.4, “Disabling and
Enabling the L3 Cache.”

7 Performance Monitoring
Available. (R)

When set, performance monitoring
is enabled; when clear,
performance monitoring is
disabled.

8 Suppress Lock Enable.

When set, assertion of LOCK on
the bus is suppressed during a
Split Lock access. When clear
(default), LOCK is not suppressed.

9 Prefetch Queue Disable.

When set, disables the prefetch
queue. When clear (default),
enables the prefetch queue.

10 FERR# Interrupt Reporting
Enable. (R/W)

When set, interrupt reporting
through the FERR# pin is enabled;
when clear, this interrupt
reporting function is disabled.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-44 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
When this flag is set and the
processor is in the stop-clock state
(STPCLK# is asserted), asserting
the FERR# pin signals to the
processor that an interrupt (such
as, INIT#, BINIT#, INTR, NMI, SMI#,
or RESET#) is pending and that
the processor should return to
normal operation to handle the
interrupt.

This flag does not affect the
normal operation of the FERR# pin
(to indicate an unmasked floating-
point error) when the STPCLK#
pin is not asserted.

11 Branch Trace Storage
Unavailable (BTS_UNAVILABLE).
(R)

When set, the processor does not
support branch trace storage
(BTS); when clear, BTS is
supported.

12 Precise Event Based Sampling
Unavailable
(PEBS_UNAVILABLE). (R)

When set, the processor does not
support precise event-based
sampling (PEBS); when clear, PEBS
is supported.

13 3 TM2 Enable. (R/W)

When this bit is set (1) and the
thermal sensor indicates that the
die temperature is at the pre-
determined threshold, the
Thermal Monitor 2 mechanism is
engaged. TM2 will reduce the bus
to core ratio and voltage according
to the value last written to
MSR_THERM2_CTL bits 15:0.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3 B-45

MODEL-SPECIFIC REGISTERS (MSRS)
When this bit is clear (0, default),
the processor does not change the
VID signals or the bus to core ratio
when the processor enters a
thermal managed state.

If the TM2 feature flag (ECX[8]) is
not set to 1 after executing CPUID
with EAX = 1, then this feature is
not supported and BIOS must not
alter the contents of this bit
location. The processor is
operating out of spec if both this
bit and the TM1 bit are set to
disabled states.

17:14 Reserved.

18 3, 4, 6 ENABLE MONITOR FSM. (R/W)

When set (default), the MONITOR
and MWAIT instructions are
enabled. When clear, these
instructions are disabled and
attempting to execute them
results in an invalid opcode
exception.

CPUID.1:EAX.MONITOR[bit 3]
indicates the setting of the Enable
Monitor FSM bit. If
CPUID.1:ECX.SSE3[bit 0] is not set,
then the operating system must
not attempt to alter the setting of
the Enable Monitor FSM bit. BIOS
should leave this bit in the default
state.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-46 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
19 Adjacent Cache Line Prefetch
Disable. (R/W)

When set to 1, the processor
fetches the cache line of the 128-
byte sector containing currently
required data. When set to 0, the
processor fetches both cache lines
in the sector.

Single processor platforms should
not set this bit. Server platforms
should set or clear this bit based
on platform performance
observed in validation and testing.

BIOS may contain a setup option
that controls the setting of this bit.

21:20 Reserved.

22 3, 4, 6 Limit CPUID MAXVAL. (R/W)

When set to 1, CPUID with
EAX = 0 returns a maximum value
in EAX[7:0] of 3. When set to a 0
(default), CPUID with EAX = 0
returns the number corresponding
to the maximum standard function
supported.

Some older OS's cannot handle a
MAXVAL greater than 3. BIOS
should contain a setup question
that allows the user to specify
such an OS is installed. Before
setting this bit, BIOS must execute
the CPUID instruction with
EAX = 0 and examine the
maximum value returned in
EAX[7:0].

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3 B-47

MODEL-SPECIFIC REGISTERS (MSRS)
If the maximum value is greater
than 3, then this bit is supported.
Otherwise, this bit is not
supported and BIOS must not alter
the contents of this bit location.

Setting this can cause unexpected
behavior to software that
depends on the availability of
CPUID leaves greater than 3.

23 Shared xTPR Message Disable. (R/W)

When set to 1, xTPR messages are
disabled. xTPR messages are
optional messages that allow the
processor to inform the chipset of
its priority. The default is
processor specific.

24 L1 Data Cache Context Mode.
(R/W)

When set, the L1 data cache is
placed in shared mode; when clear
(default), the cache is placed in
adaptive mode. This bit is only
enabled for IA-32 processors that
support Intel Hyper-Threading
Technology. See Section 10.5.6,
“L1 Data Cache Context Mode.”

When L1 is running in adaptive
mode and CR3s are identical, data
in L1 is shared across logical
processors. Otherwise, L1 is not
shared and cache use is
competitive.

If the Context ID feature flag
(ECX[10]) is set to 0 after
executing CPUID with EAX = 1, the
ability to switch modes is not
supported. BIOS must not alter the
contents of
IA32_MISC_ENABLE[24].

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-48 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
33:25 Reserved.

34 Unique XD Bit Disable. (R/W)

When set to 1, the Execute Disable
Bit feature (XD Bit) is disabled and
the XD Bit extended feature flag
will be clear (CPUID.80000001H:
EDX[20]=0).

When set to a 0 (default), the
Execute Disable Bit feature (if
available) allows the OS to enable
PAE paging and take advantage of
data only pages.

Assuming this bit is not set to 1
and if CPUID.80000001H:
EDX[20]=0, this feature is not
supported and BIOS must not alter
the contents of this bit location.
Writing this bit to 1 when the XD
Bit extended feature flag is set to
0 may generate a #GP exception.

63:35 Reserved.

1A1H 417 MSR_PLATFORM_BRV 3, 4, 6 Shared Platform Feature Requirements.
(R)

17:0 Reserved.

18 PLATFORM Requirements.

When set to 1, indicates the
processor has specific platform
requirements. The details of the
platform requirements are listed in
the respective data sheets of the
processor.

63:19 Reserved.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3 B-49

MODEL-SPECIFIC REGISTERS (MSRS)
1D7H 471 MSR_LER_FROM_LIP 0, 1, 2,
3, 4, 6

Unique Last Exception Record From
Linear IP. (R)

Contains a pointer to the last
branch instruction that the
processor executed prior to the
last exception that was generated
or the last interrupt that was
handled.

See Section 18.6.7, “Last
Exception Records.”

31:0 From Linear IP.

Linear address of the last branch
instruction.

63:32 Reserved.

1D7H 471 63:0 Unique From Linear IP.

Linear address of the last branch
instruction (If IA-32e mode is
active).

1D8H 472 MSR_LER_TO_LIP 0, 1, 2,
3, 4, 6

Unique Last Exception Record To Linear
IP. (R)

This area contains a pointer to the
target of the last branch
instruction that the processor
executed prior to the last
exception that was generated or
the last interrupt that was
handled.

See Section 18.6.7, “Last
Exception Records.”

31:0 From Linear IP.

Linear address of the target of the
last branch instruction.

63:32 Reserved.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-50 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
1D8H 472 63:0 Unique From Linear IP.

Linear address of the target of the
last branch instruction (If IA-32e
mode is active).

1D9H 473 MSR_DEBUGCTLA 0, 1, 2,
3, 4, 6

Unique Debug Control. (R/W)

Controls how several debug
features are used. Bit definitions
are discussed in the referenced
section.

See Section 18.6.2,
“MSR_DEBUGCTLA MSR.”

1DAH 474 MSR_LASTBRANCH
_TOS

0, 1, 2,
3, 4, 6

Unique Last Branch Record Stack TOS.
(R)

Contains an index (0-3 or 0-15)
that points to the top of the last
branch record stack (that is, that
points the index of the MSR
containing the most recent branch
record).

See Section 18.6.3, “LBR Stack”;
and addresses 1DBH-1DEH and
680H-68FH.

1DBH 475 MSR_LASTBRANCH_0 0, 1, 2 Unique Last Branch Record 0. (R/W)

One of four last branch record
registers on the last branch record
stack. It contains pointers to the
source and destination instruction
for one of the last four branches,
exceptions, or interrupts that the
processor took.

MSR_LASTBRANCH_0 through
MSR_LASTBRANCH_3 at 1DBH-
1DEH are available only on family
0FH, models 0H-02H. They have
been replaced by the MSRs at
680H-68FH and 6C0H-6CFH.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3 B-51

MODEL-SPECIFIC REGISTERS (MSRS)
See Section 18.6, “Last Branch,
Interrupt, and Exception Recording
(Processors based on Intel
NetBurst® Microarchitecture).”

1DDH 477 MSR_LASTBRANCH_2 0, 1, 2 Unique Last Branch Record 2.

See description of the
MSR_LASTBRANCH_0 MSR at
1DBH.

1DEH 478 MSR_LASTBRANCH_3 0, 1, 2 Unique Last Branch Record 3.

See description of the
MSR_LASTBRANCH_0 MSR at
1DBH.

200H 512 IA32_MTRR_PHYS
BASE0

0, 1, 2,
3, 4, 6

Shared Variable Range Base MTRR.

See Section 10.11.2.3, “Variable
Range MTRRs.”

201H 513 IA32_MTRR_
PHYSMASK0

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 10.11.2.3, “Variable
Range MTRRs.”

202H 514 IA32_MTRR_
PHYSBASE1

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 10.11.2.3, “Variable
Range MTRRs.”

203H 515 IA32_MTRR_
PHYSMASK1

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 10.11.2.3, “Variable
Range MTRRs.”

204H 516 IA32_MTRR_
PHYSBASE2

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 10.11.2.3, “Variable
Range MTRRs.”

205H 517 IA32_MTRR_
PHYSMASK2

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 10.11.2.3, “Variable
Range MTRRs”.

206H 518 IA32_MTRR_
PHYSBASE3

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 10.11.2.3, “Variable
Range MTRRs.”

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-52 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
207H 519 IA32_MTRR_
PHYSMASK3

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 10.11.2.3, “Variable
Range MTRRs.”

208H 520 IA32_MTRR_
PHYSBASE4

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 10.11.2.3, “Variable
Range MTRRs.”

209H 521 IA32_MTRR_
PHYSMASK4

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 10.11.2.3, “Variable
Range MTRRs.”

20AH 522 IA32_MTRR_
PHYSBASE5

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 10.11.2.3, “Variable
Range MTRRs.”

20BH 523 IA32_MTRR_
PHYSMASK5

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 10.11.2.3, “Variable
Range MTRRs.”

20CH 524 IA32_MTRR_
PHYSBASE6

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 10.11.2.3, “Variable
Range MTRRs.”

20DH 525 IA32_MTRR_
PHYSMASK6

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 10.11.2.3, “Variable
Range MTRRs.”

20EH 526 IA32_MTRR_
PHYSBASE7

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 10.11.2.3, “Variable
Range MTRRs.”

20FH 527 IA32_MTRR_
PHYSMASK7

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 10.11.2.3, “Variable
Range MTRRs.”

250H 592 IA32_MTRR_FIX64K_
00000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 10.11.2.2, “Fixed
Range MTRRs.”

258H 600 IA32_MTRR_FIX16K_
80000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 10.11.2.2, “Fixed
Range MTRRs.”

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3 B-53

MODEL-SPECIFIC REGISTERS (MSRS)
259H 601 IA32_MTRR_FIX16K_
A0000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 10.11.2.2, “Fixed
Range MTRRs.”

268H 616 IA32_MTRR_FIX4K_
C0000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 10.11.2.2, “Fixed
Range MTRRs.”

269H 617 IA32_MTRR_FIX4K_
C8000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 10.11.2.2, “Fixed
Range MTRRs”.

26AH 618 IA32_MTRR_FIX4K_
D0000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 10.11.2.2, “Fixed
Range MTRRs”.

26BH 619 IA32_MTRR_FIX4K_
D8000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 10.11.2.2, “Fixed
Range MTRRs.”

26CH 620 IA32_MTRR_FIX4K_
E0000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 10.11.2.2, “Fixed
Range MTRRs.”

26DH 621 IA32_MTRR_FIX4K_
E8000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 10.11.2.2, “Fixed
Range MTRRs.”

26EH 622 IA32_MTRR_FIX4K_
F0000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 10.11.2.2, “Fixed
Range MTRRs.”

26FH 623 IA32_MTRR_FIX4K_
F8000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 10.11.2.2, “Fixed
Range MTRRs.”

277H 631 IA32_CR_PAT 0, 1, 2,
3, 4, 6

Unique Page Attribute Table.

See Section 10.11.2.2, “Fixed
Range MTRRs.”

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-54 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
2FFH 767 IA32_MTRR_DEF_
TYPE

0, 1, 2,
3, 4, 6

Shared Default Memory Types. (R/W)

Sets the memory type for the
regions of physical memory that
are not mapped by the MTRRs.

See Section 10.11.2.1,
“IA32_MTRR_DEF_TYPE MSR.”

300H 768 MSR_BPU_COUNTER0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.2,
“Performance Counters.”

301H 769 MSR_BPU_COUNTER1 0, 1, 2,
3, 4, 6

Shared See Section 18.15.2,
“Performance Counters.”

302H 770 MSR_BPU_COUNTER2 0, 1, 2,
3, 4, 6

Shared See Section 18.15.2,
“Performance Counters.”

303H 771 MSR_BPU_COUNTER3 0, 1, 2,
3, 4, 6

Shared See Section 18.15.2,
“Performance Counters.”

304H 772 MSR_MS_COUNTER0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.2,
“Performance Counters.”

305H 773 MSR_MS_COUNTER1 0, 1, 2,
3, 4, 6

Shared See Section 18.15.2,
“Performance Counters.”

306H 774 MSR_MS_COUNTER2 0, 1, 2,
3, 4, 6

Shared See Section 18.15.2,
“Performance Counters.”

307H 775 MSR_MS_COUNTER3 0, 1, 2,
3, 4, 6

Shared See Section 18.15.2,
“Performance Counters.”

308H 776 MSR_FLAME_
COUNTER0

0, 1, 2,
3, 4, 6

Shared See Section 18.15.2,
“Performance Counters.”

309H 777 MSR_FLAME_
COUNTER1

0, 1, 2,
3, 4, 6

Shared See Section 18.15.2,
“Performance Counters.”

30AH 778 MSR_FLAME_
COUNTER2

0, 1, 2,
3, 4, 6

Shared See Section 18.15.2,
“Performance Counters.”

30BH 779 MSR_FLAME_
COUNTER3

0, 1, 2,
3, 4, 6

Shared See Section 18.15.2,
“Performance Counters.”

3OCH 780 MSR_IQ_COUNTER0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.2,
“Performance Counters.”

3ODH 781 MSR_IQ_COUNTER1 0, 1, 2,
3, 4, 6

Shared See Section 18.15.2,
“Performance Counters.”

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3 B-55

MODEL-SPECIFIC REGISTERS (MSRS)
3OEH 782 MSR_IQ_COUNTER2 0, 1, 2,
3, 4, 6

Shared See Section 18.15.2,
“Performance Counters.”

3OFH 783 MSR_IQ_COUNTER3 0, 1, 2,
3, 4, 6

Shared See Section 18.15.2,
“Performance Counters.”

310H 784 MSR_IQ_COUNTER4 0, 1, 2,
3, 4, 6

Shared See Section 18.15.2,
“Performance Counters.”

311H 785 MSR_IQ_COUNTER5 0, 1, 2,
3, 4, 6

Shared See Section 18.15.2,
“Performance Counters.”

360H 864 MSR_BPU_CCCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.3, “CCCR MSRs.”

361H 865 MSR_BPU_CCCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.15.3, “CCCR MSRs.”

362H 866 MSR_BPU_CCCR2 0, 1, 2,
3, 4, 6

Shared See Section 18.15.3, “CCCR MSRs.”

363H 867 MSR_BPU_CCCR3 0, 1, 2,
3, 4, 6

Shared See Section 18.15.3, “CCCR MSRs.”

364H 868 MSR_MS_CCCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.3, “CCCR MSRs.”

365H 869 MSR_MS_CCCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.15.3, “CCCR MSRs.”

366H 870 MSR_MS_CCCR2 0, 1, 2,
3, 4, 6

Shared See Section 18.15.3, “CCCR MSRs.”

367H 871 MSR_MS_CCCR3 0, 1, 2,
3, 4, 6

Shared See Section 18.15.3, “CCCR MSRs.”

368H 872 MSR_FLAME_CCCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.3, “CCCR MSRs.”

369H 873 MSR_FLAME_CCCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.15.3, “CCCR MSRs.”

36AH 874 MSR_FLAME_CCCR2 0, 1, 2,
3, 4, 6

Shared See Section 18.15.3, “CCCR MSRs.”

36BH 875 MSR_FLAME_CCCR3 0, 1, 2,
3, 4, 6

Shared See Section 18.15.3, “CCCR MSRs.”

36CH 876 MSR_IQ_CCCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.3, “CCCR MSRs.”

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-56 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
36DH 877 MSR_IQ_CCCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.15.3, “CCCR MSRs.”

36EH 878 MSR_IQ_CCCR2 0, 1, 2,
3, 4, 6

Shared See Section 18.15.3, “CCCR MSRs.”

36FH 879 MSR_IQ_CCCR3 0, 1, 2,
3, 4, 6

Shared See Section 18.15.3, “CCCR MSRs.”

370H 880 MSR_IQ_CCCR4 0, 1, 2,
3, 4, 6

Shared See Section 18.15.3, “CCCR MSRs.”

371H 881 MSR_IQ_CCCR5 0, 1, 2,
3, 4, 6

Shared See Section 18.15.3, “CCCR MSRs.”

3A0H 928 MSR_BSU_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3A1H 929 MSR_BSU_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3A2H 930 MSR_FSB_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3A3H 931 MSR_FSB_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3A4H 932 MSR_FIRM_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3A5H 933 MSR_FIRM_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3A6H 934 MSR_FLAME_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3A7H 935 MSR_FLAME_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3A8H 936 MSR_DAC_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3A9H 937 MSR_DAC_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3AAH 938 MSR_MOB_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3ABH 939 MSR_MOB_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3 B-57

MODEL-SPECIFIC REGISTERS (MSRS)
3ACH 940 MSR_PMH_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3ADH 941 MSR_PMH_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3AEH 942 MSR_SAAT_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3AFH 943 MSR_SAAT_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3B0H 944 MSR_U2L_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3B1H 945 MSR_U2L_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3B2H 946 MSR_BPU_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3B3H 947 MSR_BPU_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3B4H 948 MSR_IS_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3B5H 949 MSR_IS_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3B6H 950 MSR_ITLB_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3B7H 951 MSR_ITLB_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3B8H 952 MSR_CRU_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3B9H 953 MSR_CRU_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3BAH 954 MSR_IQ_ESCR0 0, 1, 2 Shared See Section 18.15.1, “ESCR MSRs.”

This MSR is not available on later
processors. It is only available on
processor family 0FH, models
01H-02H.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-58 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
3BBH 955 MSR_IQ_ESCR1 0, 1, 2 Shared See Section 18.15.1, “ESCR MSRs.”

This MSR is not available on later
processors. It is only available on
processor family 0FH, models
01H-02H.

3BCH 956 MSR_RAT_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3BDH 957 MSR_RAT_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3BEH 958 MSR_SSU_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3C0H 960 MSR_MS_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3C1H 961 MSR_MS_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3C2H 962 MSR_TBPU_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3C3H 963 MSR_TBPU_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3C4H 964 MSR_TC_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3C5H 965 MSR_TC_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3C8H 968 MSR_IX_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3C9H 969 MSR_IX_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3CAH 970 MSR_ALF_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3CBH 971 MSR_ALF_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3CCH 972 MSR_CRU_ESCR2 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3CDH 973 MSR_CRU_ESCR3 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3 B-59

MODEL-SPECIFIC REGISTERS (MSRS)
3E0H 992 MSR_CRU_ESCR4 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3E1H 993 MSR_CRU_ESCR5 0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3FOH 1008 MSR_TC_PRECISE
_EVENT

0, 1, 2,
3, 4, 6

Shared See Section 18.15.1, “ESCR MSRs.”

3F1H 1009 MSR_PEBS_ENABLE 0, 1, 2,
3, 4, 6

Shared Precise Event-Based Sampling
(PEBS). (R/W)

Controls the enabling of precise
event sampling and replay tagging.

12:0 See Table A-10.

23:13 Reserved.

24 UOP Tag.

Enables replay tagging when set.

25 ENABLE_PEBS_MY_THR. (R/W)

Enables PEBS for the target logical
processor when set; disables PEBS
when clear (default).

See Section 18.16.3,
“IA32_PEBS_ENABLE MSR,” for an
explanation of the target logical
processor.

This bit is called ENABLE_PEBS in
IA-32 processors that do not
support Hyper-Threading
Technology.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-60 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
26 ENABLE_PEBS_OTH_THR. (R/W)

Enables PEBS for the target logical
processor when set; disables PEBS
when clear (default).

See Section 18.16.3,
“IA32_PEBS_ENABLE MSR,” for an
explanation of the target logical
processor.

This bit is reserved for IA-32
processors that do not support
Hyper-Threading Technology.

63:27 Reserved.

3F2H 1010 MSR_PEBS_MATRIX
_VERT

0, 1, 2,
3, 4, 6

Shared See Table A-10.

400H 1024 IA32_MC0_CTL 0, 1, 2,
3, 4, 6

Shared See Section 14.3.2.1,
“IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS 0, 1, 2,
3, 4, 6

Shared See Section 14.3.2.2,
“IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR 0, 1, 2,
3, 4, 6

Shared See Section 14.3.2.3,
“IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is
either not implemented or
contains no address if the ADDRV
flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

403H 1027 IA32_MC0_MISC 0, 1, 2,
3, 4, 6

Shared See Section 14.3.2.4,
“IA32_MCi_MISC MSRs.”

The IA32_MC0_MISC MSR is either
not implemented or does not
contain additional information if
the MISCV flag in the
IA32_MC0_STATUS register is
clear.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3 B-61

MODEL-SPECIFIC REGISTERS (MSRS)
When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

404H 1028 IA32_MC1_CTL 0, 1, 2,
3, 4, 6

Shared See Section 14.3.2.1,
“IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS 0, 1, 2,
3, 4, 6

Shared See Section 14.3.2.2,
“IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR 0, 1, 2,
3, 4, 6

Shared See Section 14.3.2.3,
“IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is
either not implemented or
contains no address if the ADDRV
flag in the IA32_MC1_STATUS
register is clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

407H 1031 IA32_MC1_MISC Shared See Section 14.3.2.4,
“IA32_MCi_MISC MSRs.”

The IA32_MC1_MISC MSR is either
not implemented or does not
contain additional information if
the MISCV flag in the
IA32_MC1_STATUS register is
clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

408H 1032 IA32_MC2_CTL 0, 1, 2,
3, 4, 6

Shared See Section 14.3.2.1,
“IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS 0, 1, 2,
3, 4, 6

Shared See Section 14.3.2.2,
“IA32_MCi_STATUS MSRS.”

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-62 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
40AH 1034 IA32_MC2_ADDR See Section 14.3.2.3,
“IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is
either not implemented or
contains no address if the ADDRV
flag in the IA32_MC2_STATUS
register is clear. When not
implemented in the processor, all
reads and writes to this MSR will
cause a general-protection
exception.

40BH 1035 IA32_MC2_MISC See Section 14.3.2.4,
“IA32_MCi_MISC MSRs.”

The IA32_MC2_MISC MSR is either
not implemented or does not
contain additional information if
the MISCV flag in the
IA32_MC2_STATUS register is
clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

40CH 1036 IA32_MC3_CTL 0, 1, 2,
3, 4, 6

Shared See Section 14.3.2.1,
“IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS 0, 1, 2,
3, 4, 6

Shared See Section 14.3.2.2,
“IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR 0, 1, 2,
3, 4, 6

Shared See Section 14.3.2.3,
“IA32_MCi_ADDR MSRs.”

The IA32_MC3_ADDR register is
either not implemented or
contains no address if the ADDRV
flag in the IA32_MC3_STATUS
register is clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3 B-63

MODEL-SPECIFIC REGISTERS (MSRS)
40FH 1039 IA32_MC3_MISC 0, 1, 2,
3, 4, 6

Shared See Section 14.3.2.4,
“IA32_MCi_MISC MSRs.”

The IA32_MC3_MISC MSR is either
not implemented or does not
contain additional information if
the MISCV flag in the
IA32_MC3_STATUS register is
clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

410H 1040 IA32_MC4_CTL 0, 1, 2,
3, 4, 6

Shared See Section 14.3.2.1,
“IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS 0, 1, 2,
3, 4, 6

Shared See Section 14.3.2.2,
“IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR See Section 14.3.2.3,
“IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is
either not implemented or
contains no address if the ADDRV
flag in the IA32_MC4_STATUS
register is clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

413H 1043 IA32_MC4_MISC See Section 14.3.2.4,
“IA32_MCi_MISC MSRs.”

The IA32_MC2_MISC MSR is either
not implemented or does not
contain additional information if
the MISCV flag in the
IA32_MC4_STATUS register is
clear.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-64 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

480H 1152 IA32_VMX_BASIC 3, 4, 6 Unique Reporting Register of Basic VMX
Capabilities. (R/O)

See Appendix G.1, “Basic VMX
Information”

(If CPUID.01H:ECX.[bit 9])

481H 1153 IA32_VMX_PINBASED
_CTLS

3, 4, 6 Unique Capability Reporting Register of
Pin-based VM-execution
Controls. (R/O)

See Appendix G.2, “VM-Execution
Controls”

(If CPUID.01H:ECX.[bit 9])

482H 1154 IA32_VMX_
PROCBASED_CTLS

3, 4, 6 Unique Capability Reporting Register of
Primary Processor-based
VM-execution Controls. (R/O)

See Appendix G.2, “VM-Execution
Controls”

(If CPUID.01H:ECX.[bit 9])

483H 1155 IA32_VMX_EXIT_CTLS 3, 4, 6 Unique Capability Reporting Register of
VM-exit Controls. (R/O)

See Appendix G.3, “VM-Exit
Controls”

(If CPUID.01H:ECX.[bit 9])

484H 1156 IA32_VMX_ENTRY_
CTLS

3, 4, 6 Unique Capability Reporting Register of
VM-entry Controls. (R/O)

See Appendix G.4, “VM-Entry
Controls”

(If CPUID.01H:ECX.[bit 9])

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3 B-65

MODEL-SPECIFIC REGISTERS (MSRS)
485H 1157 IA32_VMX_MISC 3, 4, 6 Unique Reporting Register of
Miscellaneous VMX Capabilities.
(R/O)

See Appendix G.5, “Miscellaneous
Data”

(If CPUID.01H:ECX.[bit 9])

486H 1158 IA32_VMX_CR0_
FIXED0

3, 4, 6 Unique Capability Reporting Register of
CR0 Bits Fixed to 0. (R/O)

See Appendix G.6, “VMX-Fixed Bits
in CR0”

(If CPUID.01H:ECX.[bit 9])

487H 1159 IA32_VMX_CR0_
FIXED1

3, 4, 6 Unique Capability Reporting Register of
CR0 Bits Fixed to 1. (R/O)

See Appendix G.6, “VMX-Fixed Bits
in CR0”

(If CPUID.01H:ECX.[bit 9])

488H 1160 IA32_VMX_CR4_
FIXED0

3, 4, 6 Unique Capability Reporting Register of
CR4 Bits Fixed to 0. (R/O)

See Appendix G.7, “VMX-Fixed Bits
in CR4”

(If CPUID.01H:ECX.[bit 9])

489H 1161 IA32_VMX_CR4_
FIXED1

3, 4, 6 Unique Capability Reporting Register of
CR4 Bits Fixed to 1. (R/O)

See Appendix G.7, “VMX-Fixed Bits
in CR4”

(If CPUID.01H:ECX.[bit 9])

48AH 1162 IA32_VMX_VMCS_
ENUM

3, 4, 6 Unique Capability Reporting Register of
VMCS Field Enumeration. (R/O).

See Appendix G.8, “VMCS
Enumeration”

(If CPUID.01H:ECX.[bit 9])

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-66 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
48BH 1163 IA32_VMX_
PROCBASED_CTLS2

3, 4, 6 Unique Capability Reporting Register of
Secondary Processor-based
VM-execution Controls. (R/O)

See Appendix G.2, “VM-Execution
Controls”

(If CPUID.01H:ECX.[bit 9] and
IA32_VMX_PROCBASED_CTLS[bit
63])

600H 1536 IA32_DS_AREA 0, 1, 2,
3, 4, 6

Unique DS Save Area. (R/W)

Points to the DS buffer
management area, which is used
to manage the BTS and PEBS
buffers.

See Section 18.15.4, “Debug Store
(DS) Mechanism.”

31:0 DS Buffer Management Area.

Linear address of the first byte of
the DS buffer management area.

63:32 Reserved.

600H 1536 63:0 Unique DS Buffer Management Area.

Linear address of the first byte of
the DS buffer management area
(If IA-32e mode is active).

680H 1664 MSR_LASTBRANCH
_0_FROM_LIP

3, 4, 6 Unique Last Branch Record 0. (R/W)

One of 16 pairs of last branch
record registers on the last branch
record stack (680H-68FH). This
part of the stack contains pointers
to the source instruction for one
of the last 16 branches,
exceptions, or interrupts taken by
the processor.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3 B-67

MODEL-SPECIFIC REGISTERS (MSRS)
The MSRs at 680H-68FH, 6C0H-
6CfH are not available in processor
releases before family 0FH, model
03H. These MSRs replace MSRs
previously located at 1DBH-
1DEH.which performed the same
function for early releases.

See Section 18.6, “Last Branch,
Interrupt, and Exception Recording
(Processors based on Intel
NetBurst® Microarchitecture).”

681H 1665 MSR_LASTBRANCH
_1_FROM_LIP

3, 4, 6 Unique Last Branch Record 1.

See description of
MSR_LASTBRANCH_0 at 680H.

682H 1666 MSR_LASTBRANCH
_2_FROM_LIP

3, 4, 6 Unique Last Branch Record 2.

See description of
MSR_LASTBRANCH_0 at 680H.

683H 1667 MSR_LASTBRANCH
_3_FROM_LIP

3, 4, 6 Unique Last Branch Record 3.

See description of
MSR_LASTBRANCH_0 at 680H.

684H 1668 MSR_LASTBRANCH
_4_FROM_LIP

3, 4, 6 Unique Last Branch Record 4.

See description of
MSR_LASTBRANCH_0 at 680H.

685H 1669 MSR_LASTBRANCH
_5_FROM_LIP

3, 4, 6 Unique Last Branch Record 5.

See description of
MSR_LASTBRANCH_0 at 680H.

686H 1670 MSR_LASTBRANCH
_6_FROM_LIP

3, 4, 6 Unique Last Branch Record 6.

See description of
MSR_LASTBRANCH_0 at 680H.

687H 1671 MSR_LASTBRANCH
_7_FROM_LIP

3, 4, 6 Unique Last Branch Record 7.

See description of
MSR_LASTBRANCH_0 at 680H.

688H 1672 MSR_LASTBRANCH
_8_FROM_LIP

3, 4, 6 Unique Last Branch Record 8.

See description of
MSR_LASTBRANCH_0 at 680H.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-68 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
689H 1673 MSR_LASTBRANCH
_9_FROM_LIP

3, 4, 6 Unique Last Branch Record 9.

See description of
MSR_LASTBRANCH_0 at 680H.

68AH 1674 MSR_LASTBRANCH
_10_FROM_LIP

3, 4, 6 Unique Last Branch Record 10.

See description of
MSR_LASTBRANCH_0 at 680H.

68BH 1675 MSR_LASTBRANCH
_11_FROM_LIP

3, 4, 6 Unique Last Branch Record 11.

See description of
MSR_LASTBRANCH_0 at 680H.

68CH 1676 MSR_LASTBRANCH
_12_FROM_LIP

3, 4, 6 Unique Last Branch Record 12.

See description of
MSR_LASTBRANCH_0 at 680H.

68DH 1677 MSR_LASTBRANCH
_13_FROM_LIP

3, 4, 6 Unique Last Branch Record 13.

See description of
MSR_LASTBRANCH_0 at 680H.

68EH 1678 MSR_LASTBRANCH
_14_FROM_LIP

3, 4, 6 Unique Last Branch Record 14.

See description of
MSR_LASTBRANCH_0 at 680H.

68FH 1679 MSR_LASTBRANCH
_15_FROM_LIP

3, 4, 6 Unique Last Branch Record 15.

See description of
MSR_LASTBRANCH_0 at 680H.

6C0H 1728 MSR_LASTBRANCH
_0_TO_LIP

3, 4, 6 Unique Last Branch Record 0. (R/W)

One of 16 pairs of last branch
record registers on the last branch
record stack (6C0H-6CFH). This
part of the stack contains pointers
to the destination instruction for
one of the last 16 branches,
exceptions, or interrupts that the
processor took.

See Section 18.6, “Last Branch,
Interrupt, and Exception Recording
(Processors based on Intel
NetBurst® Microarchitecture).”

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3 B-69

MODEL-SPECIFIC REGISTERS (MSRS)
6C1H 1729 MSR_LASTBRANCH
_1_TO_LIP

3, 4, 6 Unique Last Branch Record 1.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C2H 1730 MSR_LASTBRANCH
_2_TO_LIP

3, 4, 6 Unique Last Branch Record 2.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C3H 1731 MSR_LASTBRANCH
_3_TO_LIP

3, 4, 6 Unique Last Branch Record 3.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C4H 1732 MSR_LASTBRANCH
_4_TO_LIP

3, 4, 6 Unique Last Branch Record 4.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C5H 1733 MSR_LASTBRANCH
_5_TO_LIP

3, 4, 6 Unique Last Branch Record 5.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C6H 1734 MSR_LASTBRANCH
_6_TO_LIP

3, 4, 6 Unique Last Branch Record 6.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C7H 1735 MSR_LASTBRANCH
_7_TO_LIP

3, 4, 6 Unique Last Branch Record 7.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C8H 1736 MSR_LASTBRANCH
_8_TO_LIP

3, 4, 6 Unique Last Branch Record 8.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C9H 1737 MSR_LASTBRANCH
_9_TO_LIP

3, 4, 6 Unique Last Branch Record 9.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6CAH 1738 MSR_LASTBRANCH
_10_TO_LIP

3, 4, 6 Unique Last Branch Record 10.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6CBH 1739 MSR_LASTBRANCH
_11_TO_LIP

3, 4, 6 Unique Last Branch Record 11.

See description of
MSR_LASTBRANCH_0 at 6C0H.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-70 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
6CCH 1740 MSR_LASTBRANCH
_12_TO_LIP

3, 4, 6 Unique Last Branch Record 12.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6CDH 1741 MSR_LASTBRANCH
_13_TO_LIP

3, 4, 6 Unique Last Branch Record 13.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6CEH 1742 MSR_LASTBRANCH
_14_TO_LIP

3, 4, 6 Unique Last Branch Record 14.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6CFH 1743 MSR_LASTBRANCH
_15_TO_LIP

3, 4, 6 Unique Last Branch Record 15.

See description of
MSR_LASTBRANCH_0 at 6C0H.

C000_
0080H

IA32_EFER 3, 4, 6 Unique Extended Feature Enables.

(If CPUID.80000001.EDX.[bit 20]
or CPUID.80000001.EDX.[bit29])

0 SYSCALL Enable (R/W).

Enables SYSCALL/SYSRET
instructions in 64-bit mode.

7:1 Reserved.

8 IA-32e Mode Enable. (R/W).

Enables IA-32e mode operation.

9 Reserved.

10 IA-32e Mode Active. (R)

Indicates IA-32e mode is active
when set.

11 Execute Disable Bit Enable.
(R/W)

Enables the Execute-Disable-Bit
functionality in paging structures.

63:12 Reserved.

C000_
0081H

IA32_STAR 3, 4, 6 Unique System Call Target Address.
(R/W)

(If CPUID.80000001.EDX.[bit 29])

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3 B-71

MODEL-SPECIFIC REGISTERS (MSRS)
B.2.1 MSRs Unique to Intel Xeon Processor MP with L3 Cache
The MSRs listed in Table B-3 apply to Intel Xeon Processor MP with up to 8MB level
three cache. These processors can be detected by enumerating the deterministic
cache parameter leaf of CPUID instruction (with EAX = 4 as input) to detect the pres-
ence of the third level cache, and with CPUID reporting family encoding 0FH, model
encoding 3 or 4 (See CPUID instruction for more details.).

C000_
0082H

IA32_LSTAR 3, 4, 6 Unique IA-32e Mode System Call Target
Address. (R/W)

(If CPUID.80000001.EDX.[bit 29])

C000_
0084H

IA32_FMASK 3, 4, 6 Unique System Call Flag Mask. (R/W)

(If CPUID.80000001.EDX.[bit 29])

C000_
0100H

IA32_FS_BASE 3, 4, 6 Unique Map of BASE Address of FS.
(R/W)

(If CPUID.80000001.EDX.[bit 29])

C000_
0101H

IA32_GS_BASE 3, 4, 6 Unique Map of BASE Address of GS.
(R/W)

(If CPUID.80000001.EDX.[bit 29])

C000_
0102H

IA32_KERNEL_
GSBASE

3, 4, 6 Unique Swap Target of BASE Address of
GS. (R/W)

(If CPUID.80000001.EDX.[bit 29])

NOTES
1. For HT-enabled processors, there may be more than one logical processors per physical unit. If

an MSR is Shared, this means that one MSR is shared between logical processors. If an MSR is
unique, this means that each logical processor has its own MSR.

Table B-2. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-72 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
Table B-3. MSRs Unique to 64-bit Intel Xeon Processor MP with
Up to an 8 MB L3 Cache

Register Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique Bit Description

107CCH MSR_IFSB_BUSQ0 3, 4 Shared IFSB BUSQ Event Control
and Counter Register.
(R/W)

See Section 18.19,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache.”

107CDH MSR_IFSB_BUSQ1 3, 4 Shared IFSB BUSQ Event Control
and Counter Register.
(R/W)

107CEH MSR_IFSB_SNPQ0 3, 4 Shared IFSB SNPQ Event Control
and Counter Register.
(R/W)

See Section 18.19,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache.”

107CFH MSR_IFSB_SNPQ1 3, 4 Shared IFSB SNPQ Event Control
and Counter Register.
(R/W)

107D0H MSR_EFSB_DRDY0 3, 4 Shared EFSB DRDY Event Control
and Counter Register.
(R/W)

See Section 18.19,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache” for details.

107D1H MSR_EFSB_DRDY1 3, 4 Shared EFSB DRDY Event Control
and Counter Register.
(R/W)
Vol. 3 B-73

MODEL-SPECIFIC REGISTERS (MSRS)
The MSRs listed in Table B-4 apply to Intel Xeon Processor 7100 series. These
processors can be detected by enumerating the deterministic cache parameter leaf of
CPUID instruction (with EAX = 4 as input) to detect the presence of the third level
cache, and with CPUID reporting family encoding 0FH, model encoding 6 (See CPUID
instruction for more details.). The performance monitoring MSRs listed in Table B-4
are shared between logical processors in the same core, but are replicated for each
core.

107D2H MSR_IFSB_CTL6 3, 4 Shared IFSB Latency Event Control
Register. (R/W)

See Section 18.19,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache” for details.

107D3H MSR_IFSB_CNTR7 3, 4 Shared IFSB Latency Event
Counter Register. (R/W)

See Section 18.19,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache.”

Table B-4. MSRs Unique to Intel Xeon Processor 7100 Series

Register Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique Bit Description

107CCH MSR_EMON_L3_CTR_C
TL0

6 Shared GBUSQ Event Control and
Counter Register. (R/W)

See Section 18.20,
“Performance Monitoring on
Dual-Core Intel Xeon
Processor 7100 Series.”

107CDH MSR_EMON_L3_CTR_C
TL1

6 Shared GBUSQ Event Control and
Counter Register. (R/W)

Table B-3. MSRs Unique to 64-bit Intel Xeon Processor MP with
Up to an 8 MB L3 Cache (Contd.)

Register Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique Bit Description
B-74 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
B.3 MSRS IN INTEL® CORE™ SOLO AND INTEL® CORE™

DUO PROCESSORS
Model-specific registers (MSRs) for Intel Core Solo, Intel Core Duo processors, and
Dual-core Intel Xeon processor LV are listed in Table B-5. The column
“Shared/Unique”applies to Intel Core Duo processor. “Unique” means each processor
core has a separate MSR, or a bit field in an MSR governs only a core independently.
“Shared” means the MSR or the bit field in an MSR address governs the operation of
both processor cores.

107CEH MSR_EMON_L3_CTR_C
TL2

6 Shared GSNPQ Event Control and
Counter Register. (R/W)

See Section 18.20,
“Performance Monitoring on
Dual-Core Intel Xeon
Processor 7100 Series.”

107CFH MSR_EMON_L3_CTR_C
TL3

6 Shared GSNPQ Event Control and
Counter Register (R/W)

107D0H MSR_EMON_L3_CTR_C
TL4

6 Shared FSB Event Control and
Counter Register. (R/W)

See Section 18.20,
“Performance Monitoring on
Dual-Core Intel Xeon
Processor 7100 Series” for
details.

107D1H MSR_EMON_L3_CTR_C
TL5

6 Shared FSB Event Control and
Counter Register. (R/W)

107D2H MSR_EMON_L3_CTR_C
TL6

6 Shared FSB Event Control and
Counter Register. (R/W)

107D3H MSR_EMON_L3_CTR_C
TL7

6 Shared FSB Event Control and
Counter Register. (R/W)

Table B-4. MSRs Unique to Intel Xeon Processor 7100 Series (Contd.)

Register Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique Bit Description
Vol. 3 B-75

MODEL-SPECIFIC REGISTERS (MSRS)
Table B-5. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-core Intel
Xeon Processor LV

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 P5_MC_ADDR Unique See Appendix B.6, “MSRs in Pentium
Processors.”

1H 1 P5_MC_TYPE Unique See Appendix B.6, “MSRs in Pentium
Processors.”

6H 6 IA32_MONITOR_
FILTER_SIZE

Unique See Section 7.11.5, “Monitor/Mwait Address
Range Determination.”

10H 16 IA32_TIME_
STAMP_COUNTER

Unique See Section 18.10, “Time-Stamp Counter.”

17H 23 IA32_PLATFORM_
ID

Shared Platform ID. (R)

The operating system can use this MSR to
determine “slot” information for the processor
and the proper microcode update to load.

49:0 Reserved.

52:50 Platform Id. (R)

Contains information concerning the intended
platform for the processor.
52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 8.4.4, “Local APIC Status and
Location.”

2AH 42 MSR_EBL_CR_
POWERON

Shared Processor Hard Power-On Configuration.
(R/W)

Enables and disables processor features; (R)
indicates current processor configuration.

0 Reserved.
B-76 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
1 Data Error Checking Enable. (R/W)

1 = Enabled
0 = Disabled
Always 0 on the Pentium M processor.

2 Response Error Checking Enable. (R/W)

FRCERR Observation Enable:

1 = Enabled
0 = Disabled
Always 0 on the Pentium M processor.

3 AERR# Drive Enable. (R/W)

1 = Enabled
0 = Disabled

Always 0 on the Pentium M processor.

4 BERR# Enable for initiator bus requests.
(R/W)

1 = Enabled
0 = Disabled
Always 0 on the Pentium M processor.

5 Reserved

6 BERR# Driver Enable for initiator internal
errors. (R/W)

1 = Enabled
0 = Disabled

Always 0 on the Pentium M processor.

7 BINIT# Driver Enable. (R/W)

1 = Enabled
0 = Disabled
Always 0 on the Pentium M processor.

8 Output Tri-state Enabled. (R/O)

1 = Enabled
0 = Disabled

Table B-5. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3 B-77

MODEL-SPECIFIC REGISTERS (MSRS)
9 Execute BIST. (R/O)

1 = Enabled
0 = Disabled

10 AERR# Observation Enabled. (R/O)

1 = Enabled
0 = Disabled
Always 0 on the Pentium M processor.

11 Reserved

12 BINIT# Observation Enabled. (R/O)

1 = Enabled
0 = Disabled
Always 0 on the Pentium M processor.

13 In Order Queue Depth. (R/O)

1 = 1
0 = 8

14 1 MByte Power on Reset Vector. (R/O)

1 = 1 MByte
0 = 4 GBytes
Always 0 on the Pentium M processor.

15 Reserved

17:16 APIC Cluster ID. (R/O)

Always 00B on the Pentium M processor.

18 System Bus Frequency. (R/O)

0 = 100 MHz
1 = Reserved
Always 0 on the Pentium M processor.

19 Reserved.

21: 20 Symmetric Arbitration ID. (R/O)

Always 00B on the Pentium M processor.

26:22 Clock Frequency Ratio. (R/O)

Table B-5. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-78 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
3AH 58 IA32_FEATURE_
CONTROL

Unique Control Features in IA-32 Processor. (R/W)

(If CPUID.1.ECX.[bit 5])

40H 64 MSR_
LASTBRANCH_0

Unique Last Branch Record 0. (R/W)

One of 8 last branch record registers on the
last branch record stack: bits 31-0 hold the
‘from’ address and bits 63-32 hold the ‘to’
address. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 18.8, “Last Branch, Interrupt, and

Exception Recording (Pentium M
Processors).”

41H 65 MSR_
LASTBRANCH_1

Unique Last Branch Record 1. (R/W)

See description of MSR_LASTBRANCH_0.

42H 66 MSR_
LASTBRANCH_2

Unique Last Branch Record 2. (R/W)

See description of MSR_LASTBRANCH_0.

43H 67 MSR_
LASTBRANCH_3

Unique Last Branch Record 3. (R/W)

See description of MSR_LASTBRANCH_0.

44H 68 MSR_
LASTBRANCH_4

Unique Last Branch Record 4. (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_
LASTBRANCH_5

Unique Last Branch Record 5. (R/W)

See description of MSR_LASTBRANCH_0.

46H 70 MSR_
LASTBRANCH_6

Unique Last Branch Record 6. (R/W)

See description of MSR_LASTBRANCH_0.

47H 71 MSR_
LASTBRANCH_7

Unique Last Branch Record 7. (R/W)

See description of MSR_LASTBRANCH_0.

79H 121 IA32_BIOS_
UPDT_TRIG

Unique BIOS Update Trigger Register (R/W)

8BH 139 IA32_BIOS_
SIGN_ID

Unique BIOS Update Signature ID (RO)

C1H 193 IA32_PMC0 Unique Performance counter register.

Table B-5. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3 B-79

MODEL-SPECIFIC REGISTERS (MSRS)
C2H 194 IA32_PMC1 Unique Performance counter register.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed. (RO)

This field indicates the scaleable bus clock
speed:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 101B.

166.67 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 001B.

63:3 Reserved

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock
Count. (RW)

63:0 C0_MCNT: C0 Maximum Frequency Clock
Count.

Increments at maximum clock frequency
divided by 1024 (as allowed by the Resolved
Ratio) when core is in C0. Cleared by a write to
the MCNT, the ACNT and upon overflow/wrap-
around of this counter.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count.
(RW)

63:0 C0_ACNT: C0 Actual Frequency Clock Count.

Accumulates core clock counts - at the
coordinated clock frequency - divided by
1024, when core is in C0. Cleared by a write to
this field or the MCNT

Table B-5. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-80 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
FEH 254 IA32_MTRRCAP Unique

11EH 281 MSR_BBL_CR_
CTL3

Shared

0 L2 Hardware Enabled. (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

4:1 Reserved.

5 ECC Check Enable. (RO)

This bit enables ECC checking on the cache
data bus. ECC is always generated on write
cycles.

0 = Disabled (default)
1 = Enabled

7:6 Reserved.

8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not
respond to the WBINVD instruction or the
assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present. (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER
_CS

Unique

Table B-5. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3 B-81

MODEL-SPECIFIC REGISTERS (MSRS)
175H 373 IA32_SYSENTER
_ESP

Unique

176H 374 IA32_SYSENTER
_EIP

Unique

179H 377 IA32_MCG_CAP Unique

7:0 Count. (RO)

Indicates the number of hardware unit error
reporting banks available in the processor

8 IA32_MCG_CTL Present. (RO)

1 = Indicates that the processor implements
the MSR_MCG_CTL register found at
MSR 17BH.

0 = Not supported.

63:9 Reserved.

17AH 378 IA32_MCG_
STATUS

Unique

0 RIPV.

When set, this bit indicates that the
instruction addressed by the instruction
pointer pushed on the stack (when the
machine check was generated) can be used to
restart the program. If this bit is cleared, the
program cannot be reliably restarted

1 EIPV.

When set, this bit indicates that the
instruction addressed by the instruction
pointer pushed on the stack (when the
machine check was generated) is directly
associated with the error.

Table B-5. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-82 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
2 MCIP.

When set, this bit indicates that a machine
check has been generated. If a second
machine check is detected while this bit is still
set, the processor enters a shutdown state.
Software should write this bit to 0 after
processing a machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Unique See

187H 391 IA32_
PERFEVTSEL1

Unique

198H 408 IA32_PERF_STAT Shared

15:0 Current Performance State Value.

63:16 Reserved.

199H 409 IA32_PERF_CTL Unique

15:0 Target Performance State Value.

63:16 Reserved.

19AH 410 IA32_CLOCK_
MODULATION

Unique Clock Modulation. (R/W)

Enables and disables on-demand clock
modulation and allows the selection of the on-
demand clock modulation duty cycle. See
Section 13.5.3, “Software Controlled Clock
Modulation.”

IA32_CLOCK_MODULATION MSR was
originally named IA32_THERM_CONTROL
MSR.

19BH 411 IA32_THERM_
INTERRUPT

Unique Thermal Interrupt Control. (R/W)

Enables and disables the generation of an
interrupt on temperature transitions detected
with the processor’s thermal sensors and
thermal monitor.

See Section 13.5.2, “Thermal Monitor.”

Table B-5. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3 B-83

MODEL-SPECIFIC REGISTERS (MSRS)
19CH 412 IA32_THERM_
STATUS

Unique Thermal Monitor Status. (R/W)

Contains status information about the
processor’s thermal sensor and automatic
thermal monitoring facilities.

See Section 13.5.2, “Thermal Monitor”.

19DH 413 MSR_THERM2_
CTL

Unique

15:0 Reserved.

16 TM_SELECT. (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated
on-die modulation of the stop-clock duty
cycle)

1 = Thermal Monitor 2 (thermally-initiated
frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is
cleared, TM_SELECT has no effect. Neither
TM1 nor TM2 will be enabled.

63:16 Reserved.

1A0 416 IA32_MISC_
ENABLE

Enable Miscellaneous Processor Features.

(R/W) Allows a variety of processor functions
to be enabled and disabled.

2:0 Reserved.

Table B-5. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-84 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
3 Unique Automatic Thermal Control Circuit Enable.
(R/W)

1 = Setting this bit enables the thermal
control circuit (TCC) portion of the Intel
Thermal Monitor feature. This allows
processor clocks to be automatically
modulated based on the processor's
thermal sensor operation.

0 = Disabled (default).

The automatic thermal control circuit enable
bit determines if the thermal control circuit
(TCC) will be activated when the processor's
internal thermal sensor determines the
processor is about to exceed its maximum
operating temperature.

When the TCC is activated and TM1 is enabled,
the processors clocks will be forced to a 50%
duty cycle. BIOS must enable this feature.

The bit should not be confused with the on-
demand thermal control circuit enable bit.

6:4 Reserved

7 Shared Performance Monitoring Available. (R)

1 = Performance monitoring enabled
0 = Performance monitoring disabled

9:8 Reserved

10 Shared FERR# Multiplexing Enable. (R/W)

1 = FERR# asserted by the processor to
indicate a pending break event within
the processor

0 = Indicates compatible FERR# signaling
behavior

This bit must be set to 1 to support XAPIC
interrupt model usage.

Table B-5. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3 B-85

MODEL-SPECIFIC REGISTERS (MSRS)
11 Shared Branch Trace Storage Unavailable. (RO)

1 =Processor doesn’t support branch trace
storage (BTS)
0 =BTS is supported

12 Shared Precise Event Based Sampling Unavailable.
(RO)

1 = Processor does not support precise
event-based sampling (PEBS);

0 = PEBS is supported.
The Intel Core Solo and Intel Core Duo
processors do not support PEBS.

13 Shared TM2 Enable. (R/W)

When this bit is set (1) and the thermal sensor
indicates that the die temperature is at the
pre-determined threshold, the Thermal
Monitor 2 mechanism is engaged. TM2 will
reduce the bus to core ratio and voltage
according to the value last written to
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the
processor does not change the VID signals or
the bus to core ratio when the processor
enters a thermal managed state.

If the TM2 feature flag (ECX[8]) is not set to 1
after executing CPUID with EAX = 1, then this
feature is not supported and BIOS must not
alter the contents of this bit location. The
processor is operating out of spec if both this
bit and the TM1 bit are set to disabled states.

15:14 Reserved

16 Shared Enhanced Intel SpeedStep Technology
Enable. (R/W)

1 = Enhanced Intel SpeedStep Technology
enabled

Table B-5. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-86 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
18 Shared ENABLE MONITOR FSM. (R/W)

When this bit is set to 0, the MONITOR feature
flag ECX[3] returned by CPUID.01H is set to 0.
This indicates that MONITOR/MWAIT are not
supported. An Illegal Instruction exception is
generated if software attempts to execute
MONITOR/MWAIT when this bit is 0.

When this bit is set to 1 (default),
MONITOR/MWAIT are supported and
CPUID.01H:ECX[bit 3] = 1.

If the Streaming SIMD Extensions 3 (SSE3)
feature flag ECX[0] is not set, the OS must not
attempt to alter this bit. BIOS should leave
this bit in the default state. Writing this bit
when the SSE3 feature flag is set to 0 may
generate a #GP exception.

19 Reserved.

22 Shared Limit CPUID Maxval. (R/W)

When this bit is set to 1, CPUID.00H returns a
maximum value in EAX[7:0] of 3. When set to
a 0 (default), CPUID.00H returns the number
of the maximum standard function supported
in EAX[7:0].

BIOS should contain a setup question that
allows users to specify when the installed OS
does not support CPUID functions > 3.

Before setting this bit, BIOS must execute the
CPUID instruction with EAX = 0 and examine
the maximum value returned in EAX[7:0]. If
the maximum value is > 3, the bit is
supported. Otherwise, the bit is not
supported. Writing to this bit when the
maximum value is < 3 may generate a #GP
exception.

Setting this bit may cause behavior in
software that depends on the availability of
CPUID leaves greater than 3.

Table B-5. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3 B-87

MODEL-SPECIFIC REGISTERS (MSRS)
33:23 Reserved.

34 Shared XD Bit Disable. (R/W)

When set to 1, the Execute Disable Bit feature
(XD Bit) is disabled and the XD Bit extended
feature flag will be clear (CPUID.80000001H:
EDX[20]=0).

When set to a 0 (default), the Execute Disable
Bit feature (if available) allows the OS to
enable PAE paging and take advantage of data
only pages.

Assuming this bit is not set to 1 and if
CPUID.80000001H: EDX[20]=0, this feature is
not supported and BIOS must not alter the
contents of this bit location. Writing this bit to
1 when the XD Bit extended feature flag is
set to 0 may generate a #GP exception.

63:35 Reserved.

1C9H 457 MSR_
LASTBRANCH_
TOS

Unique Last Branch Record Stack TOS. (R)

Contains an index (bits 0-3) that points to the
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0 (at 40H)

1D9H 473 IA32_DEBUGCTL Unique Debug Control. (R/W)

Controls how several debug features are used.
Bit definitions are discussed in the referenced
section.

1DDH 477 MSR_LER_FROM_
LIP

Unique Last Exception Record From Linear IP. (R)

Contains a pointer to the last branch
instruction that the processor executed prior
to the last exception that was generated or
the last interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP. (R)

This area contains a pointer to the target of
the last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was
handled.

Table B-5. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-88 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
1E0H 480 ROB_CR_
BKUPTMPDR6

Unique

1:0 Reserved

2 Fast String Enable bit. (Default, enabled)

200H 512 MTRRphysBase0 Unique

201H 513 MTRRphysMask0 Unique

202H 514 MTRRphysBase1 Unique

203H 515 MTRRphysMask1 Unique

204H 516 MTRRphysBase2 Unique

205H 517 MTRRphysMask2 Unique

206H 518 MTRRphysBase3 Unique

207H 519 MTRRphysMask3 Unique

208H 520 MTRRphysBase4 Unique

209H 521 MTRRphysMask4 Unique

20AH 522 MTRRphysBase5 Unique

20BH 523 MTRRphysMask5 Unique

20CH 524 MTRRphysBase6 Unique

20DH 525 MTRRphysMask6 Unique

20EH 526 MTRRphysBase7 Unique

20FH 527 MTRRphysMask7 Unique

250H 592 MTRRfix64K_
00000

Unique

258H 600 MTRRfix16K_
80000

Unique

259H 601 MTRRfix16K_
A0000

Unique

268H 616 MTRRfix4K_
C0000

Unique

269H 617 MTRRfix4K_
C8000

Unique

Table B-5. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3 B-89

MODEL-SPECIFIC REGISTERS (MSRS)
26AH 618 MTRRfix4K_
D0000

Unique

26BH 619 MTRRfix4K_
D8000

Unique

26CH 620 MTRRfix4K_
E0000

Unique

26DH 621 MTRRfix4K_
E8000

Unique

26EH 622 MTRRfix4K_
F0000

Unique

26FH 623 MTRRfix4K_
F8000

Unique

2FFH 767 IA32_MTRR_DEF_
TYPE

Unique Default Memory Types. (R/W)

Sets the memory type for the regions of
physical memory that are not mapped by the
MTRRs.

See Section 10.11.2.1,
“IA32_MTRR_DEF_TYPE MSR.”

400H 1024 IA32_MC0_CTL Unique See Section 14.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_
STATUS

Unique See Section 14.3.2.2, “IA32_MCi_STATUS
MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 14.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC0_STATUS register
is clear. When not implemented in the
processor, all reads and writes to this MSR will
cause a general-protection exception.

404H 1028 IA32_MC1_CTL Unique See Section 14.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Unique See Section 14.3.2.2, “IA32_MCi_STATUS
MSRS.”

Table B-5. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-90 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
406H 1030 IA32_MC1_ADDR Unique See Section 14.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC1_STATUS register
is clear. When not implemented in the
processor, all reads and writes to this MSR will
cause a general-protection exception.

408H 1032 IA32_MC2_CTL Unique See Section 14.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Unique See Section 14.3.2.2, “IA32_MCi_STATUS
MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 14.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC2_STATUS register
is clear. When not implemented in the
processor, all reads and writes to this MSR will
cause a general-protection exception.

40CH 1036 MSR_MC4_CTL Unique See Section 14.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_
STATUS

Unique See Section 14.3.2.2, “IA32_MCi_STATUS
MSRS.”

40EH 1038 MSR_MC4_ADDR Unique See Section 14.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC4_STATUS register
is clear. When not implemented in the
processor, all reads and writes to this MSR will
cause a general-protection exception.

410H 1040 MSR_MC3_CTL See Section 14.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_
STATUS

See Section 14.3.2.2, “IA32_MCi_STATUS
MSRS.”

Table B-5. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3 B-91

MODEL-SPECIFIC REGISTERS (MSRS)
412H 1042 MSR_MC3_ADDR Unique See Section 14.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC3_STATUS register
is clear. When not implemented in the
processor, all reads and writes to this MSR will
cause a general-protection exception.

413H 1043 MSR_MC3_MISC Unique

414H 1044 MSR_MC5_CTL Unique

415H 1045 MSR_MC5_
STATUS

Unique

416H 1046 MSR_MC5_ADDR Unique

417H 1047 MSR_MC5_MISC Unique

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX
Capabilities. (R/O)

See Appendix G.1, “Basic VMX Information”

(If CPUID.01H:ECX.[bit 9])

481H 1153 IA32_VMX_PINBA
SED_CTLS

Unique Capability Reporting Register of Pin-based
VM-execution Controls. (R/O)

See Appendix G.2, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9])

482H 1154 IA32_VMX_PROCB
ASED_CTLS

Unique Capability Reporting Register of Primary
Processor-based VM-execution Controls.
(R/O)

See Appendix G.2, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9])

483H 1155 IA32_VMX_EXIT_
CTLS

Unique Capability Reporting Register of VM-exit
Controls. (R/O)

See Appendix G.3, “VM-Exit Controls”

(If CPUID.01H:ECX.[bit 9])

Table B-5. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-92 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
484H 1156 IA32_VMX_
ENTRY_CTLS

Unique Capability Reporting Register of VM-entry
Controls. (R/O)

See Appendix G.4, “VM-Entry Controls”

(If CPUID.01H:ECX.[bit 9])

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX
Capabilities. (R/O)

See Appendix G.5, “Miscellaneous Data”

(If CPUID.01H:ECX.[bit 9])

486H 1158 IA32_VMX_CR0_
FIXED0

Unique Capability Reporting Register of CR0 Bits
Fixed to 0. (R/O)

See Appendix G.6, “VMX-Fixed Bits in CR0”

(If CPUID.01H:ECX.[bit 9])

487H 1159 IA32_VMX_CR0_
FIXED1

Unique Capability Reporting Register of CR0 Bits
Fixed to 1. (R/O)

See Appendix G.6, “VMX-Fixed Bits in CR0”

(If CPUID.01H:ECX.[bit 9])

488H 1160 IA32_VMX_CR4_FI
XED0

Unique Capability Reporting Register of CR4 Bits
Fixed to 0. (R/O)

See Appendix G.7, “VMX-Fixed Bits in CR4”

(If CPUID.01H:ECX.[bit 9])

489H 1161 IA32_VMX_CR4_FI
XED1

Unique Capability Reporting Register of CR4 Bits
Fixed to 1. (R/O)

See Appendix G.7, “VMX-Fixed Bits in CR4”

(If CPUID.01H:ECX.[bit 9])

48AH 1162 IA32_VMX_
VMCS_ENUM

Unique Capability Reporting Register of VMCS Field
Enumeration. (R/O).

See Appendix G.8, “VMCS Enumeration”

(If CPUID.01H:ECX.[bit 9])

Table B-5. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3 B-93

MODEL-SPECIFIC REGISTERS (MSRS)
B.4 MSRS IN THE PENTIUM M PROCESSOR
Model-specific registers (MSRs) for the Pentium M processor are similar to those
described in Section B.5 for P6 family processors. The following table describes new
MSRs and MSRs whose behavior has changed on the Pentium M processor.

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Unique Capability Reporting Register of Secondary
Processor-based VM-execution Controls.
(R/O)

See Appendix G.2, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9] and
IA32_VMX_PROCBASED_CTLS[bit 63])

600H 1536 IA32_DS_AREA Unique DS Save Area. (R/W)

Points to the DS buffer management area,
which is used to manage the BTS and PEBS
buffers.

See Section 18.15.4, “Debug Store (DS)
Mechanism.”

31:0 DS Buffer Management Area.

Linear address of the first byte of the DS
buffer management area.

63:32 Reserved.

C000_
0080H

IA32_EFER Unique

10:0 Reserved.

11 Execute Disable Bit Enable.

63:12 Reserved

Table B-5. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-94 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
Table B-6. MSRs in Pentium M Processors

Register
Address

Register Name Bit Description

 Hex Dec

0H 0 P5_MC_ADDR See Appendix B.6, “MSRs in Pentium Processors.”

1H 1 P5_MC_TYPE See Appendix B.6, “MSRs in Pentium Processors.”

10H 16 IA32_TIME_STAMP_
COUNTER

See Section 18.10, “Time-Stamp Counter.”

17H 23 IA32_PLATFORM_ID Platform ID. (R)

The operating system can use this MSR to
determine “slot” information for the processor and
the proper microcode update to load.

49:0 Reserved.

52:50 Platform Id. (R)

Contains information concerning the intended
platform for the processor.
52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved.

2AH 42 MSR_EBL_CR_POWERON Processor Hard Power-On Configuration.

(R/W) Enables and disables processor features. (R)
Indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable. (R/W)

1 = Enabled
0 = Disabled
Always 0 on the Pentium M processor.

2 Response Error Checking Enable. (R/W)

FRCERR Observation Enable:

1 = Enabled
0 = Disabled

Always 0 on the Pentium M processor.
Vol. 3 B-95

MODEL-SPECIFIC REGISTERS (MSRS)
3 AERR# Drive Enable. (R/W)

1 = Enabled
0 = Disabled
Always 0 on the Pentium M processor.

4 BERR# Enable for initiator bus requests. (R/W)

1 = Enabled
0 = Disabled
Always 0 on the Pentium M processor.

5 Reserved.

6 BERR# Driver Enable for initiator internal
errors. (R/W)

1 = Enabled
0 = Disabled
Always 0 on the Pentium M processor.

7 BINIT# Driver Enable. (R/W)

1 = Enabled
0 = Disabled
Always 0 on the Pentium M processor.

8 Output Tri-state Enabled. (R/O)

1 = Enabled
0 = Disabled

9 Execute BIST. (R/O)

1 = Enabled
0 = Disabled

10 AERR# Observation Enabled. (R/O)

1 = Enabled
0 = Disabled
Always 0 on the Pentium M processor.

11 Reserved.

12 BINIT# Observation Enabled. (R/O)

1 = Enabled
0 = Disabled
Always 0 on the Pentium M processor.

Table B-6. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
B-96 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
13 In Order Queue Depth. (R/O)

1 = 1
0 = 8

14 1 MByte Power on Reset Vector. (R/O)

1 = 1 MByte
0 = 4 GBytes
Always 0 on the Pentium M processor.

15 Reserved.

17:16 APIC Cluster ID. (R/O)

Always 00B on the Pentium M processor.

18 System Bus Frequency. (R/O)

0 = 100 MHz
1 = Reserved
Always 0 on the Pentium M processor.

19 Reserved.

21: 20 Symmetric Arbitration ID. (R/O)

Always 00B on the Pentium M processor.

26:22 Clock Frequency Ratio (R/O)

40H 64 MSR_LASTBRANCH_0 Last Branch Record 0. (R/W)

One of 8 last branch record registers on the last
branch record stack: bits 31-0 hold the ‘from’
address and bits 63-32 hold the to address.

See also:

• Last Branch Record Stack TOS at 1C9H
• Section 18.8, “Last Branch, Interrupt, and

Exception Recording (Pentium M Processors)”

41H 65 MSR_LASTBRANCH_1 Last Branch Record 1. (R/W)

See description of MSR_LASTBRANCH_0.

42H 66 MSR_LASTBRANCH_2 Last Branch Record 2. (R/W)

See description of MSR_LASTBRANCH_0.

43H 67 MSR_LASTBRANCH_3 Last Branch Record 3. (R/W)

See description of MSR_LASTBRANCH_0.

Table B-6. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3 B-97

MODEL-SPECIFIC REGISTERS (MSRS)
44H 68 MSR_LASTBRANCH_4 Last Branch Record 4. (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_LASTBRANCH_5 Last Branch Record 5. (R/W)

See description of MSR_LASTBRANCH_0.

46H 70 MSR_LASTBRANCH_6 Last Branch Record 6. (R/W)

See description of MSR_LASTBRANCH_0.

47H 71 MSR_LASTBRANCH_7 Last Branch Record 7. (R/W)

See description of MSR_LASTBRANCH_0.

119H 281 MSR_BBL_CR_CTL

63:0 Reserved.

11EH 281 MSR_BBL_CR_CTL3

0 L2 Hardware Enabled. (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

4:1 Reserved.

5 ECC Check Enable. (RO)

This bit enables ECC checking on the cache data
bus. ECC is always generated on write cycles.

0 = Disabled (default)
1 = Enabled
For the Pentium M processor, ECC checking on the
cache data bus is always enabled.

7:6 Reserved.

8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not respond
to the WBINVD instruction or the assertion of the
FLUSH# input.

22:9 Reserved.

Table B-6. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
B-98 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
23 L2 Not Present. (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

179H 377 IA32_MCG_CAP

7:0 Count. (RO)

Indicates the number of hardware unit error
reporting banks available in the processor

8 IA32_MCG_CTL Present. (RO)

1 = Indicates that the processor implements the
MSR_MCG_CTL register found at MSR 17BH.

0 = Not supported.

63:9 Reserved.

17AH 378 IA32_MCG_STATUS

0 RIPV.

When set, this bit indicates that the instruction
addressed by the instruction pointer pushed on
the stack (when the machine check was
generated) can be used to restart the program. If
this bit is cleared, the program cannot be reliably
restarted

1 EIPV.

When set, this bit indicates that the instruction
addressed by the instruction pointer pushed on
the stack (when the machine check was
generated) is directly associated with the error.

2 MCIP.

When set, this bit indicates that a machine check
has been generated. If a second machine check is
detected while this bit is still set, the processor
enters a shutdown state. Software should write
this bit to 0 after processing a machine check
exception.

63:3 Reserved.

198H 408 IA32_PERF_STATUS

Table B-6. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3 B-99

MODEL-SPECIFIC REGISTERS (MSRS)
15:0 Current Performance State Value.

63:16 Reserved.

199H 409 IA32_PERF_CTL

15:0 Target Performance State Value.

63:16 Reserved.

19AH 410 IA32_CLOCK_
MODULATION

Clock Modulation. (R/W)

Enables and disables on-demand clock modulation
and allows the selection of the on-demand clock
modulation duty cycle.

See Section 13.5.3, “Software Controlled Clock
Modulation.”

IA32_CLOCK_MODULATION MSR was originally
named IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_
INTERRUPT

Thermal Interrupt Control. (R/W)

Enables and disables the generation of an
interrupt on temperature transitions detected
with the processor’s thermal sensor and thermal
monitor.

See Section 13.5.2, “Thermal Monitor.”

19CH 412 IA32_THERM_
STATUS

Thermal Monitor Status. (R/W)

Contains status information about the processor’s
thermal sensor and automatic thermal monitoring
facilities.

See Section 13.5.2, “Thermal Monitor.”

19DH 413 MSR_THERM2_CTL

15:0 Reserved.

Table B-6. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
B-100 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
16 TM_SELECT. (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die
modulation of the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated
frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is
cleared, TM_SELECT has no effect. Neither TM1
nor TM2 will be enabled.

63:16 Reserved

1A0 416 IA32_MISC_ENABLE Enable Miscellaneous Processor Features.
(R/W)

Allows a variety of processor functions to be
enabled and disabled.

2:0 Reserved.

3 Automatic Thermal Control Circuit Enable. (R/W)

1 = Setting this bit enables the thermal control
circuit (TCC) portion of the Intel Thermal
Monitor feature. This allows processor clocks
to be automatically modulated based on the
processor's thermal sensor operation.

0 = Disabled (default).
The automatic thermal control circuit enable bit
determines if the thermal control circuit (TCC) will
be activated when the processor's internal
thermal sensor determines the processor is about
to exceed its maximum operating temperature.

When the TCC is activated and TM1 is enabled, the
processors clocks will be forced to a 50% duty
cycle. BIOS must enable this feature.

The bit should not be confused with the on-
demand thermal control circuit enable bit.

6:4 Reserved.

7 Performance Monitoring Available. (R)

1 = Performance monitoring enabled
0 = Performance monitoring disabled

Table B-6. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3 B-101

MODEL-SPECIFIC REGISTERS (MSRS)
9:8 Reserved.

10 FERR# Multiplexing Enable. (R/W)

1 = FERR# asserted by the processor to indicate
a pending break event within the processor

0 = Indicates compatible FERR# signaling
behavior

This bit must be set to 1 to support XAPIC
interrupt model usage.

Branch Trace Storage Unavailable. (RO)

1 = Processor doesn’t support branch trace
storage (BTS)

0 = BTS is supported

12 Precise Event Based Sampling Unavailable. (RO)

1 = Processor does not support precise event-
based sampling (PEBS);

0 = PEBS is supported.
The Pentium M processor does not support PEBS.

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology Enable.
(R/W)

1 = Enhanced Intel SpeedStep Technology
enabled.

On the Pentium M processor, this bit may be
configured to be read-only.

22:17 Reserved.

23 xTPR Message Disable. (R/W)

When set to 1, xTPR messages are disabled. xTPR
messages are optional messages that allow the
processor to inform the chipset of its priority. The
default is processor specific.

63:24 Reserved.

Table B-6. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
B-102 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
1C9H 457 MSR_LASTBRANCH_TOS Last Branch Record Stack TOS. (R)

Contains an index (bits 0-3) that points to the MSR
containing the most recent branch record. See also:

• MSR_LASTBRANCH_0 (at 40H)
• Section 18.8, “Last Branch, Interrupt, and

Exception Recording (Pentium M Processors)”

1D9H 473 MSR_DEBUGCTLB Debug Control. (R/W)

Controls how several debug features are used. Bit
definitions are discussed in the referenced section.

See Section 18.8, “Last Branch, Interrupt, and
Exception Recording (Pentium M Processors).”

1DDH 477 MSR_LER_TO_LIP Last Exception Record To Linear IP. (R)

This area contains a pointer to the target of the
last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was handled.

See Section 18.8, “Last Branch, Interrupt, and
Exception Recording (Pentium M Processors)” and
Section 18.9.2, “Last Branch and Last Exception
MSRs.”

1DEH 478 MSR_LER_FROM_LIP Last Exception Record From Linear IP. (R)

Contains a pointer to the last branch instruction
that the processor executed prior to the last
exception that was generated or the last interrupt
that was handled.

See Section 18.8, “Last Branch, Interrupt, and
Exception Recording (Pentium M Processors)” and
Section 18.9.2, “Last Branch and Last Exception
MSRs.”

2FFH 767 IA32_MTRR_DEF_
TYPE

Default Memory Types. (R/W)

Sets the memory type for the regions of physical
memory that are not mapped by the MTRRs.

See Section 10.11.2.1, “IA32_MTRR_DEF_TYPE
MSR.”

400H 1024 IA32_MC0_CTL See Section 14.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS See Section 14.3.2.2, “IA32_MCi_STATUS MSRS.”

Table B-6. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3 B-103

MODEL-SPECIFIC REGISTERS (MSRS)
402H 1026 IA32_MC0_ADDR See Section 14.3.2.3., “IA32_MCi_ADDR MSRs”.

The IA32_MC0_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC0_STATUS register is clear.
When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

404H 1028 IA32_MC1_CTL See Section 14.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS See Section 14.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR See Section 14.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC1_STATUS register is clear.
When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

408H 1032 IA32_MC2_CTL See Section 14.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS See Chapter 14.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR See Section 14.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC2_STATUS register is clear.
When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

40CH 1036 MSR_MC4_CTL See Section 14.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_STATUS See Section 14.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC4_ADDR See Section 14.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the MSR_MC4_STATUS register is clear.
When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

410H 1040 MSR_MC3_CTL See Section 14.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_STATUS See Section 14.3.2.2, “IA32_MCi_STATUS MSRS.”

Table B-6. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
B-104 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
B.5 MSRS IN THE P6 FAMILY PROCESSORS
The following MSRs are defined for the P6 family processors. The MSRs in this table
that are shaded are available only in the Pentium II and Pentium III processors.
Beginning with the Pentium 4 processor, some of the MSRs in this list have been
designated as “architectural” and have had their names changed. See Table B-9 for a
list of the architectural MSRs.

412H 1042 MSR_MC3_ADDR See Section 14.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the MSR_MC3_STATUS register is clear.
When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

600H 1536 IA32_DS_AREA DS Save Area. (R/W)

Points to the DS buffer management area, which is
used to manage the BTS and PEBS buffers. See
Section 18.15.4, “Debug Store (DS) Mechanism.”

31:0 DS Buffer Management Area.

Linear address of the first byte of the DS buffer
management area.

63:32 Reserved.

Table B-7. MSRs in the P6 Family Processors

Register
Address

Register Name Bit Description

 Hex Dec

0H 0 P5_MC_ADDR See Appendix B.6, “MSRs in Pentium Processors.”

1H 1 P5_MC_TYPE See Appendix B.6, “MSRs in Pentium Processors.”

10H 16 TSC See Section 18.10, “Time-Stamp Counter.”

17H 23 IA32_PLATFORM_ID Platform ID. (R)

The operating system can use this MSR to
determine “slot” information for the processor and
the proper microcode update to load.

Table B-6. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3 B-105

MODEL-SPECIFIC REGISTERS (MSRS)
49:0 Reserved.

52:50 Platform Id. (R)

Contains information concerning the intended
platform for the processor.
52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

56:53 L2 Cache Latency Read.

59:57 Reserved.

60 Clock Frequency Ratio Read.

63:61 Reserved.

1BH 27 APIC_BASE Section 8.4.4, “Local APIC Status and Location.”

7:0 Reserved.

8 Boot Strap Processor indicator Bit.

1 = BSP

10:9 Reserved.

11 APIC Global Enable Bit - Permanent till reset.

1 = Enabled
0 = Disabled

31:12 APIC Base Address.

63:32 Reserved.

2AH 42 EBL_CR_POWERON Processor Hard Power-On Configuration. (R/W)

Enables and disables processor features; (R)
indicates current processor configuration.

0 Reserved.1

1 Data Error Checking Enable. (R/W)

1 = Enabled
0 = Disabled

Table B-7. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
B-106 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
2 Response Error Checking Enable FRCERR
Observation Enable. (R/W)

1 = Enabled
0 = Disabled

3 AERR# Drive Enable. (R/W)

1 = Enabled
0 = Disabled

4 BERR# Enable for Initiator Bus Requests. (R/W)

1 = Enabled
0 = Disabled

5 Reserved.

6 BERR# Driver Enable for Initiator Internal Errors.
(R/W)

1 = Enabled
0 = Disabled

7 BINIT# Driver Enable. (R/W)

1 = Enabled
0 = Disabled

8 Output Tri-state Enabled. (R)

1 = Enabled
0 = Disabled

9 Execute BIST. (R)

1 = Enabled
0 = Disabled

10 AERR# Observation Enabled. (R)

1 = Enabled
0 = Disabled

11 Reserved.

12 BINIT# Observation Enabled. (R)

1 = Enabled
0 = Disabled

Table B-7. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3 B-107

MODEL-SPECIFIC REGISTERS (MSRS)
13 In Order Queue Depth. (R)

1 = 1
0 = 8

14 1-MByte Power on Reset Vector. (R)

1 = 1MByte
0 = 4GBytes

 15 FRC Mode Enable. (R)

1 = Enabled
0 = Disabled

 17:16 APIC Cluster ID. (R)

19:18 System Bus Frequency. (R)

00 = 66MHz
10 = 100Mhz
01 = 133MHz
11 = Reserved

21: 20 Symmetric Arbitration ID. (R)

25:22 Clock Frequency Ratio. (R)

26 Low Power Mode Enable. (R/W)

27 Clock Frequency Ratio.

 63:28 Reserved.1

33H 51 TEST_CTL Test Control Register.

29:0 Reserved.

30 Streaming Buffer Disable.

31 Disable LOCK#.

Assertion for split locked access.

79H 121 BIOS_UPDT_TRIG BIOS Update Trigger Register.

 88 136 BBL_CR_D0[63:0] Chunk 0 data register D[63:0]: used to write to and
read from the L2

 89 137 BBL_CR_D1[63:0] Chunk 1 data register D[63:0]: used to write to and
read from the L2

 8A 138 BBL_CR_D2[63:0] Chunk 2 data register D[63:0]: used to write to and
read from the L2

Table B-7. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
B-108 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
8BH 139 BIOS_SIGN/BBL_CR_D3[6
3:0]

BIOS Update Signature Register or Chunk 3 data
register D[63:0].

Used to write to and read from the L2 depending
on the usage model

C1H 193 PerfCtr0 (PERFCTR0)

C2H 194 PerfCtr1 (PERFCTR1)

FEH 254 MTRRcap

 116 278 BBL_CR_ADDR [63:0]

BBL_CR_ADDR [63:32]

BBL_CR_ADDR [31:3]

BBL_CR_ADDR [2:0]

Address register: used to send specified address
(A31-A3) to L2 during cache initialization accesses.

Reserved,

Address bits [35:3]

Reserved Set to 0.

 118 280 BBL_CR_DECC[63:0] Data ECC register D[7:0]: used to write ECC and
read ECC to/from L2

 119 281 BBL_CR_CTL

BL_CR_CTL[63:22]

BBL_CR_CTL[21]

Control register: used to program L2 commands to
be issued via cache configuration accesses
mechanism. Also receives L2 lookup response

Reserved

Processor number2

Disable = 1
Enable = 0
Reserved

BBL_CR_CTL[20:19]

BBL_CR_CTL[18]

BBL_CR_CTL[17]

BBL_CR_CTL[16]

BBL_CR_CTL[15:14]

BBL_CR_CTL[13:12]

BBL_CR_CTL[11:10]

BBL_CR_CTL[9:8]

BBL_CR_CTL[7]

BBL_CR_CTL[6:5]

User supplied ECC

Reserved

L2 Hit

Reserved

State from L2

Modified - 11,Exclusive - 10, Shared - 01, Invalid -
00

Way from L2

Way 0 - 00, Way 1 - 01, Way 2 - 10, Way 3 - 11

Way to L2

Reserved

State to L2

Table B-7. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3 B-109

MODEL-SPECIFIC REGISTERS (MSRS)
BBL_CR_CTL[4:0]

01100
01110
01111
00010
00011
010 + MESI encode
111 + MESI encode
100 + MESI encode

L2 Command

Data Read w/ LRU update (RLU)
Tag Read w/ Data Read (TRR)
Tag Inquire (TI)
L2 Control Register Read (CR)
L2 Control Register Write (CW)
Tag Write w/ Data Read (TWR)
Tag Write w/ Data Write (TWW)
Tag Write (TW)

 11A 282 BBL_CR_TRIG Trigger register: used to initiate a cache
configuration accesses access, Write only with Data
= 0.

 11B 283 BBL_CR_BUSY Busy register: indicates when a cache configuration
accesses L2 command is in progress. D[0] = 1 =
BUSY

11E 286 BBL_CR_CTL3

BBL_CR_CTL3[63:26]

BBL_CR_CTL3[25]

BBL_CR_CTL3[24]

BBL_CR_CTL3[23]

Control register 3: used to configure the L2 Cache

Reserved

Cache bus fraction (read only)

Reserved

L2 Hardware Disable (read only)

BBL_CR_CTL3[22:20]

111
110
101
100
011
010
001
000

BBL_CR_CTL3[19]

BBL_CR_CTL3[18]

L2 Physical Address Range support

64GBytes
32GBytes
16GBytes
8GBytes
4GBytes
2GBytes
1GBytes
512MBytes

Reserved

Cache State error checking enable (read/write)

Table B-7. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
B-110 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
 BBL_CR_CTL3[17:13

00001
00010
00100
01000
10000

BBL_CR_CTL3[12:11]

BBL_CR_CTL3[10:9]

00
01
10
11

BBL_CR_CTL3[8]

BBL_CR_CTL3[7]

BBL_CR_CTL3[6]

BBL_CR_CTL3[5]

BBL_CR_CTL3[4:1]

BBL_CR_CTL3[0]

Cache size per bank (read/write)

256KBytes
512KBytes
1MByte
2MByte
4MBytes

Number of L2 banks (read only)

L2 Associativity (read only)

Direct Mapped
2 Way
4 Way
Reserved

L2 Enabled (read/write)

CRTN Parity Check Enable (read/write)

Address Parity Check Enable (read/write)

ECC Check Enable (read/write)

L2 Cache Latency (read/write)

L2 Configured (read/write

)

174H 372 SYSENTER_CS_MSR CS register target for CPL 0 code

175H 373 SYSENTER_ESP_MSR Stack pointer for CPL 0 stack

176H 374 SYSENTER_EIP_MSR CPL 0 code entry point

179H 377 MCG_CAP

17AH 378 MCG_STATUS

17BH 379 MCG_CTL

186H 390 PerfEvtSel0 (EVNTSEL0)

7:0 Event Select.

Refer to Performance Counter section for a list of
event encodings.

15:8 UMASK (Unit Mask).

Unit mask register set to 0 to enable all count
options.

Table B-7. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3 B-111

MODEL-SPECIFIC REGISTERS (MSRS)
16 USER.

Controls the counting of events at Privilege levels
of 1, 2, and 3.

17 OS.

Controls the counting of events at Privilege level
of 0.

18 E.

Occurrence/Duration Mode Select

1 = Occurrence
0 = Duration

19 PC.

Enabled the signaling of performance counter
overflow via BP0 pin

20 INT.

Enables the signaling of counter overflow via input
to APIC

1 = Enable
0 = Disable

22 ENABLE.

Enables the counting of performance events in
both counters

1 = Enable
0 = Disable

23 INV.

Inverts the result of the CMASK condition

1 = Inverted
0 = Non-Inverted

31:24 CMASK (Counter Mask).

Table B-7. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
B-112 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
187H 391 PerfEvtSel1 (EVNTSEL1)

7:0 Event Select.

Refer to Performance Counter section for a list of
event encodings.

15:8 UMASK (Unit Mask).

Unit mask register set to 0 to enable all count
options.

16 USER.

Controls the counting of events at Privilege levels
of 1, 2, and 3.

17 OS.

Controls the counting of events at Privilege level
of 0

18 E.

Occurrence/Duration Mode Select

1 = Occurrence
0 = Duration

19 PC.

Enabled the signaling of performance counter
overflow via BP0 pin.

20 INT.

Enables the signaling of counter overflow via input
to APIC

1 = Enable
0 = Disable

23 INV.

Inverts the result of the CMASK condition

1 = Inverted
0 = Non-Inverted

31:24 CMASK (Counter Mask).

1D9H 473 DEBUGCTLMSR

0 Enable/Disable Last Branch Records

1 Branch Trap Flag

Table B-7. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3 B-113

MODEL-SPECIFIC REGISTERS (MSRS)
2 Performance Monitoring/Break Point Pins

3 Performance Monitoring/Break Point Pins

4 Performance Monitoring/Break Point Pins

5 Performance Monitoring/Break Point Pins

6 Enable/Disable Execution Trace Messages

31:7 Reserved

1DBH 475 LASTBRANCHFROMIP

1DCH 476 LASTBRANCHTOIP

1DDH 477 LASTINTFROMIP

1DEH 478 LASTINTTOIP

1E0H 480 ROB_CR_BKUPTMPDR6

1:0 Reserved

2 Fast String Enable bit. Default is enabled

200H 512 MTRRphysBase0

201H 513 MTRRphysMask0

202H 514 MTRRphysBase1

203H 515 MTRRphysMask1

204H 516 MTRRphysBase2

205H 517 MTRRphysMask2

206H 518 MTRRphysBase3

207H 519 MTRRphysMask3

208H 520 MTRRphysBase4

209H 521 MTRRphysMask4

20AH 522 MTRRphysBase5

20BH 523 MTRRphysMask5

20CH 524 MTRRphysBase6

20DH 525 MTRRphysMask6

20EH 526 MTRRphysBase7

20FH 527 MTRRphysMask7

Table B-7. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
B-114 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
250H 592 MTRRfix64K_00000

258H 600 MTRRfix16K_80000

259H 601 MTRRfix16K_A0000

268H 616 MTRRfix4K_C0000

269H 617 MTRRfix4K_C8000

26AH 618 MTRRfix4K_D0000

26BH 619 MTRRfix4K_D8000

26CH 620 MTRRfix4K_E0000

26DH 621 MTRRfix4K_E8000

26EH 622 MTRRfix4K_F0000

26FH 623 MTRRfix4K_F8000

2FFH 767 MTRRdefType

2:0 Default memory type

10 Fixed MTRR enable

11 MTRR Enable

400H 1024 MC0_CTL

401H 1025 MC0_STATUS

63 MC_STATUS_V

62 MC_STATUS_O

61 MC_STATUS_UC

60 MC_STATUS_EN. (Note: For MC0_STATUS only, this
bit is hardcoded to 1.)

59 MC_STATUS_MISCV

58 MC_STATUS_ADDRV

57 MC_STATUS_DAM

31:16 MC_STATUS_MCACOD

15:0 MC_STATUS_MSCOD

402H 1026 MC0_ADDR

403H 1027 MC0_MISC Defined in MCA architecture but not implemented
in the P6 family processors

Table B-7. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3 B-115

MODEL-SPECIFIC REGISTERS (MSRS)
404H 1028 MC1_CTL

405H 1029 MC1_STATUS Bit definitions same as MC0_STATUS

406H 1030 MC1_ADDR

407H 1031 MC1_MISC Defined in MCA architecture but not implemented
in the P6 family processors

408H 1032 MC2_CTL

409H 1033 MC2_STATUS Bit definitions same as MC0_STATUS

40AH 1034 MC2_ADDR

40BH 1035 MC2_MISC Defined in MCA architecture but not implemented
in the P6 family processors

40CH 1036 MC4_CTL

40DH 1037 MC4_STATUS Bit definitions same as MC0_STATUS, except bits 0,
4, 57, and 61 are hardcoded to 1.

40EH 1038 MC4_ADDR Defined in MCA architecture but not implemented
in P6 Family processors

40FH 1039 MC4_MISC Defined in MCA architecture but not implemented
in the P6 family processors

410H 1040 MC3_CTL

411H 1041 MC3_STATUS Bit definitions same as MC0_STATUS

412H 1042 MC3_ADDR

413H 1043 MC3_MISC Defined in MCA architecture but not implemented
in the P6 family processors

NOTES
1. Bit 0 of this register has been redefined several times, and is no longer used in P6 family

processors.
2. The processor number feature may be disabled by setting bit 21 of the BBL_CR_CTL MSR

(model-specific register address 119h) to “1”. Once set, bit 21 of the BBL_CR_CTL may not be
cleared. This bit is write-once. The processor number feature will be disabled until the processor
is reset.

3. The Pentium III processor will prevent FSB frequency overclocking with a new shutdown mecha-
nism. If the FSB frequency selected is greater than the internal FSB frequency the processor will
shutdown. If the FSB selected is less than the internal FSB frequency the BIOS may choose to
use bit 11 to implement its own shutdown policy.

Table B-7. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
B-116 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
B.6 MSRS IN PENTIUM PROCESSORS
The following MSRs are defined for the Pentium processors. The P5_MC_ADDR,
P5_MC_TYPE, and TSC MSRs (named IA32_P5_MC_ADDR, IA32_P5_MC_TYPE, and
IA32_TIME_STAMP_COUNTER in the Pentium 4 processor) are architectural; that is,
code that accesses these registers will run on Pentium 4 and P6 family processors
without generating exceptions (see Section B.7, “Architectural MSRs”). The CESR,
CTR0, and CTR1 MSRs are unique to Pentium processors; code that accesses these
registers will generate exceptions on Pentium 4 and P6 family processors.

B.7 ARCHITECTURAL MSRS
Many of the MSRs shown in Tables B-1, B-2, B-7, and B-8 have been carried over
from one family of IA-32 processors to the next and to Intel 64 processors. These
MSRs are now considered part of the Intel 64 and IA-32 architecture. For historical
reasons (beginning with the Pentium 4 processor), these “architectural MSRs” were
given the prefix “IA32_”. Table B-9 lists the architectural MSRs, their addresses, their
current names, their names in previous IA-32 processors. The last column in Table
B-9 list the processor family in which the MSR was introduced or transitioned to be an
architectural MSR. Those MSRs that are listed in Tables B-1, B-2, B-7, and B-8 but
not listed in Table B-9 are considered machine specific (and given the prefix “MSR_”).
Code that accesses a machine specified MSR and that is executed on a processor that
does not support that MSR will generate an exception.

Table B-8. MSRs in the Pentium Processor

Register
Address

 Hex Dec Register Name Bit Description

0H 0 P5_MC_ADDR See Section 14.8.3, “Pentium Processor Machine-Check
Exception Handling.”

1H 1 P5_MC_TYPE See Section 14.8.3, “Pentium Processor Machine-Check
Exception Handling.”

10H 16 TSC See Section 18.10, “Time-Stamp Counter.”

11H 17 CESR See Section 18.22.1, “Control and Event Select Register (CESR).”

12H 18 CTR0 Section 18.22.3, “Events Counted.”

13H 19 CTR1 Section 18.22.3, “Events Counted.”
Vol. 3 B-117

MODEL-SPECIFIC REGISTERS (MSRS)
Table B-9. IA-32 Architectural MSRs

Register Address

Architectural Name Former Name

IA-32
Processor Family

Introduced In
Hex Decimal

0H 0 IA32_P5_MC_ADDR P5_MC_ADDR Pentium Processor

1H 1 IA32_P5_MC_TYPE P5_MC_TYPE Pentium Processor

6H 6 IA32_MONITOR_FILTER_SIZE Pentium 4
Processor (90 nm)

10H 16 IA32_TIME_STAMP_
COUNTER

TSC Pentium Processor

17H 23 IA32_PLATFORM_ID MSR_PLATFORM_ID P6 Family
Processors

1BH 27 IA32_APIC_BASE APIC_BASE P6 Family
Processors

3AH 58 IA32_FEATURE_CONTROL Pentium 4
Processor 672

79H 121 IA32_BIOS_UPDT_TRIG BIOS_UPDT_TRIG P6 Family
Processors

8BH 139 IA32_BIOS_SIGN_ID BIOS_SIGN/BBL_CR
_D3

P6 Family
Processors

9BH 155 IA32_SMM_MONITOR_CTL Pentium 4
Processor 672

C1H 193 IA32_PMC0 PERFCTR0 Intel Core Duo
Processor

C2H 194 IA32_PMC1 PERFCTR1 Intel Core Duo
Processor

E7H 231 IA32_MPERF Intel Core Duo
Processor

E8H 232 IA32_APERF Intel Core Duo
Processor

FEH 254 IA32_MTRRCAP MTRRcap P6 Family
Processors

174H 372 IA32_SYSENTER_CS SYSENTER_CS_MSR P6 Family
Processors

175H 373 IA32_SYSENTER_ESP SYSENTER_ESP_MSR P6 Family
Processors

176H 374 IA32_SYSENTER_EIP SYSENTER_EIP_MSR P6 Family
Processors
B-118 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
179H 377 IA32_MCG_CAP MCG_CAP P6 Family
Processors

17AH 378 IA32_MCG_STATUS MCG_STATUS P6 Family
Processors

17BH 379 IA32_MCG_CTL MCG_CTL P6 Family
Processors

180H-
185H

384-
389

Reserved IA32_MCG_RAX,
IA32_MCG_RBX,

IA32_MCG_RCX,

IA32_MCG_RDX,

IA32_MCG_RSI,

IA32_MCG_RDI

Intel Core Duo
Processor1

186H 390 IA32_PERFEVTSEL0 PERFEVTSEL0 Intel Core Duo
Processor

187H 391 IA32_PERFEVTSEL1 PERFEVTSEL1 Intel Core Duo
Processor

188H-
197H

392-
407

Reserved IA32_MCG_EFLAGS,

IA32_MCG_RIP,

IA32_MCG_R8-
IA32_MCG_R15

Intel Core Duo
Processor1

1D9H 473 IA32_DEBUGCTL MSR_DEBUGCTLA,

MSR_DEBUGCTLB

Intel Core Duo
Processor

18AH 394 IA32_MCG_MISC Pentium 4
Processor

190H 400 IA32_MCG_R8 Pentium 4
Processor

191H 401 IA32_MCG_R9 Pentium 4
Processor

192H 402 IA32_MCG_R10 Pentium 4
Processor

193H 403 IA32_MCG_R11 Pentium 4
Processor

194H 404 IA32_MCG_R12 Pentium 4
Processor

Table B-9. IA-32 Architectural MSRs (Contd.)

Register Address

Architectural Name Former Name

IA-32
Processor Family

Introduced In
Hex Decimal
Vol. 3 B-119

MODEL-SPECIFIC REGISTERS (MSRS)
195H 405 IA32_MCG_R13 Pentium 4
Processor

196H 406 IA32_MCG_R14 Pentium 4
Processor

197H 407 IA32_MCG_R15 Pentium 4
Processor

198H 408 IA32_PERF_STATUS Pentium 4
Processors

199H 409 IA32_PERF_CTL Pentium 4
Processors

19AH 410 IA32_CLOCK_MODULATION Pentium 4
Processor

19BH 411 IA32_THERM_INTERRUPT Pentium 4
Processor

19CH 412 IA32_THERM_STATUS Pentium 4
Processor

1A0H 416 IA32_MISC_ENABLE Pentium 4
Processor

200H 512 IA32_MTRR_PHYSBASE0 MTRRphysBase0 P6 Family
Processors

201H 513 IA32_MTRR_PHYSMASK0 MTRRphysMask0 P6 Family
Processors

202H 514 IA32_MTRR_PHYSBASE1 MTRRphysBase1 P6 Family
Processors

203H 515 IA32_MTRR_PHYSMASK1 MTRRphysMask1 P6 Family
Processors

204H 516 IA32_MTRR_PHYSBASE2 MTRRphysBase2 P6 Family
Processors

205H 517 IA32_MTRR_PHYSMASK2 MTRRphysMask2 P6 Family
Processors

206H 518 IA32_MTRR_PHYSBASE3 MTRRphysBase3 P6 Family
Processors

207H 519 IA32_MTRR_PHYSMASK3 MTRRphysMask3 P6 Family
Processors

Table B-9. IA-32 Architectural MSRs (Contd.)

Register Address

Architectural Name Former Name

IA-32
Processor Family

Introduced In
Hex Decimal
B-120 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
208H 520 IA32_MTRR_PHYSBASE4 MTRRphysBase4 P6 Family
Processors

209H 521 IA32_MTRR_PHYSMASK4 MTRRphysMask4 P6 Family
Processors

20AH 522 IA32_MTRR_PHYSBASE5 MTRRphysBase5 P6 Family
Processors

20BH 523 IA32_MTRR_PHYSMASK5 MTRRphysMask5 P6 Family
Processors

20CH 524 IA32_MTRR_PHYSBASE6 MTRRphysBase6 P6 Family
Processors

20DH 525 IA32_MTRR_PHYSMASK6 MTRRphysMask6 P6 Family
Processors

20EH 526 IA32_MTRR_PHYSBASE7 MTRRphysBase7 P6 Family
Processors

20FH 527 IA32_MTRR_PHYSMASK7 MTRRphysMask7 P6 Family
Processors

250H 592 IA32_MTRR_FIX64K_00000 MTRRfix64K_00000 P6 Family
Processors

258H 600 IA32_MTRR_FIX16K_80000 MTRRfix16K_80000 P6 Family
Processors

259H 601 IA32_MTRR_FIX16K_A0000 MTRRfix16K_A0000 P6 Family
Processors

268H 616 IA32_MTRR_FIX4K_C0000 MTRRfix4K_C0000 P6 Family
Processors

269H 617 IA32_MTRR_FIX4K_C8000 MTRRfix4K_C8000 P6 Family
Processors

26AH 618 IA32_MTRR_FIX4K_D0000 MTRRfix4K_D0000 P6 Family
Processors

26BH 619 IA32_MTRR_FIX4K_D8000 MTRRfix4K_D8000 P6 Family
Processors

26CH 620 IA32_MTRR_FIX4K_E0000 MTRRfix4K_E0000 P6 Family
Processors

26DH 621 IA32_MTRR_FIX4K_E8000 MTRRfix4K_E8000 P6 Family
Processors

Table B-9. IA-32 Architectural MSRs (Contd.)

Register Address

Architectural Name Former Name

IA-32
Processor Family

Introduced In
Hex Decimal
Vol. 3 B-121

MODEL-SPECIFIC REGISTERS (MSRS)
26EH 622 IA32_MTRR_FIX4K_F0000 MTRRfix4K_F0000 P6 Family
Processors

26FH 623 IA32_MTRR_FIX4K_F8000 MTRRfix4K_F8000 P6 Family
Processors

277H 631 IA32_CR_PAT IA32_CR_PAT P6 Family
Processors

2FFH 767 IA32_MTRR_DEF_TYPE MTRRdefType P6 Family
Processors

309H 777 IA32_FIXED_CTR0 MSR_PERF_FIXED_CT
R0

Intel Core 2 Duo
Processor T 7700

30AH 778 IA32_FIXED_CTR1 MSR_PERF_FIXED_CT
R1

Intel Core 2 Duo
Processor T 7700

30BH 779 IA32_FIXED_CTR2 MSR_PERF_FIXED_CT
R2

Intel Core 2 Duo
Processor T 7700

345H 837 IA32_PERF_CAPABILITIES Intel Core 2 Duo
Processor

38DH 909 IA32_FIXED_CTR_CTL MSR_PERF_FIXED_CT
R_CTL

Intel Core 2 Duo
Processor T 7700

38EH 910 IA32_PERF_GLOBAL_STATU
S

MSR_PERF_GLOBAL_S
TATUS

Intel Core 2 Duo
Processor T 7700

8BFH 911 IA32_PERF_GLOBAL_CTRL MSR_PERF_GLOBAL_C
TRL

Intel Core 2 Duo
Processor T 7700

390H 912 IA32_PERF_GLOBAL_OVF_C
TRL

MSR_PERF_GLOBAL_O
VF_CTRL

Intel Core 2 Duo
Processor T 7700

3F1H 1009 IA32_PEBS_ENABLE Intel Core 2 Duo
Processor

400H 1024 IA32_MC0_CTL MC0_CTL P6 Family
Processors

401H 1025 IA32_MC0_STATUS MC0_STATUS P6 Family
Processors

402H 1026 IA32_MC0_ADDR1 MC0_ADDR P6 Family
Processors

403H 1027 IA32_MC0_MISC MC0_MISC P6 Family
Processors

Table B-9. IA-32 Architectural MSRs (Contd.)

Register Address

Architectural Name Former Name

IA-32
Processor Family

Introduced In
Hex Decimal
B-122 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
404H 1028 IA32_MC1_CTL MC1_CTL P6 Family
Processors

405H 1029 IA32_MC1_STATUS MC1_STATUS P6 Family
Processors

406H 1030 IA32_MC1_ADDR2 MC1_ADDR P6 Family
Processors

407H 1031 IA32_MC1_MISC MC1_MISC P6 Family
Processors

408H 1032 IA32_MC2_CTL MC2_CTL P6 Family
Processors

409H 1033 IA32_MC2_STATUS MC2_STATUS P6 Family
Processors

40AH 1034 IA32_MC2_ADDR1 MC2_ADDR P6 Family
Processors

40BH 1035 IA32_MC2_MISC MC2_MISC P6 Family
Processors

40CH 1036 IA32_MC3_CTL MC4_CTL P6 Family
Processors

40DH 1037 IA32_MC3_STATUS MC4_STATUS P6 Family
Processors

40EH 1038 IA32_MC3_ADDR1 MC4_ADDR P6 Family
Processors

40FH 1039 IA32_MC3_MISC MC4_MISC P6 Family
Processors

410H 1040 IA32_MC4_CTL MC3_CTL P6 Family
Processors

411H 1041 IA32_MC4_STATUS MC3_STATUS P6 Family
Processors

412H 1038 IA32_MC4_ADDR1 MC3_ADDR P6 Family
Processors

413H 1039 IA32_MC4_MISC MC3_MISC P6 Family
Processors

480H 1152 IA32_VMX_BASIC Pentium 4
Processor 672

Table B-9. IA-32 Architectural MSRs (Contd.)

Register Address

Architectural Name Former Name

IA-32
Processor Family

Introduced In
Hex Decimal
Vol. 3 B-123

MODEL-SPECIFIC REGISTERS (MSRS)
481H 1153 IA32_VMX_PINBASED_CTLS Pentium 4
Processor 672

482H 1154 IA32_VMX_PROCBASED_CTL
S

Pentium 4
Processor 672

483H 1155 IA32_VMX_EXIT_CTLS Pentium 4
Processor 672

484H 1156 IA32_VMX_ENTRY_CTLS Pentium 4
Processor 672

485H 1157 IA32_VMX_MISC_CTLS Pentium 4
Processor 672

486H 1158 IA32_VMX_CRO_FIXED0 Pentium 4
Processor 672

487H 1159 IA32_VMX_CRO_FIXED1 Pentium 4
Processor 672

488H 1160 IA32_VMX_CR4_FIXED0 Pentium 4
Processor 672

489H 1161 IA32_VMX_CR4_FIXED1 Pentium 4
Processor 672

48AH 1162 IA32_VMX_VMCS_ENUM Pentium 4
Processor 672

48BH 1163 IA32_VMX_PROCBASED_CTL
S2

Intel Core 2 Duo
Processor T 7700

600H 1536 IA32_DS_AREA Pentium 4
Processor

C000_
0080H

IA32_EFER Intel 64
architecture

C000_
0081H

IA32_STAR Intel 64
architecture

C000_
0082H

IA32_LSTAR Intel 64
architecture

C000_
0084H

IA32_FMASK Intel 64
architecture

C000_
0100H

IA32_FS_BASE Intel 64
architecture

Table B-9. IA-32 Architectural MSRs (Contd.)

Register Address

Architectural Name Former Name

IA-32
Processor Family

Introduced In
Hex Decimal
B-124 Vol. 3

MODEL-SPECIFIC REGISTERS (MSRS)
C000_0
101H

IA32_GS_BASE Intel 64
architecture

C000_
0102H

IA32_KERNEL_GS_BASE Intel 64
architecture

NOTES:
1. In processors based on Intel NetBurst microarchitecture, MSR addresses 180H-197H are sup-

ported, software must treat them as model-specific. Starting with Intel Core Duo processors, MSR
addresses 180H-185H, 188H-197H are reserved.

2. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS.
See Section 14.3.2.3 and Section 14.3.2.4 for more information.

Table B-9. IA-32 Architectural MSRs (Contd.)

Register Address

Architectural Name Former Name

IA-32
Processor Family

Introduced In
Hex Decimal
Vol. 3 B-125

MODEL-SPECIFIC REGISTERS (MSRS)
B-126 Vol. 3

APPENDIX C
MP INITIALIZATION FOR P6 FAMILY PROCESSORS

This appendix describes the MP initialization process for systems that use multiple P6
family processors. This process uses the MP initialization protocol that was intro-
duced with the Pentium Pro processor (see Section 7.5, “Multiple-Processor (MP)
Initialization”). For P6 family processors, this protocol is typically used to boot 2 or 4
processors that reside on single system bus; however, it can support from 2 to 15
processors in a multi-clustered system when the APIC busses are tied together.
Larger systems are not supported.

C.1 OVERVIEW OF THE MP INITIALIZATION PROCESS
FOR P6 FAMILY PROCESSORS

During the execution of the MP initialization protocol, one processor is selected as the
bootstrap processor (BSP) and the remaining processors are designated as applica-
tion processors (APs), see Section 7.5.1, “BSP and AP Processors.” Thereafter, the
BSP manages the initialization of itself and the APs. This initialization includes
executing BIOS initialization code and operating-system initialization code.

The MP protocol imposes the following requirements and restrictions on the system:

• An APIC clock (APICLK) must be provided.

• The MP protocol will be executed only after a power-up or RESET. If the MP
protocol has been completed and a BSP has been chosen, subsequent INITs
(either to a specific processor or system wide) do not cause the MP protocol to be
repeated. Instead, each processor examines its BSP flag (in the APIC_BASE MSR)
to determine whether it should execute the BIOS boot-strap code (if it is the BSP)
or enter a wait-for-SIPI state (if it is an AP).

• All devices in the system that are capable of delivering interrupts to the
processors must be inhibited from doing so for the duration of the MP initial-
ization protocol. The time during which interrupts must be inhibited includes the
window between when the BSP issues an INIT-SIPI-SIPI sequence to an AP and
when the AP responds to the last SIPI in the sequence.

The following special-purpose interprocessor interrupts (IPIs) are used during the
boot phase of the MP initialization protocol. These IPIs are broadcast on the APIC
bus.

• Boot IPI (BIPI)—Initiates the arbitration mechanism that selects a BSP from the
group of processors on the system bus and designates the remainder of the
processors as APs. Each processor on the system bus broadcasts a BIPI to all the
processors following a power-up or RESET.
Vol. 3 C-1

MP INITIALIZATION FOR P6 FAMILY PROCESSORS
• Final Boot IPI (FIPI)—Initiates the BIOS initialization procedure for the BSP. This
IPI is broadcast to all the processors on the system bus, but only the BSP
responds to it. The BSP responds by beginning execution of the BIOS initialization
code at the reset vector.

• Startup IPI (SIPI)—Initiates the initialization procedure for an AP. The SIPI
message contains a vector to the AP initialization code in the BIOS.

Table C-1 describes the various fields of the boot phase IPIs.

For BIPI messages, the lower 4 bits of the vector field contain the APIC ID of the
processor issuing the message and the upper 4 bits contain the “generation ID” of
the message. All P6 family processor will have a generation ID of 4H. BIPIs will there-
fore use vector values ranging from 40H to 4EH (4FH can not be used because FH is
not a valid APIC ID).

C.2 MP INITIALIZATION PROTOCOL ALGORITHM
Following a power-up or RESET of a system, the P6 family processors in the system
execute the MP initialization protocol algorithm to initialize each of the processors on
the system bus. In the course of executing this algorithm, the following boot-up and
initialization operations are carried out:

1. Each processor on the system bus is assigned a unique APIC ID, based on system
topology (see Section 7.5.5, “Identifying Logical Processors in an MP System”).
This ID is written into the local APIC ID register for each processor.

2. Each processor executes its internal BIST simultaneously with the other
processors on the system bus. Upon completion of the BIST (at T0), each
processor broadcasts a BIPI to “all including self” (see Figure 3-1).

3. APIC arbitration hardware causes all the APICs to respond to the BIPIs one at a
time (at T1, T2, T3, and T4).

4. When the first BIPI is received (at time T1), each APIC compares the four least
significant bits of the BIPI’s vector field with its APIC ID. If the vector and APIC ID
match, the processor selects itself as the BSP by setting the BSP flag in its

Table C-1. Boot Phase IPI Message Format

Type
Destination
Field

Destination
Shorthand

Trigger
Mode Level

Destination
Mode

Delivery
Mode

Vector
(Hex)

BIPI Not used All including
self

Edge Deassert Don’t Care Fixed
(000)

40 to 4E*

FIPI Not used All including
self

Edge Deassert Don’t Care Fixed
(000)

10

SIPI Used All excluding
self

Edge Assert Physical StartUp
(110)

00 to FF

NOTE:
* For all P6 family processors.
C-2 Vol. 3

MP INITIALIZATION FOR P6 FAMILY PROCESSORS
IA32_APIC_BASE MSR. If the vector and APIC ID do not match, the processor
selects itself as an AP by entering the “wait for SIPI” state. (Note that in
Figure 3-1, the BIPI from processor 1 is the first BIPI to be handled, so processor
1 becomes the BSP.)

5. The newly established BSP broadcasts an FIPI message to “all including self.” The
FIPI is guaranteed to be handled only after the completion of the BIPIs that were
issued by the non-BSP processors.

6. After the BSP has been established, the outstanding BIPIs are received one at a
time (at T2, T3, and T4) and ignored by all processors.

7. When the FIPI is finally received (at T5), only the BSP responds to it. It responds
by fetching and executing BIOS boot-strap code, beginning at the reset vector
(physical address FFFF FFF0H).

8. As part of the boot-strap code, the BSP creates an ACPI table and an MP table and
adds its initial APIC ID to these tables as appropriate.

9. At the end of the boot-strap procedure, the BSP broadcasts a SIPI message to all
the APs in the system. Here, the SIPI message contains a vector to the BIOS AP
initialization code (at 000V V000H, where VV is the vector contained in the SIPI
message).

10. All APs respond to the SIPI message by racing to a BIOS initialization semaphore.
The first one to the semaphore begins executing the initialization code. (See MP
init code for semaphore implementation details.) As part of the AP initialization
procedure, the AP adds its APIC ID number to the ACPI and MP tables as appro-

Figure 3-1. MP System With Multiple Pentium III Processors

Pentium III
Processor 0

Pentium III
Processor 1

Pentium III
Processor 2

Pentium III
Processor 3

BIPI.1 BIPI.0 BIPI.3 BIPI.2 FIPI

T0 T1 T2 T3 T4 T5

System (CPU) Bus

APIC Bus

Serial Bus Activity

Processor 1
Becomes BSP
Vol. 3 C-3

MP INITIALIZATION FOR P6 FAMILY PROCESSORS
priate. At the completion of the initialization procedure, the AP executes a CLI
instruction (to clear the IF flag in the EFLAGS register) and halts itself.

11. When each of the APs has gained access to the semaphore and executed the AP
initialization code and all written their APIC IDs into the appropriate places in the
ACPI and MP tables, the BSP establishes a count for the number of processors
connected to the system bus, completes executing the BIOS boot-strap code,
and then begins executing operating-system boot-strap and start-up code.

12. While the BSP is executing operating-system boot-strap and start-up code, the
APs remain in the halted state. In this state they will respond only to INITs, NMIs,
and SMIs. They will also respond to snoops and to assertions of the STPCLK# pin.

See Section 7.5.4, “MP Initialization Example,” for an annotated example the use of
the MP protocol to boot IA-32 processors in an MP. This code should run on any IA-32
processor that used the MP protocol.

C.2.1 Error Detection and Handling During the MP Initialization
Protocol

Errors may occur on the APIC bus during the MP initialization phase. These errors
may be transient or permanent and can be caused by a variety of failure mechanisms
(for example, broken traces, soft errors during bus usage, etc.). All serial bus related
errors will result in an APIC checksum or acceptance error.

The MP initialization protocol makes the following assumptions regarding errors that
occur during initialization:

• If errors are detected on the APIC bus during execution of the MP initialization
protocol, the processors that detect the errors are shut down.

• The MP initialization protocol will be executed by processors even if they fail their
BIST sequences.
C-4 Vol. 3

APPENDIX D
PROGRAMMING THE LINT0 AND LINT1 INPUTS

The following procedure describes how to program the LINT0 and LINT1 local APIC
pins on a processor after multiple processors have been booted and initialized
(as described in Appendix C, “MP Initialization For P6 Family Processors,” and
Appendix D, “Programming the LINT0 and LINT1 Inputs.” In this example, LINT0 is
programmed to be the ExtINT pin and LINT1 is programmed to be the NMI pin.

D.1 CONSTANTS
The following constants are defined:

LVT1EQU 0FEE00350H
LVT2EQU 0FEE00360H
LVT3 EQU 0FEE00370H
SVR EQU 0FEE000F0H

D.2 LINT[0:1] PINS PROGRAMMING PROCEDURE
Use the following to program the LINT[1:0] pins:

1. Mask 8259 interrupts.

2. Enable APIC via SVR (spurious vector register) if not already enabled.

MOV ESI, SVR ; address of SVR
MOV EAX, [ESI]
OR EAX, APIC_ENABLED ; set bit 8 to enable (0 on reset)
MOV [ESI], EAX

3. Program LVT1 as an ExtINT which delivers the signal to the INTR signal of all
processors cores listed in the destination as an interrupt that originated in an
externally connected interrupt controller.

MOV ESI, LVT1
MOV EAX, [ESI]
AND EAX, 0FFFE58FFH; mask off bits 8-10, 12, 14 and 16
OR EAX, 700H; Bit 16=0 for not masked, Bit 15=0 for edge

; triggered, Bit 13=0 for high active input
; polarity, Bits 8-10 are 111b for ExtINT

MOV [ESI], EAX; Write to LVT1
Vol. 3 D-1

PROGRAMMING THE LINT0 AND LINT1 INPUTS
4. Program LVT2 as NMI, which delivers the signal on the NMI signal of all processor
cores listed in the destination.

MOV ESI, LVT2
MOV EAX, [ESI]
AND EAX, 0FFFE58FFH; mask off bits 8-10 and 15
OR EAX, 000000400H ; Bit 16=0 for not masked, Bit 15=0 edge

; triggered, Bit 13=0 for high active input
; polarity, Bits 8-10 are 100b for NMI

MOV [ESI], EAX; Write to LVT2
;Unmask 8259 interrupts and allow NMI.
D-2 Vol. 3

APPENDIX E
INTERPRETING MACHINE-CHECK

ERROR CODES

Encoding of the model-specific and other information fields is different for 06H and
0FH processor families. The differences are documented in the following sections.

E.1 INCREMENTAL DECODING INFORMATION:
PROCESSOR FAMILY 06H MACHINE ERROR CODES
FOR MACHINE CHECK

Table E.1 provides information for interpreting additional family 06H model-specific
fields for external bus errors. These errors are reported in the IA32_MCi_STATUS
MSRs. They are reported architecturally) as compound errors with a general form of
0000 1PPT RRRR IILL in the MCA error code field. See Chapter 14 for information on
the interpretation of compound error codes.

Table E-1. Incremental Decoding Information: Processor Family 06H
Machine Error Codes For Machine Check

Type Bit No. Bit Function Bit Description

MCA error
codes1

0-15

Model specific
errors

16-18 Reserved Reserved

Model specific
errors

19-24 Bus queue request
type

000000 for BQ_DCU_READ_TYPE error

000010 for BQ_IFU_DEMAND_TYPE error

000011 for BQ_IFU_DEMAND_NC_TYPE error

000100 for BQ_DCU_RFO_TYPE error

000101 for BQ_DCU_RFO_LOCK_TYPE error

000110 for BQ_DCU_ITOM_TYPE error

001000 for BQ_DCU_WB_TYPE error

001010 for BQ_DCU_WCEVICT_TYPE error

001011 for BQ_DCU_WCLINE_TYPE error

001100 for BQ_DCU_BTM_TYPE error
Vol. 3 E-1

INTERPRETING MACHINE-CHECK ERROR CODES
001101 for BQ_DCU_INTACK_TYPE error

001110 for BQ_DCU_INVALL2_TYPE error

001111 for BQ_DCU_FLUSHL2_TYPE error

010000 for BQ_DCU_PART_RD_TYPE error

010010 for BQ_DCU_PART_WR_TYPE error

010100 for BQ_DCU_SPEC_CYC_TYPE error

011000 for BQ_DCU_IO_RD_TYPE error

011001 for BQ_DCU_IO_WR_TYPE error

011100 for BQ_DCU_LOCK_RD_TYPE error

011110 for BQ_DCU_SPLOCK_RD_TYPE error

011101 for BQ_DCU_LOCK_WR_TYPE error

Model specific
errors

27-25 Bus queue error type 000 for BQ_ERR_HARD_TYPE error

001 for BQ_ERR_DOUBLE_TYPE error

010 for BQ_ERR_AERR2_TYPE error

100 for BQ_ERR_SINGLE_TYPE error

101 for BQ_ERR_AERR1_TYPE error

Model specific
errors

28 FRC error 1 if FRC error active

29 BERR 1 if BERR is driven

30 Internal BINIT 1 if BINIT driven for this processor

31 Reserved Reserved

Other
information

32-34 Reserved Reserved

35 External BINIT 1 if BINIT is received from external bus.

36 Response parity error This bit is asserted in IA32_MCi_STATUS if this
component has received a parity error on the
RS[2:0]# pins for a response transaction. The
RS signals are checked by the RSP# external
pin.

37 Bus BINIT This bit is asserted in IA32_MCi_STATUS if this
component has received a hard error response
on a split transaction one access that has
needed to be split across the 64-bit external
bus interface into two accesses).

Table E-1. Incremental Decoding Information: Processor Family 06H
Machine Error Codes For Machine Check (Contd.)

Type Bit No. Bit Function Bit Description
E-2 Vol. 3

INTERPRETING MACHINE-CHECK ERROR CODES
38 Timeout BINIT This bit is asserted in IA32_MCi_STATUS if this
component has experienced a ROB time-out,
which indicates that no micro-instruction has
been retired for a predetermined period of
time.

A ROB time-out occurs when the 15-bit ROB
time-out counter carries a 1 out of its high
order bit. The timer is cleared when a micro-
instruction retires, an exception is detected by
the core processor, RESET is asserted, or when
a ROB BINIT occurs.

The ROB time-out counter is prescaled by the
8-bit PIC timer which is a divide by 128 of the
bus clock the bus clock is 1:2, 1:3, 1:4 of the
core clock). When a carry out of the 8-bit PIC
timer occurs, the ROB counter counts up by
one. While this bit is asserted, it cannot be
overwritten by another error.

39-41 Reserved Reserved

42 Hard error This bit is asserted in IA32_MCi_STATUS if this
component has initiated a bus transactions
which has received a hard error response. While
this bit is asserted, it cannot be overwritten.

43 IERR This bit is asserted in IA32_MCi_STATUS if this
component has experienced a failure that
causes the IERR pin to be asserted. While this
bit is asserted, it cannot be overwritten.

Table E-1. Incremental Decoding Information: Processor Family 06H
Machine Error Codes For Machine Check (Contd.)

Type Bit No. Bit Function Bit Description
Vol. 3 E-3

INTERPRETING MACHINE-CHECK ERROR CODES
E.2 INCREMENTAL DECODING INFORMATION:
PROCESSOR FAMILY 0FH MACHINE ERROR CODES
FOR MACHINE CHECK

Table E-2 provides information for interpreting additional family 0FH model-specific
fields for external bus errors. These errors are reported in the IA32_MCi_STATUS

44 AERR This bit is asserted in IA32_MCi_STATUS if this
component has initiated 2 failing bus
transactions which have failed due to Address
Parity Errors AERR asserted). While this bit is
asserted, it cannot be overwritten.

45 UECC The Uncorrectable ECC error bit is asserted in
IA32_MCi_STATUS for uncorrected ECC errors.
While this bit is asserted, the ECC syndrome
field will not be overwritten.

46 CECC The correctable ECC error bit is asserted in
IA32_MCi_STATUS for corrected ECC errors.

47-54 ECC syndrome The ECC syndrome field in IA32_MCi_STATUS
contains the 8-bit ECC syndrome only if the
error was a correctable/uncorrectable ECC error
and there wasn't a previous valid ECC error
syndrome logged in IA32_MCi_STATUS.

A previous valid ECC error in IA32_MCi_STATUS
is indicated by IA32_MCi_STATUS.bit45
uncorrectable error occurred) being asserted.
After processing an ECC error, machine-check
handling software should clear
IA32_MCi_STATUS.bit45 so that future ECC
error syndromes can be logged.

55-56 Reserved Reserved.

Status register
validity
indicators1

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 14, “Machine-Check Architecture,”

for more information.

Table E-1. Incremental Decoding Information: Processor Family 06H
Machine Error Codes For Machine Check (Contd.)

Type Bit No. Bit Function Bit Description
E-4 Vol. 3

INTERPRETING MACHINE-CHECK ERROR CODES
MSRs. They are reported architecturally) as compound errors with a general form of
0000 1PPT RRRR IILL in the MCA error code field. See Chapter 14 for information on
the interpretation of compound error codes.

Table E-2. Incremental Decoding Information: Processor Family 0FH
Machine Error Codes For Machine Check

Type Bit No. Bit Function Bit Description

MCA error
codes1

0-15

Model-specific
error codes

16 FSB address parity Address parity error detected:

1 = Address parity error detected
0 = No address parity error

17 Response hard fail Hardware failure detected on response

18 Response parity Parity error detected on response

19 PIC and FSB data parity Data Parity detected on either PIC or FSB
access

20 Processor Signature =
00000F04H: Invalid PIC
request

All other processors:

Reserved

Processor Signature = 00000F04H.
Indicates error due to an invalid PIC request
access was made to PIC space with WB
memory):

1 = Invalid PIC request error
0 = No Invalid PIC request error
Reserved

21 Pad state machine The state machine that tracks P and N
data-strobe relative timing has become
unsynchronized or a glitch has been
detected.

22 Pad strobe glitch Data strobe glitch

Type Bit No. Bit Function Bit Description
Vol. 3 E-5

INTERPRETING MACHINE-CHECK ERROR CODES
Table E-3 provides information on interpreting additional family 0FH, model specific
fields for memory hierarchy errors. These errors are reported in one of the
IA32_MCi_STATUS MSRs. These errors are reported, architecturally, as compound
errors with a general form of 0000 0001 RRRR TTLL in the MCA error code field. See
Chapter 14 for how to interpret the compound error code.

23 Pad address glitch Address strobe glitch

Other
Information

24-56 Reserved Reserved

Status register
validity
indicators1

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 14, “Machine-Check Architecture,”

for more information.

Table E-2. Incremental Decoding Information: Processor Family 0FH
Machine Error Codes For Machine Check (Contd.)
E-6 Vol. 3

INTERPRETING MACHINE-CHECK ERROR CODES
Table E-3. Decoding Family 0FH Machine Check Codes for Memory Hierarchy Errors
Type Bit No. Bit Function Bit Description

MCA error
codes1

0-15

Model specific
error codes

16-17 Tag Error Code Contains the tag error code for this machine check
error:

00 = No error detected
01 = Parity error on tag miss with a clean line
10 = Parity error/multiple tag match on tag hit
11 = Parity error/multiple tag match on tag miss

18-19 Data Error Code Contains the data error code for this machine check
error:

00 = No error detected
01 = Single bit error
10 = Double bit error on a clean line
11 = Double bit error on a modified line

20 L3 Error This bit is set if the machine check error originated
in the L3 it can be ignored for invalid PIC request
errors):

1 = L3 error
0 = L2 error

21 Invalid PIC Request Indicates error due to invalid PIC request access
was made to PIC space with WB memory):

1 = Invalid PIC request error
0 = No invalid PIC request error

22-31 Reserved Reserved

Other
Information

32-39 8-bit Error Count Holds a count of the number of errors since reset.
The counter begins at 0 for the first error and
saturates at a count of 255.

40-56 Reserved Reserved

Status
register
validity
indicators1

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 14, “Machine-Check Architecture,”

for more information.
Vol. 3 E-7

INTERPRETING MACHINE-CHECK ERROR CODES
E-8 Vol. 3

APPENDIX F
APIC BUS MESSAGE FORMATS

This appendix describes the message formats used when transmitting messages on
the serial APIC bus. The information described here pertains only to the Pentium and
P6 family processors.

F.1 BUS MESSAGE FORMATS
The local and I/O APICs transmit three types of messages on the serial APIC bus: EOI
message, short message, and non-focused lowest priority message. The purpose of
each type of message and its format are described below.

F.2 EOI MESSAGE
Local APICs send 14-cycle EOI messages to the I/O APIC to indicate that a level trig-
gered interrupt has been accepted by the processor. This interrupt, in turn, is a result
of software writing into the EOI register of the local APIC. Table F-1 shows the cycles
in an EOI message.

Table F-1. EOI Message (14 Cycles)

Cycle Bit1 Bit0

1 1 1 11 = EOI

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 V7 V6 Interrupt vector V7 - V0

7 V5 V4

8 V3 V2

9 V1 V0

10 C C Checksum for cycles 6 - 9

11 0 0

12 A A Status Cycle 0

13 A1 A1 Status Cycle 1

14 0 0 Idle
Vol. 3 F-1

APIC BUS MESSAGE FORMATS
The checksum is computed for cycles 6 through 9. It is a cumulative sum of the 2-bit
(Bit1:Bit0) logical data values. The carry out of all but the last addition is added to
the sum. If any APIC computes a different checksum than the one appearing on the
bus in cycle 10, it signals an error, driving 11 on the APIC bus during cycle 12. In this
case, the APICs disregard the message. The sending APIC will receive an appropriate
error indication (see Section 8.5.3, “Error Handling”) and resend the message. The
status cycles are defined in Table F-4.

F.2.1 Short Message
Short messages (21-cycles) are used for sending fixed, NMI, SMI, INIT, start-up,
ExtINT and lowest-priority-with-focus interrupts. Table F-2 shows the cycles in a
short message.

Table F-2. Short Message (21 Cycles)

Cycle Bit1 Bit0

1 0 1 0 1 = normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 DM M2 DM = Destination Mode

7 M1 M0 M2-M0 = Delivery mode

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-V0 = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 V0

13 D7 D6 D7-D0 = Destination

14 D5 D4

15 D3 D2

16 D1 D0

17 C C Checksum for cycles 6-16

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 0 0 Idle
F-2 Vol. 3

APIC BUS MESSAGE FORMATS
If the physical delivery mode is being used, then cycles 15 and 16 represent the APIC
ID and cycles 13 and 14 are considered don't care by the receiver. If the logical
delivery mode is being used, then cycles 13 through 16 are the 8-bit logical destina-
tion field.

For shorthands of “all-incl-self” and “all-excl-self,” the physical delivery mode and an
arbitration priority of 15 (D0:D3 = 1111) are used. The agent sending the message
is the only one required to distinguish between the two cases. It does so using
internal information.

When using lowest priority delivery with an existing focus processor, the focus
processor identifies itself by driving 10 during cycle 19 and accepts the interrupt.
This is an indication to other APICs to terminate arbitration. If the focus processor
has not been found, the short message is extended on-the-fly to the non-focused
lowest-priority message. Note that except for the EOI message, messages gener-
ating a checksum or an acceptance error (see Section 8.5.3, “Error Handling”) termi-
nate after cycle 21.

F.2.2 Non-focused Lowest Priority Message
These 34-cycle messages (see Table F-3) are used in the lowest priority delivery
mode when a focus processor is not present. Cycles 1 through 20 are same as for the
short message. If during the status cycle (cycle 19) the state of the (A:A) flags is
10B, a focus processor has been identified, and the short message format is used
(see Table F-2). If the (A:A) flags are set to 00B, lowest priority arbitration is started
and the 34-cycles of the non-focused lowest priority message are competed. For
other combinations of status flags, refer to Section F.2.3, “APIC Bus Status Cycles.”

Table F-3. Non-Focused Lowest Priority Message (34 Cycles)

Cycle Bit0 Bit1

1 0 1 0 1 = normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 DM M2 DM = Destination mode

7 M1 M0 M2-M0 = Delivery mode

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-V0 = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 V0
Vol. 3 F-3

APIC BUS MESSAGE FORMATS
Cycles 21 through 28 are used to arbitrate for the lowest priority processor. The
processors participating in the arbitration drive their inverted processor priority on
the bus. Only the local APICs having free interrupt slots participate in the lowest
priority arbitration. If no such APIC exists, the message will be rejected, requiring it
to be tried at a later time.

Cycles 29 through 32 are also used for arbitration in case two or more processors
have the same lowest priority. In the lowest priority delivery mode, all combinations
of errors in cycle 33 (A2 A2) will set the “accept error” bit in the error status register
(see Figure 8-9). Arbitration priority update is performed in cycle 20, and is not
affected by errors detected in cycle 33. Only the local APIC that wins in the lowest

13 D7 D6 D7-D0 = Destination

14 D5 D4

15 D3 D2

16 D1 D0

17 C C Checksum for cycles 6-16

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 P7 0 P7 - P0 = Inverted Processor Priority

22 P6 0

23 P5 0

24 P4 0

25 P3 0

26 P2 0

27 P1 0

28 P0 0

29 ArbID3 0 Arbitration ID 3 -0

30 ArbID2 0

31 ArbID1 0

32 ArbID0 0

33 A2 A2 Status Cycle

34 0 0 Idle

Table F-3. Non-Focused Lowest Priority Message (34 Cycles) (Contd.)

Cycle Bit0 Bit1
F-4 Vol. 3

APIC BUS MESSAGE FORMATS
priority arbitration, drives cycle 33. An error in cycle 33 will force the sender to
resend the message.

F.2.3 APIC Bus Status Cycles
Certain cycles within an APIC bus message are status cycles. During these cycles the
status flags (A:A) and (A1:A1) are examined. Table F-4 shows how these status flags
are interpreted, depending on the current delivery mode and existence of a focus
processor.

Table F-4. APIC Bus Status Cycles Interpretation
Delivery
Mode

A Status A1 Status A2 Status Update
ArbID and
Cycle#

Message
Length

Retry

EOI 00: CS_OK 10: Accept XX: Yes, 13 14 Cycle No

00: CS_OK 11: Retry XX: Yes, 13 14 Cycle Yes

00: CS_OK 0X: Accept
Error

XX: No 14 Cycle Yes

11: CS_Error XX: XX: No 14 Cycle Yes

10: Error XX: XX: No 14 Cycle Yes

01: Error XX: XX: No 14 Cycle Yes

Fixed 00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No

00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes

00: CS_OK 0X: Accept
Error

XX: No 21 Cycle Yes

11: CS_Error XX: XX: No 21 Cycle Yes

10: Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

NMI, SMI, INIT,
ExtINT,
Start-Up

00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No

00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes

00: CS_OK 0X: Accept
Error

XX: No 21 Cycle Yes

11: CS_Error XX: XX: No 21 Cycle Yes

10: Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes
Vol. 3 F-5

APIC BUS MESSAGE FORMATS
Lowest 00: CS_OK,
NoFocus

11: Do Lowest 10: Accept Yes, 20 34 Cycle No

00: CS_OK,
NoFocus

11: Do Lowest 11: Error Yes, 20 34 Cycle Yes

00: CS_OK,
NoFocus

11: Do Lowest 0X: Error Yes, 20 34 Cycle Yes

00: CS_OK,
NoFocus

10: End and
Retry

XX: Yes, 20 34 Cycle Yes

00: CS_OK,
NoFocus

0X: Error XX: No 34 Cycle Yes

10: CS_OK,
Focus

XX: XX: Yes, 20 34 Cycle No

11: CS_Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

Table F-4. APIC Bus Status Cycles Interpretation (Contd.)
Delivery
Mode

A Status A1 Status A2 Status Update
ArbID and
Cycle#

Message
Length

Retry
F-6 Vol. 3

APPENDIX G
VMX CAPABILITY REPORTING FACILITY

The ability of a processor to support VMX operation and related instructions is indi-
cated by CPUID.1:ECX.VMX[bit 5] = 1. A value 1 in this bit indicates support for VMX
features.

Support for specific features detailed in Chapter 20 and other VMX chapters is deter-
mined by reading values from a set of capability MSRs. These MSRs are indexed
starting at MSR address 1152. VMX capability MSRs are read-only; an attempt to
write them (with WRMSR) produces a general-protection exception (#GP(0)). They
do not exist on processors that do not support VMX operation; an attempt to read
them (with RDMSR) on such processors produces a general-protection exception
(#GP(0)).

G.1 BASIC VMX INFORMATION
The IA32_VMX_BASIC MSR (index 480H) consists of the following fields:

• Bits 31:0 contain the 32-bit VMCS revision identifier used by the processor.

• Bits 44:32 report the number of bytes that software should allocate for the
VMXON region and any VMCS region. It is a value greater than 0 and at most
4096 (bit 44 is set if and only if bits 43:32 are clear).

• Bit 48 indicates the width of the physical addresses that may be used for the
VMXON region, each VMCS, and data structures referenced by pointers in a VMCS
(I/O bitmaps, virtual-APIC page, MSR areas for VMX transitions). If the bit is 0,
these addresses are limited to the processor’s physical-address width.1 If the bit
is 1, these addresses are limited to 32 bits. This bit is always 0 for processors that
support Intel 64 architecture and is always 1 for processors that do not support
Intel 64 architecture.

• Bit 49 reports whether the processor supports the dual-monitor treatment of
system-management interrupts and system-management mode. See Section
24.16 for details of this treatment.

• Bits 53:50 report the memory type that the processor uses to access the VMCS
for VMREAD and VMWRITE and to access the VMCS, data structures referenced
by pointers in the VMCS (I/O bitmaps, virtual-APIC page, MSR areas for VMX
transitions), and the MSEG header during VM entries, VM exits, and in VMX non-
root operation.

1. On processors that support Intel 64 architecture, the pointer must not set bits beyond the pro-
cessor's physical address width.
Vol. 3 G-1

VMX CAPABILITY REPORTING FACILITY
The first processors to support VMX operation use the write-back type. The
values used are given in Table G-1.1

Software should map all VMCS regions, referenced data structures, and the
MSEG header with the indicated memory type.2

• Bit 54 reports whether the processor reports information in the VM-exit
instruction-information field on VM exits due to execution of the INS and OUTS
instructions. This reporting is done only if this bit is read as 1.

• The values of bits 47:45 and bits 63:55 are reserved and are read as 0.

G.2 VM-EXECUTION CONTROLS
The IA32_VMX_PINBASED_CTLS MSR (index 481H) reports on the allowed settings
of the pin-based VM-execution controls (see Section 20.6.1):

• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry fails if
bit X in the pin-based VM-execution controls is 0 and bit X is 1 in this MSR.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry fails if
bit X in the pin-based VM-execution controls is 1 and bit 32+X is 0 in this MSR.

The IA32_VMX_PROCBASED_CTLS MSR (index 482H) reports on the allowed
settings of the primary processor-based VM-execution controls (see Section 20.6.2):

1. If the MTRRs are disabled by clearing the E bit (bit 11) in the IA32_MTRR_DEF_TYPE MSR, the
processor always uses the UC memory type to access the VMCS, data structures referenced by
pointers in the VMCS, and the MSEG header, regardless of the value reported in bits 53:50 in the
IA32_VMX_BASIC MSR. Thus, if the MTRRs are disabled, software should map all VMCS regions,
referenced data structures, and the MSEG header with the UC memory type (it should not use
the PAT to map them with the WC memory type).

2. Alternatively, software may map any of these regions or structures with the UC memory type.
(This may be necessary for the MSEG header.) Doing so is strongly discouraged unless necessary
as it will cause the performance of transitions using those structures to suffer significantly. In
addition, the processor will continue to use the memory type reported in the VMX capability MSR
IA32_VMX_BASIC with exceptions noted.

Table G-1. Memory Types Used For VMCS Access
Value(s) Field

0 Strong Uncacheable (UC)

1–5 Not used

6 Write Back (WB)

7–15 Not used
G-2 Vol. 3

VMX CAPABILITY REPORTING FACILITY
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry fails if bit X
in the primary processor-based VM-execution controls is 0 and bit X is 1 in this
MSR.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry fails if bit X
in the primary processor-based VM-execution controls is 1 and bit 32+X is 0 in
this MSR.

The IA32_VMX_PROCBASED_CTLS2 MSR (index 48BH) reports on the allowed
settings of the secondary processor-based VM-execution controls (see Section
20.6.2). VM entries perform the following checks:

• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry fails if the
“activate secondary controls” primary processor-based VM-execution control is
1, bit X in the secondary processor-based VM-execution controls is 0, and bit X is
1 in this MSR.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry fails if the
“activate secondary controls” primary processor-based VM-execution control is
1, bit X in the secondary processor-based VM-execution controls is 1, and
bit 32+X is 0 in this MSR.

The IA32_VMX_PROCBASED_CTLS2 MSR exists only on processors that support the
1-setting of the “activate secondary controls” VM-execution control (only if bit 63 of
the IA32_VMX_PROCBASED_CTLS MSR is 1).

G.3 VM-EXIT CONTROLS
The IA32_VMX_EXIT_CTLS MSR (index 483H) reports on the allowed settings of the
VM-exit controls (see Section 20.7.1):

• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry fails if bit X
in the VM-exit controls is 0 and bit X is 1 in this MSR.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry fails if bit X
in the VM-exit controls is 1 and bit 32+X is 0 in this MSR.

G.4 VM-ENTRY CONTROLS
The IA32_VMX_ENTRY_CTLS MSR (index 484H) reports on the allowed settings of
the VM-entry controls (see Section 20.8.1):

• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry fails if bit X
in the VM-entry controls is 0 and bit X is 1 in this MSR.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry fails if bit X
in the VM-entry controls is 1 and bit 32+X is 0 in this MSR.
Vol. 3 G-3

VMX CAPABILITY REPORTING FACILITY
G.5 MISCELLANEOUS DATA
The IA32_VMX_MISC MSR (index 485H) consists of the following fields:

• Bits 8:6 report, as a bitmap, the activity states supported by the implemen-
tation:

— Bit 6 reports (if set) the support for activity state 1 (HLT).

— Bit 7 reports (if set) the support for activity state 2 (shutdown).

— Bit 8 reports (if set) the support for activity state 3 (wait-for-SIPI).

If an activity state is not supported, the implementation causes a VM entry to fail
if it attempts to establish that activity state. Note that all implementations
support VM entry to activity state 0 (active).

• Bits 24:16 indicate the number of CR3-target values supported by the processor.
This number is a value between 0 and 256, inclusive (bit 24 is set if and only if
bits 23:16 are clear).

• Bits 27:25 is used to compute the recommended maximum number of MSRs that
should appear in the VM-exit MSR-store list, the VM-exit MSR-load list, or the
VM-entry MSR-load list. Specifically, if the value bits 27:25 of IA32_VMX_MISC is
N, then 512 * (N + 1) is the recommended maximum number of MSRs to be
included in each list. If the limit is exceeded, undefined processor behavior may
result (including a machine check during the VMX transition).

• Bits 63:32 report the 32-bit MSEG revision identifier used by the processor.

• Bits 5:0, bits 15:9, and bits 31:28 are reserved and are read as 0.

G.6 VMX-FIXED BITS IN CR0
The IA32_VMX_CR0_FIXED0 MSR (index 486H) and IA32_VMX_CR0_FIXED1 MSR
(index 487H) indicate how bits in CR0 may be set in VMX operation. They report on
bits in CR0 that are allowed to be 0 and to be 1, respectively, in VMX operation. If
bit X of IA32_VMX_CR0_FIXED0 is 1, then that bit of CR0 is fixed to 1 in VMX opera-
tion. Similarly, if bit X of IA32_VMX_CR0_FIXED1 is 0, then that bit of CR0 is fixed to
0 in VMX operation. It is always the case that, if bit X is 1 in IA32_VMX_CR0_FIXED0,
then that bit is also 1 in IA32_VMX_CR0_FIXED1; if bit X is 0 in
IA32_VMX_CR0_FIXED1, then that bit is also 0 in IA32_VMX_CR0_FIXED0. Thus,
each bit in CR0 is either fixed to 0 (with value 0 in both MSRs), fixed to 1 (1 in both
MSRs), or flexible (0 in IA32_VMX_CR0_FIXED0 and 1 in IA32_VMX_CR0_FIXED1).

G.7 VMX-FIXED BITS IN CR4
The IA32_VMX_CR4_FIXED0 MSR (index 488H) and IA32_VMX_CR4_FIXED1 MSR
(index 489H) indicate how bits in CR4 may be set in VMX operation. They report on
bits in CR4 that are allowed to be 0 and 1, respectively, in VMX operation. If bit X of
G-4 Vol. 3

VMX CAPABILITY REPORTING FACILITY
IA32_VMX_CR4_FIXED0 is 1, then that bit of CR4 is fixed to 1 in VMX operation.
Similarly, if bit X of IA32_VMX_CR4_FIXED1 is 0, then that bit of CR4 is fixed to 0 in
VMX operation. It is always the case that, if bit X is 1 in IA32_VMX_CR4_FIXED0,
then that bit is also 1 in IA32_VMX_CR4_FIXED1; if bit X is 0 in
IA32_VMX_CR4_FIXED1, then that bit is also 0 in IA32_VMX_CR4_FIXED0. Thus,
each bit in CR4 is either fixed to 0 (with value 0 in both MSRs), fixed to 1 (1 in both
MSRs), or flexible (0 in IA32_VMX_CR4_FIXED0 and 1 in IA32_VMX_CR4_FIXED1).

G.8 VMCS ENUMERATION
The IA32_VMX_VMCS_ENUM MSR (index 48AH) provides information to assist soft-
ware in enumerating fields in the VMCS.

As noted in Section 20.10.2, each field in the VMCS is associated with a 32-bit
encoding which is structured as follows:

• Bits 31:15 are reserved (must be 0).

• Bits 14:13 indicate the field’s width.

• Bit 12 is reserved (must be 0).

• Bits 11:10 indicate the field’s type.

• Bits 9:1 is an index field that distinguishes different fields with the same width
and type.

• Bit 0 indicates access type.

IA32_VMX_VMCS_ENUM indicates to software the highest index value used in the
encoding of any field supported by the processor:

• Bits 9:1 contain the highest index value used for any VMCS encoding.

• The values of bit 0 and bits 63:10 are reserved and are read as 0.
Vol. 3 G-5

VMX CAPABILITY REPORTING FACILITY
G-6 Vol. 3

APPENDIX H
FIELD ENCODING IN VMCS

Every component of the VMCS is encoded by a 32-bit field that can be used by
VMREAD and VMWRITE. Section 20.10.2 describes the structure of the encoding
space (the meanings of the bits in each 32-bit encoding).

This appendix enumerates all fields in the VMCS and their encodings. Fields are
grouped by width (16-bit, 32-bit, etc.) and type (guest-state, host-state, etc.)

H.1 16-BIT FIELDS
A value of 0 in bits 14:13 of an encoding indicates a 16-bit field. Only guest-state
areas and the host-state area contain 16-bit fields. As noted in Section 20.10.2, each
16-bit field allows only full access, meaning that bit 0 of its encoding is 0. Each such
encoding is thus an even number.

H.1.1 16-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area.
These fields are distinguished by their index value in bits 9:1. Table H-1 enumerates
16-bit guest-state fields.

Table H-1. Encodings for 16-Bit Guest-State Fields (0000_10xx_xxxx_xxx0B)
Field Name Index Encoding

Guest ES selector 000000000B 00000800H

Guest CS selector 000000001B 00000802H

Guest SS selector 000000010B 00000804H

Guest DS selector 000000011B 00000806H

Guest FS selector 000000100B 00000808H

Guest GS selector 000000101B 0000080AH

Guest LDTR selector 000000110B 0000080CH

Guest TR selector 000000111B 0000080EH
Vol. 3 H-1

FIELD ENCODING IN VMCS
H.1.2 16-Bit Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area.
These fields are distinguished by their index value in bits 9:1. Table H-2 enumerates
the 16-bit host-state fields.

H.2 64-BIT FIELDS
A value of 1 in bits 14:13 of an encoding indicates a 64-bit field. There are 64-bit
fields only for controls and for guest state. As noted in Section 20.10.2, every 64-bit
field has two encodings, which differ on bit 0, the access type. Thus, each such field
has an even encoding for full access and an odd encoding for high access.

H.2.1 64-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are
distinguished by their index value in bits 9:1. Table H-3 enumerates the 64-bit
control fields
.

Table H-2. Encodings for 16-Bit Host-State Fields (0000_11xx_xxxx_xxx0B)
Field Name Index Encoding

Host ES selector 000000000B 00000C00H

Host CS selector 000000001B 00000C02H

Host SS selector 000000010B 00000C04H

Host DS selector 000000011B 00000C06H

Host FS selector 000000100B 00000C08H

Host GS selector 000000101B 00000C0AH

Host TR selector 000000110B 00000C0CH

Table H-3. Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb)
Field Name Index Encoding

Address of I/O bitmap A (full) 000000000B 00002000H

Address of I/O bitmap A (high) 000000000B 00002001H

Address of I/O bitmap B (full) 000000001B 00002002H

Address of I/O bitmap B (high) 000000001B 00002003H

Address of MSR bitmaps (full)1 000000010B 00002004H

Address of MSR bitmaps (high)1 000000010B 00002005H

VM-exit MSR-store address (full) 000000011B 00002006H
H-2 Vol. 3

FIELD ENCODING IN VMCS
H.2.2 64-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area.
These fields are distinguished by their index value in bits 9:1. Table H-4 enumerates
the 64-bit guest-state fields.

VM-exit MSR-store address (high) 000000011B 00002007H

VM-exit MSR-load address (full) 000000100B 00002008H

VM-exit MSR-load address (high) 000000100B 00002009H

VM-entry MSR-load address (full) 000000101B 0000200AH

VM-entry MSR-load address (high) 000000101B 0000200BH

Executive-VMCS pointer (full) 000000110B 0000200CH

Executive-VMCS pointer (high) 000000110B 0000200DH

TSC offset (full) 000001000B 00002010H

TSC offset (high) 000001000B 00002011H

Virtual-APIC address (full)2 000001001B 00002012H

Virtual-APIC address (high)2 000001001B 00002013H

APIC-access address (full)3 000001010B 00002014H

APIC-access address (high)3 000001010B 00002015H

NOTES:
1. This field exists only on processors that support the 1-setting of the “use MSR bitmaps”

VM-execution control.
2. This field exists only on processors that support either the 1-setting of the “use TPR shadow”

VM-execution control.
3. This field exists only on processors that support the 1-setting of the “virtualize APIC accesses”

VM-execution control.

Table H-4. Encodings for 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb)
Field Name Index Encoding

VMCS link pointer (full) 000000000B 00002800H

VMCS link pointer (high) 000000000B 00002801H

Guest IA32_DEBUGCTL (full) 000000001B 00002802H

Guest IA32_DEBUGCTL (high) 000000001B 00002803H

Table H-3. Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb) (Contd.)
Field Name Index Encoding
Vol. 3 H-3

FIELD ENCODING IN VMCS
H.3 32-BIT FIELDS
A value of 2 in bits 14:13 of an encoding indicates a 32-bit field. As noted in Section
20.10.2, each 32-bit field allows only full access, meaning that bit 0 of its encoding
is 0. Each such encoding is thus an even number.

H.3.1 32-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are
distinguished by their index value in bits 9:1. Table H-5 enumerates the 32-bit
control fields.

Table H-5. Encodings for 32-Bit Control Fields (0100_00xx_xxxx_xxx0B)
Field Name Index Encoding

Pin-based VM-execution controls 000000000B 00004000H

Primary processor-based VM-execution controls 000000001B 00004002H

Exception bitmap 000000010B 00004004H

Page-fault error-code mask 000000011B 00004006H

Page-fault error-code match 000000100B 00004008H

CR3-target count 000000101B 0000400AH

VM-exit controls 000000110B 0000400CH

VM-exit MSR-store count 000000111B 0000400EH

VM-exit MSR-load count 000001000B 00004010H

VM-entry controls 000001001B 00004012H

VM-entry MSR-load count 000001010B 00004014H

VM-entry interruption-information field 000001011B 00004016H

VM-entry exception error code 000001100B 00004018H

VM-entry instruction length 000001101B 0000401AH

TPR threshold1

NOTES:
1. This field exists only on processors that support the 1-setting of the “use TPR shadow” VM-exe-

cution control.

000001110B 0000401CH

Secondary processor-based VM-execution controls2

2. This field exists only on processors that support the 1-setting of the “activate secondary controls”
VM-execution control.

000001111b 0000401EH
H-4 Vol. 3

FIELD ENCODING IN VMCS
H.3.2 32-Bit Read-Only Data Fields
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields
are distinguished by their index value in bits 9:1. Table H-6 enumerates the 32-bit
read-only data fields.

H.3.3 32-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area.
These fields are distinguished by their index value in bits 9:1. Table H-7 enumerates
the 32-bit guest-state fields.

Table H-6. Encodings for 32-Bit Read-Only Data Fields (0100_01xx_xxxx_xxx0B)
Field Name Index Encoding

VM-instruction error 000000000B 00004400H

Exit reason 000000001B 00004402H

VM-exit interruption information 000000010B 00004404H

VM-exit interruption error code 000000011B 00004406H

IDT-vectoring information field 000000100B 00004408H

IDT-vectoring error code 000000101B 0000440AH

VM-exit instruction length 000000110B 0000440CH

VM-exit instruction information 000000111B 0000440EH

Table H-7. Encodings for 32-Bit Guest-State Fields
(0100_10xx_xxxx_xxx0B)

Field Name Index Encoding

Guest ES limit 000000000B 00004800H

Guest CS limit 000000001B 00004802H

Guest SS limit 000000010B 00004804H

Guest DS limit 000000011B 00004806H

Guest FS limit 000000100B 00004808H

Guest GS limit 000000101B 0000480AH

Guest LDTR limit 000000110B 0000480CH

Guest TR limit 000000111B 0000480EH

Guest GDTR limit 000001000B 00004810H

Guest IDTR limit 000001001B 00004812H

Guest ES access rights 000001010B 00004814H
Vol. 3 H-5

FIELD ENCODING IN VMCS
The limit fields for GDTR and IDTR are defined to be 32 bits in width even though
these fields are only 16-bits wide in the Intel 64 and IA-32 architectures. VM entry
ensures that the high 16 bits of both these fields are cleared to 0.

H.3.4 32-Bit Host-State Field
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area.
There is only one such 32-bit field as given in Table H-8.

H.4 NATURAL-WIDTH FIELDS
A value of 3 in bits 14:13 of an encoding indicates a natural-width field. As noted in
Section 20.10.2, each of these fields allows only full access, meaning that bit 0 of its
encoding is 0. Each such encoding is thus an even number.

Guest CS access rights 000001011B 00004816H

Guest SS access rights 000001100B 00004818H

Guest DS access rights 000001101B 0000481AH

Guest FS access rights 000001110B 0000481CH

Guest GS access rights 000001111B 0000481EH

Guest LDTR access rights 000010000B 00004820H

Guest TR access rights 000010001B 00004822H

Guest interruptibility state 000010010B 00004824H

Guest activity state 000010011B 00004826H

Guest SMBASE 000010100B 00004828H

Guest IA32_SYSENTER_CS 000010101B 0000482AH

Table H-8. Encodings for 32-Bit Host-State Field (0100_11xx_xxxx_xxx0B)
Field Name Index Encoding

Host IA32_SYSENTER_CS 000000000B 00004C00H

Table H-7. Encodings for 32-Bit Guest-State Fields
(0100_10xx_xxxx_xxx0B) (Contd.)

Field Name Index Encoding
H-6 Vol. 3

FIELD ENCODING IN VMCS
H.4.1 Natural-Width Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are
distinguished by their index value in bits 9:1. Table H-9 enumerates the natural-
width control fields.

H.4.2 Natural-Width Read-Only Data Fields
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields
are distinguished by their index value in bits 9:1. Table H-10 enumerates the
natural-width read-only data fields.

Table H-9. Encodings for Natural-Width Control Fields (0110_00xx_xxxx_xxx0B)
Field Name Index Encoding

CR0 guest/host mask 000000000B 00006000H

CR4 guest/host mask 000000001B 00006002H

CR0 read shadow 000000010B 00006004H

CR4 read shadow 000000011B 00006006H

CR3-target value 0 000000100B 00006008H

CR3-target value 1 000000101B 0000600AH

CR3-target value 2 000000110B 0000600CH

CR3-target value 31

NOTES:
1. If a future implementation supports more than 4 CR3-target values, they will be encoded consec-

utively following the 4 encodings given here.

000000111B 0000600EH

Table H-10. Encodings for Natural-Width Read-Only Data Fields
(0110_01xx_xxxx_xxx0B)

Field Name Index Encoding

Exit qualification 000000000B 00006400H

I/O RCX 000000001B 00006402H

I/O RSI 000000010B 00006404H

I/O RDI 000000011B 00006406H

I/O RIP 000000100B 00006408H

Guest linear address 000000101B 0000640AH
Vol. 3 H-7

FIELD ENCODING IN VMCS
H.4.3 Natural-Width Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area.
These fields are distinguished by their index value in bits 9:1. Table H-11 enumer-
ates the natural-width guest-state fields.

The base-address fields for ES, CS, SS, and DS in the guest-state area are defined to
be natural-width (with 64 bits on processors supporting Intel 64 architecture) even
though these fields are only 32-bits wide in the Intel 64 architecture. VM entry
ensures that the high 32 bits of these fields are cleared to 0.

Table H-11. Encodings for Natural-Width Guest-State Fields
(0110_10xx_xxxx_xxx0B)

Field Name Index Encoding

Guest CR0 000000000B 00006800H

Guest CR3 000000001B 00006802H

Guest CR4 000000010B 00006804H

Guest ES base 000000011B 00006806H

Guest CS base 000000100B 00006808H

Guest SS base 000000101B 0000680AH

Guest DS base 000000110B 0000680CH

Guest FS base 000000111B 0000680EH

Guest GS base 000001000B 00006810H

Guest LDTR base 000001001B 00006812H

Guest TR base 000001010B 00006814H

Guest GDTR base 000001011B 00006816H

Guest IDTR base 000001100B 00006818H

Guest DR7 000001101B 0000681AH

Guest RSP 000001110B 0000681CH

Guest RIP 000001111B 0000681EH

Guest RFLAGS 000010000B 00006820H

Guest pending debug exceptions 000010001B 00006822H

Guest IA32_SYSENTER_ESP 000010010B 00006824H

Guest IA32_SYSENTER_EIP 000010011B 00006826H
H-8 Vol. 3

FIELD ENCODING IN VMCS
H.4.4 Natural-Width Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area.
These fields are distinguished by their index value in bits 9:1. Table H-12 enumer-
ates the natural-width host-state fields.

Table H-12. Encodings for Natural-Width Host-State Fields
(0110_11xx_xxxx_xxx0B)

Field Name Index Encoding

Host CR0 000000000B 00006C00H

Host CR3 000000001B 00006C02H

Host CR4 000000010B 00006C04H

Host FS base 000000011B 00006C06H

Host GS base 000000100B 00006C08H

Host TR base 000000101B 00006C0AH

Host GDTR base 000000110B 00006C0CH

Host IDTR base 000000111B 00006C0EH

Host IA32_SYSENTER_ESP 000001000B 00006C10H

Host IA32_SYSENTER_EIP 000001001B 00006C12H

Host RSP 000001010B 00006C14H

Host RIP 000001011B 00006C16H
Vol. 3 H-9

FIELD ENCODING IN VMCS
H-10 Vol. 3

APPENDIX I
VMX BASIC EXIT REASONS

Every VM exit writes a 32-bit exit reason to the VMCS (see Section 20.9.1). Certain
VM-entry failures also do this (see Section 22.7). The low 16 bits of the exit-reason
field form the basic exit reason which provides basic information about the cause of
the VM exit or VM-entry failure.

Table I-1 lists values for basic exit reasons and explains their meaning. Entries apply
to VM exits, unless otherwise noted.

Table I-1. Basic Exit Reasons
Basic Exit
Reason Description

0 Exception or non-maskable interrupt (NMI). Either:

1: Guest software caused an exception and the bit in the exception bitmap
associated with exception’s vector was 1.

2: An NMI was delivered to the logical processor and the “NMI exiting”
VM-execution control was 1. This case includes executions of BOUND that cause
#BR, executions of INT3 (they cause #BP), executions of INTO that cause #OF,
and executions of UD2 (they cause #UD).

1 External interrupt. An external interrupt arrived and the “external-interrupt
exiting” VM-execution control was 1.

2 Triple fault. The logical processor encountered an exception while attempting to
call the double-fault handler and that exception did not itself cause a VM exit due
to the exception bitmap.

3 INIT signal. An INIT signal arrived

4 Start-up IPI (SIPI). A SIPI arrived while the logical processor was in the “wait-for-
SIPI” state.

5 I/O system-management interrupt (SMI). An SMI arrived immediately after
retirement of an I/O instruction and caused an SMM VM exit (see Section 24.16.2).

6 Other SMI. An SMI arrived and caused an SMM VM exit (see Section 24.16.2) but
not immediately after retirement of an I/O instruction.

7 Interrupt window. At the beginning of an instruction, RFLAGS.IF was 1; events
were not blocked by STI or by MOV SS; and the “interrupt-window exiting”
VM-execution control was 1.

8 NMI window. At the beginning of an instruction, there was no virtual-NMI blocking;
events were not blocked by MOV SS; and the “NMI-window exiting” VM-execution
control was 1.

9 Task switch. Guest software attempted a task switch.

10 CPUID. Guest software attempted to execute CPUID.
Vol. 3 I-1

VMX BASIC EXIT REASONS
12 HLT. Guest software attempted to execute HLT and the “HLT exiting”
VM-execution control was 1.

13 INVD. Guest software attempted to execute INVD.

14 INVLPG. Guest software attempted to execute INVLPG and the “INVLPG exiting”
VM-execution control was 1.

15 RDPMC. Guest software attempted to execute RDPMC and the “RDPMC exiting”
VM-execution control was 1.

16 RDTSC. Guest software attempted to execute RDTSC and the “RDTSC exiting”
VM-execution control was 1.

17 RSM. Guest software attempted to execute RSM in SMM.

18 VMCALL. VMCALL was executed either by guest software (causing an
ordinary VM exit) or by the executive monitor (causing an SMM VM exit; see
Section 24.16.2).

19 VMCLEAR. Guest software attempted to execute VMCLEAR.

20 VMLAUNCH. Guest software attempted to execute VMLAUNCH.

21 VMPTRLD. Guest software attempted to execute VMPTRLD.

22 VMPTRST. Guest software attempted to execute VMPTRST.

23 VMREAD. Guest software attempted to execute VMREAD.

24 VMRESUME. Guest software attempted to execute VMRESUME.

25 VMWRITE. Guest software attempted to execute VMWRITE.

26 VMXOFF. Guest software attempted to execute VMXOFF.

27 VMXON. Guest software attempted to execute VMXON.

28 Control-register accesses. Guest software attempted to access CR0, CR3, CR4, or
CR8 using CLTS, LMSW, or MOV CR and the VM-execution control fields indicate
that a VM exit should occur (see Section 21.1 for details). This basic exit reason is
not used for trap-like VM exits following executions of the MOV to CR8 instruction
when the “use TPR shadow” VM-execution control is 1.

29 MOV DR. Guest software attempted a MOV to or from a debug register and the
“MOV-DR exiting” VM-execution control was 1.

30 I/O instruction. Guest software attempted to execute an I/O instruction and either:

1: The “use I/O bitmaps” VM-execution control was 0 and the “unconditional I/O
exiting” VM-execution control was 1.

2: The “use I/O bitmaps” VM-execution control was 1 and a bit in the I/O bitmap
associated with one of the ports accessed by the I/O instruction was 1.

Table I-1. Basic Exit Reasons (Contd.)
Basic Exit
Reason Description
I-2 Vol. 3

VMX BASIC EXIT REASONS
31 RDMSR. Guest software attempted to execute RDMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the

range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in

read bitmap for low MSRs is 1, where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in

read bitmap for high MSRs is 1, where n is the value of RCX & 00001FFFH.

32 WRMSR. Guest software attempted to execute WRMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the

range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in

write bitmap for low MSRs is 1, where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in

write bitmap for high MSRs is 1, where n is the value of RCX & 00001FFFH.

33 VM-entry failure due to invalid guest state. A VM entry failed one of the checks
identified in Section 22.3.1.

34 VM-entry failure due to MSR loading. A VM entry failed in an attempt to load
MSRs. See Section 22.4.

36 MWAIT. Guest software attempted to execute MWAIT and the “MWAIT exiting”
VM-execution control was 1.

39 MONITOR. Guest software attempted to execute MONITOR and the “MONITOR
exiting” VM-execution control was 1.

40 PAUSE. Guest software attempted to execute PAUSE and the “PAUSE exiting”
VM-execution control was 1.

41 VM-entry failure due to machine check. A machine check occurred during VM entry
(see Section 22.8).

43 TPR below threshold. The logical processor determined that the value of the TPR
shadow was below that of the TPR threshold VM-execution control field while the
“use TPR shadow” VM-execution control was 1 in one of the following cases:

• After guest software executed MOV to CR8 (see Section 21.1.3).
• As part of a TPR-shadow update (see Section 21.5.3.3).
• After VM entry with the 1-setting of the “virtualize APIC accesses” VM-

execution control (see Section 22.6.6).

44 APIC access. Guest software attempted to access memory at a physical address on
the APIC-access page and the “virtualize APIC accesses” VM-execution control was
1 (see Section 21.2).

Table I-1. Basic Exit Reasons (Contd.)
Basic Exit
Reason Description
Vol. 3 I-3

VMX BASIC EXIT REASONS
I-4 Vol. 3

APPENDIX J
VM INSTRUCTION ERROR NUMBERS

For certain error conditions, the VM-instruction error field is loaded with an error
number to indicate the source of the error.

J.1 ERROR NUMBERS
Table J-1 lists VM-instruction error numbers.

Table J-1. VM-Instruction Error Numbers
Error Number Description

1 VMCALL executed in VMX root operation

2 VMCLEAR with invalid physical address

3 VMCLEAR with VMXON pointer

4 VMLAUNCH with non-clear VMCS

5 VMRESUME with non-launched VMCS

6 VMRESUME with a corrupted VMCS (indicates corruption of the current VMCS)

7 VM entry with invalid control field(s)1,2

8 VM entry with invalid host-state field(s)1

9 VMPTRLD with invalid physical address

10 VMPTRLD with VMXON pointer

11 VMPTRLD with incorrect VMCS revision identifier

12 VMREAD/VMWRITE from/to unsupported VMCS component

13 VMWRITE to read-only VMCS component

15 VMXON executed in VMX root operation

16 VM entry with invalid executive-VMCS pointer1

17 VM entry with non-launched executive VMCS1

18 VM entry with executive-VMCS pointer not VMXON pointer (when attempting to
deactivate the dual-monitor treatment of SMIs and SMM)1

19 VMCALL with non-clear VMCS (when attempting to activate the dual-monitor
treatment of SMIs and SMM)

20 VMCALL with invalid VM-exit control fields

22 VMCALL with incorrect MSEG revision identifier (when attempting to activate the
dual-monitor treatment of SMIs and SMM)
Vol. 3 J-1

VM INSTRUCTION ERROR NUMBERS
23 VMXOFF under dual-monitor treatment of SMIs and SMM

24 VMCALL with invalid SMM-monitor features (when attempting to activate the dual-
monitor treatment of SMIs and SMM)

25 VM entry with invalid VM-execution control fields in executive VMCS (when
attempting to return from SMM)1,2

26 VM entry with events blocked by MOV SS.

NOTES:
1. VM-entry checks on control fields and host-state fields may be performed in any order. Thus, an

indication by error number of one cause does not imply that there are not also other errors. Differ-
ent processors may give different error numbers for the same VMCS.

2. Error number 7 is not used for VM entries that return from SMM that fail due to invalid
VM-execution control fields in the executive VMCS. Error number 25 is used for these cases.

Table J-1. VM-Instruction Error Numbers (Contd.)
Error Number Description
J-2 Vol. 3

INDEX FOR VOLUMES 3A & 3B
Numerics
16-bit code, mixing with 32-bit code, 16-1
32-bit code, mixing with 16-bit code, 16-1
32-bit physical addressing

description of, 3-25
overview, 3-7

36-bit physical addressing
overview, 3-7
using PSE-36 paging mechanism, 3-40
using the PAE paging mechanism, 3-33

64-bit mode
call gates, 4-20
code segment descriptors, 4-5, 9-16
control registers, 2-17
CR8 register, 2-18
D flag, 4-5
debug registers, 2-9
descriptors, 4-5, 4-7
DPL field, 4-5
exception handling, 5-22
external interrupts, 8-42
fast system calls, 4-32
GDTR register, 2-16, 2-17
GP faults, causes of, 5-52
IDTR register, 2-17
initialization process, 2-12, 9-14
interrupt and trap gates, 5-23
interrupt controller, 8-42
interrupt descriptors, 2-7
interrupt handling, 5-22
interrupt stack table, 5-26
IRET instruction, 5-25
L flag, 3-16, 4-5
logical address translation, 3-9
MOV CRn, 2-17, 8-42
null segment checking, 4-9
paging, 2-8
reading counters, 2-31
reading & writing MSRs, 2-31
registers and mode changes, 9-16
RFLAGS register, 2-15
segment descriptor tables, 3-22, 4-5
segment loading instructions, 3-12
segments, 3-6
stack switching, 4-28, 5-25
SYSCALL and SYSRET, 2-10, 4-32
SYSENTER and SYSEXIT, 4-31
system registers, 2-9
task gate, 6-22
task priority, 2-25, 8-42
task register, 2-17
TSS

stack pointers, 6-23

See also: IA-32e mode, compatibility mode
8086

emulation, support for, 15-1
processor, exceptions and interrupts, 15-8

8086/8088 processor, 17-8
8087 math coprocessor, 17-9
82489DX, 17-30

Local APIC and I/O APICs, 8-5

A
A (accessed) flag, page-table entries, 3-31
A20M# signal, 15-4, 17-39, 19-5
Aborts

description of, 5-7
restarting a program or task after, 5-8

AC (alignment check) flag, EFLAGS register, 2-14,
5-61, 17-7

Access rights
checking, 2-28
checking caller privileges, 4-37
description of, 4-35
invalid values, 17-26

ADC instruction, 7-5
ADD instruction, 7-5
Address

size prefix, 16-2
space, of task, 6-19

Address translation
2-MByte pages

IA-32e mode, 3-44
using 36-bit physical addressing, 3-36

4-KByte pages
IA-32e mode, 3-43
using 32-bit physical addressing, 3-25
using 36-bit physical addressing, 3-35

4-MByte pages
using 32-bit physical addressing, 3-26
using 36-bit physical addressing, 3-40

in real-address mode, 15-3
logical to linear, 3-9
overview, 3-8

Addressing, segments, 1-8
Advanced power management

C-state and Sub C-state, 13-6
MWAIT extensions, 13-7
See also: thermal monitoring

Advanced programmable interrupt controller (see I/O
APIC or Local APIC)

Alignment
check exception, 2-14, 5-60, 17-15, 17-28
checking, 4-39

AM (alignment mask) flag
CR0 control register, 2-14, 2-20, 17-24
Vol. 3B Index -1

INDEX
AND instruction, 7-5
APIC bus

arbitration mechanism and protocol, 8-34, 8-45
bus message format, 8-46, 1-1
diagram of, 8-3, 8-4
EOI message format, 8-19, 1-1
message formats, 1-1
nonfocused lowest priority message, 1-3
short message format, 1-2
SMI message, 1-3
status cycles, 1-5
structure of, 8-5
See also

local APIC
APIC flag, CPUID instruction, 8-10
APIC (see I/O APIC or Local APIC)
ARPL instruction, 2-28, 4-38

not supported in 64-bit mode, 2-28
Atomic operations

automatic bus locking, 7-4
effects of a locked operation on internal processor

caches, 7-7
guaranteed, description of, 7-3
overview of, 7-2, 7-3, 7-4
software-controlled bus locking, 7-5

At-retirement
counting, 18-56, 18-57, 18-85
events, 18-56, 18-57, 18-63, 18-65, 18-85,

18-92
Auto HALT restart

field, SMM, 1-18
SMM, 1-18

Automatic bus locking, 7-4
Automatic thermal monitoring mechanism, 13-8

B
B (busy) flag

TSS descriptor, 6-7, 6-13, 6-14, 6-18, 7-4
B (default stack size) flag

segment descriptor, 16-2, 17-38
B0-B3 (BP condition detected) flags

DR6 register, 18-4
Backlink (see Previous task link)
Base address fields, segment descriptor, 3-14
BD (debug register access detected) flag, DR6

register, 18-4, 18-12
Binary numbers, 1-8
BINIT# signal, 2-29
BIOS role in microcode updates, 9-49
Bit order, 1-6
BOUND instruction, 2-7, 5-6, 5-33
BOUND range exceeded exception (#BR), 5-33
BP0#, BP1#, BP2#, and BP3# pins, 18-33, 18-35
Branch record

branch trace message, 18-25
IA-32e mode, 18-74
saving, 18-22

saving as a branch trace message, 18-25
structure, 18-22
structure of in BTS buffer, 18-72

Branch trace message (see BTM)
Branch trace store (see BTS)
Breakpoint exception (#BP), 5-6, 5-31, 18-13
Breakpoints

data breakpoint, 18-6
data breakpoint exception conditions, 18-11
description of, 18-1
DR0-DR3 debug registers, 18-4
example, 18-7
exception, 5-31
field recognition, 18-6, 18-8
general-detect exception condition, 18-12
instruction breakpoint, 18-7
instruction breakpoint exception condition, 18-9
I/O breakpoint exception conditions, 18-11
LEN0 - LEN3 (Length) fields

DR7 register, 18-6
R/W0-R/W3 (read/write) fields

DR7 register, 18-5
single-step exception condition, 18-12
task-switch exception condition, 18-12

BS (single step) flag, DR6 register, 18-4
BSP flag, IA32_APIC_BASE MSR, 8-11
BSWAP instruction, 17-5
BT (task switch) flag, DR6 register, 18-4, 18-12
BTC instruction, 7-5
BTF (single-step on branches) flag

DEBUGCTLMSR MSR, 18-24, 18-35
BTMs (branch trace messages)

description of, 18-25
enabling, 18-15, 18-21, 18-28, 18-29, 18-31,

18-33
TR (trace message enable) flag

MSR_DEBUGCTLA MSR, 18-21
MSR_DEBUGCTLB MSR, 18-15, 18-31, 18-33

BTR instruction, 7-5
BTS, 18-70
BTS buffer

description of, 18-70
introduction to, 18-13, 18-26
records in, 18-72
setting up, 18-27
structure of, 18-71, 18-74

BTS instruction, 7-5
BTS (branch trace store) facilities

availability of, 18-18
BTS_UNAVAILABLE flag,

IA32_MISC_ENABLE MSR, 18-70, 1-45
detection of, 18-26
introduction to, 18-13
setting up BTS buffer, 18-27
writing an interrupt service routine for, 18-29

Built-in self-test (BIST)
description of, 9-1
performing, 9-2
Index-2 Vol. 3B

INDEX
Bus
errors detected with MCA, 14-21
hold, 17-41
locking, 7-3, 17-41

Byte order, 1-6

C
C (conforming) flag, segment descriptor, 4-16
C1 flag, x87 FPU status word, 17-10, 17-20
C2 flag, x87 FPU status word, 17-10
Cache control, 10-27

adaptive mode, L1 Data Cache, 10-24
cache management instructions, 10-22, 10-23
cache mechanisms in IA-32 processors, 17-34
caching terminology, 10-5
CD flag, CR0 control register, 10-13, 17-26
choosing a memory type, 10-10
CPUID feature flag, 10-23
flags and fields, 10-12
flushing TLBs, 10-26
G (global) flag

page-directory entries, 10-17, 10-26
page-table entries, 10-17, 10-26

internal caches, 10-1
MemTypeGet() function, 10-39
MemTypeSet() function, 10-40
MESI protocol, 10-5, 10-11
methods of caching available, 10-6
MTRR initialization, 10-38
MTRR precedences, 10-37
MTRRs, description of, 10-27
multiple-processor considerations, 10-42
NW flag, CR0 control register, 10-16, 17-26
operating modes, 10-15
overview of, 10-1
page attribute table (PAT), 10-44
PCD flag

CR3 control register, 10-17
page-directory entries, 10-16, 10-18, 10-44
page-table entries, 10-16, 10-18, 10-44

PGE (page global enable) flag, CR4 control
register, 10-17

precedence of controls, 10-18
preventing caching, 10-22
protocol, 10-11
PWT flag

CR3 control register, 10-17
page-directory entries, 10-17, 10-44
page-table entries, 10-17, 10-44

remapping memory types, 10-38
setting up memory ranges with MTRRs, 10-30
shared mode, L1 Data Cache, 10-24
variable-range MTRRs, 10-32

Caches, 2-10
cache hit, 10-5
cache line, 10-5
cache line fill, 10-5

cache write hit, 10-6
description of, 10-1
effects of a locked operation on internal processor

caches, 7-7
enabling, 9-8
management, instructions, 2-29, 10-22

Caching
cache control protocol, 10-11
cache line, 10-5
cache management instructions, 10-22
cache mechanisms in IA-32 processors, 17-34
caching terminology, 10-5
choosing a memory type, 10-10
flushing TLBs, 10-26
implicit caching, 10-25
internal caches, 10-1
L1 (level 1) cache, 10-3
L2 (level 2) cache, 10-3
L3 (level 3) cache, 10-3
methods of caching available, 10-6
MTRRs, description of, 10-27
operating modes, 10-15
overview of, 10-1
self-modifying code, effect on, 10-24, 17-34
snooping, 10-6
store buffer, 10-27
TLBs, 10-4
UC (strong uncacheable) memory type, 10-6
UC- (uncacheable) memory type, 10-7
WB (write back) memory type, 10-8
WC (write combining) memory type, 10-7
WP (write protected) memory type, 10-8
write-back caching, 10-6
WT (write through) memory type, 10-8

Call gates
16-bit, interlevel return from, 17-38
accessing a code segment through, 4-22
description of, 4-19
for 16-bit and 32-bit code modules, 16-2
IA-32e mode, 4-20
introduction to, 2-5
mechanism, 4-22
privilege level checking rules, 4-23

CALL instruction, 2-6, 3-11, 4-14, 4-15, 4-22, 4-29,
6-3, 6-12, 6-13, 16-7

Caller access privileges, checking, 4-37
Calls

16 and 32-bit code segments, 16-4
controlling operand-size attribute, 16-7
returning from, 4-28

Capability MSRs
See VMX capability MSRs

Catastrophic shutdown detector
Thermal monitoring

catastrophic shutdown detector, 13-9
catastrophic shutdown detector, 13-8
CC0 and CC1 (counter control) fields, CESR MSR

(Pentium processor), 18-118
Vol. 3B Index -3

INDEX
CD (cache disable) flag, CR0 control register, 2-19,
9-8, 10-13, 10-15, 10-18, 10-22, 10-42,
10-43, 17-24, 17-26, 17-34

CESR (control and event select) MSR (Pentium
processor), 18-117

CLFLSH feature flag, CPUID instruction, 9-10
CLFLUSH instruction, 2-21, 7-9, 9-10, 10-23
CLI instruction, 5-10
Clocks

counting processor clocks, 18-96
Hyper-Threading Technology, 18-96
nominal CPI, 18-96
non-halted clockticks, 18-96
non-halted CPI, 18-96
non-sleep Clockticks, 18-96
time stamp counter, 18-96

CLTS instruction, 2-27, 4-34, 1-2, 1-11
Cluster model, local APIC, 8-31
CMOVcc instructions, 17-5
CMPXCHG instruction, 7-5, 17-5
CMPXCHG8B instruction, 7-5, 17-6
Code modules

16 bit vs. 32 bit, 16-2
mixing 16-bit and 32-bit code, 16-1
sharing data, mixed-size code segs, 16-4
transferring control, mixed-size code segs, 16-4

Code segments
accessing data in, 4-14
accessing through a call gate, 4-22
description of, 3-16
descriptor format, 4-3
descriptor layout, 4-3
direct calls or jumps to, 4-15
paging of, 2-8
pointer size, 16-5
privilege level checks

transferring control between code segs, 4-14
Compatibility

IA-32 architecture, 17-1
software, 1-6

Compatibility mode
code segment descriptor, 4-5
code segment descriptors, 9-16
control registers, 2-17
CS.L and CS.D, 9-16
debug registers, 2-29
EFLAGS register, 2-15
exception handling, 2-7
gates, 2-6
GDTR register, 2-16, 2-17
global and local descriptor tables, 2-5
IDTR register, 2-17
interrupt handling, 2-7
L flag, 3-16, 4-5
memory management, 2-8
operation, 9-16
segment loading instructions, 3-12
segments, 3-6

switching to, 9-16
SYSCALL and SYSRET, 4-32
SYSENTER and SYSEXIT, 4-31
system flags, 2-15
system registers, 2-9
task register, 2-17
See also: 64-bit mode, IA-32e mode

compilers
documentation, 1-10

Condition code flags, x87 FPU status word
compatibility information, 17-10

Conforming code segments
accessing, 4-17
C (conforming) flag, 4-16
description of, 3-18

Context, task (see Task state)
Control registers

64-bit mode, 2-17
CR0, 2-17
CR1 (reserved), 2-17
CR2, 2-17
CR3 (PDBR), 2-8, 2-17
CR4, 2-17
description of, 2-17
introduction to, 2-9
VMX operation, 1-21

Coprocessor segment
overrun exception, 5-41, 17-16

Counter mask field
PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family

processors), 18-43, 18-115
CPL

description of, 4-10
field, CS segment selector, 4-2

CPUID instruction
AP-485, 1-10
availability, 17-6
control register flags, 2-25
detecting features, 17-3
serializing instructions, 7-14
syntax for data, 1-8

CR0 control register, 17-9
description of, 2-17
introduction to, 2-9
state following processor reset, 9-2

CR1 control register (reserved), 2-17
CR2 control register

description of, 2-17
introduction to, 2-9

CR3 control register (PDBR)
associated with a task, 6-1, 6-3
changing to access full extended physical address

space, 3-37
description of, 2-17, 3-28
format with PAE enabled, 3-34
in TSS, 6-5, 6-19
introduction to, 2-9
invalidation of non-global TLBs, 3-51
Index-4 Vol. 3B

INDEX
loading during initialization, 9-13
memory management, 2-8
page directory base address, 2-8
page table base address, 2-7

CR4 control register
description of, 2-17
enabling control functions, 17-2
inclusion in IA-32 architecture, 17-23
introduction to, 2-9
VMX usage of, 19-4

CR8 register, 2-9
64-bit mode, 2-18
compatibility mode, 2-18
description of, 2-18
task priority level bits, 2-25
when available, 2-18

CS register, 17-14
state following initialization, 9-6

C-state, 13-6
CTR0 and CTR1 (performance counters) MSRs

(Pentium processor), 18-117, 18-119
Current privilege level (see CPL)

D
D (default operation size) flag

segment descriptor, 16-2, 17-38
D (dirty) flag, page-table entries, 3-32
Data breakpoint exception conditions, 18-11
Data segments

description of, 3-16
descriptor layout, 4-3
expand-down type, 3-15
paging of, 2-8
privilege level checking when accessing, 4-11

DE (debugging extensions) flag, CR4 control register,
2-23, 17-24, 17-26, 17-27

Debug exception (#DB), 5-10, 5-29, 6-6, 18-9, 18-24,
18-36

Debug store (see DS)
DEBUGCTLMSR MSR, 18-34, 18-36, 1-113
Debugging facilities

breakpoint exception (#BP), 18-1
debug exception (#DB), 18-1
DR6 debug status register, 18-1
DR7 debug control register, 18-1
exceptions, 18-8
INT3 instruction, 18-1
last branch, interrupt, and exception recording,

18-2, 18-13
masking debug exceptions, 5-10
overview of, 18-1
performance-monitoring counters, 18-39
registers

description of, 18-2
introduction to, 2-9
loading, 2-29

RF (resume) flag, EFLAGS, 18-1

see DS (debug store) mechanism
T (debug trap) flag, TSS, 18-1
TF (trap) flag, EFLAGS, 18-1
virtualization, 1-1
VMX operation, 1-2

DEC instruction, 7-5
Denormal operand exception (#D), 17-12
Denormalized operand, 17-16
Device-not-available exception (#NM), 2-21, 2-28,

5-36, 9-8, 17-14, 17-15
Digital readout bits, 13-17
DIV instruction, 5-28
Divide configuration register, local APIC, 8-22
Divide-error exception (#DE), 5-28, 17-28
Double-fault exception (#DF), 5-38, 17-30
DPL (descriptor privilege level) field, segment

descriptor, 3-14, 4-2, 4-5, 4-10
DR0-DR3 breakpoint-address registers, 18-1, 18-4,

18-33, 18-35, 18-36
DR4-DR5 debug registers, 17-27, 18-4
DR6 debug status register, 18-4

B0-B3 (BP detected) flags, 18-4
BD (debug register access detected) flag, 18-4
BS (single step) flag, 18-4
BT (task switch) flag, 18-4
debug exception (#DB), 5-29
reserved bits, 17-26

DR7 debug control register, 18-5
G0-G3 (global breakpoint enable) flags, 18-5
GD (general detect enable) flag, 18-5
GE (global exact breakpoint enable) flag, 18-5
L0-L3 (local breakpoint enable) flags, 18-5
LE local exact breakpoint enable) flag, 18-5
LEN0-LEN3 (Length) fields, 18-6
R/W0-R/W3 (read/write) fields, 17-26, 18-5

DS feature flag, CPUID instruction, 18-16, 18-18,
18-31, 18-33

DS save area, 18-71, 18-73, 18-74
DS (debug store) mechanism

availability of, 18-69
description of, 18-69
DS feature flag, CPUID instruction, 18-69
DS save area, 18-70, 18-73
IA-32e mode, 18-73
interrupt service routine (DS ISR), 18-29
setting up, 18-26

Dual-core technology
architecture, 7-34
logical processors supported, 7-24
MTRR memory map, 7-35
multi-threading feature flag, 7-24
performance monitoring, 18-100
specific features, 17-5

Dual-monitor treatment, 1-25
D/B (default operation size/default stack pointer size

and/or upper bound) flag, segment
descriptor, 3-15, 4-6
Vol. 3B Index -5

INDEX
E
E (edge detect) flag

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family),
18-42

E (edge detect) flag, PerfEvtSel0 and PerfEvtSel1
MSRs (P6 family processors), 18-114

E (expansion direction) flag
segment descriptor, 4-2, 4-6

E (MTRRs enabled) flag
IA32_MTRR_DEF_TYPE MSR, 10-31

EFLAGS register
identifying 32-bit processors, 17-7
introduction to, 2-9
new flags, 17-7
saved in TSS, 6-5
system flags, 2-12
VMX operation, 1-5

EIP register, 17-14
saved in TSS, 6-6
state following initialization, 9-6

EM (emulation) flag
CR0 control register, 2-21, 2-22, 5-36, 9-6, 9-8,

11-1, 12-3
EMMS instruction, 11-3
Enhanced Intel SpeedStep Technology

ACPI 3.0 specification, 13-2
IA32_APERF MSR, 13-2
IA32_MPERF MSR, 13-2
IA32_PERF_CTL MSR, 13-1
IA32_PERF_STATUS MSR, 13-1
introduction, 13-1
multiple processor cores, 13-2
performance transitions, 13-1
P-state coordination, 13-2
See also: thermal monitoring

Error code, 1-4
architectural MCA, 1-1, 1-4
decoding IA32_MCi_STATUS, 1-1, 1-4
exception, description of, 5-20
external bus, 1-1, 1-4
memory hierarchy, 1-4
pushing on stack, 17-37
watchdog timer, 1-1, 1-4

Error numbers
VM-instruction error field, 1-1

Error signals, 17-14
Error-reporting bank registers, 14-2
ERROR#

input, 17-21
output, 17-21

ES0 and ES1 (event select) fields, CESR MSR (Pentium
processor), 18-117

ET (extension type) flag, CR0 control register, 2-20,
17-9

Event select field, PerfEvtSel0 and PerfEvtSel1 MSRs
(P6 family processors), 18-41, 18-53,
18-113

Events
at-retirement, 18-85
at-retirement (Pentium 4 processor), 18-63
non-retirement (Pentium 4 processor), 18-63,

1-55
P6 family processors, 1-106
Pentium processor, 1-124

Exception handler
calling, 5-15
defined, 5-1
flag usage by handler procedure, 5-19
machine-check exception handler, 14-22
machine-check exceptions (#MC), 14-22
machine-error logging utility, 14-22
procedures, 5-16
protection of handler procedures, 5-18
task, 5-20, 6-3

Exceptions
alignment check, 17-15
classifications, 5-6
compound error codes, 14-18
conditions checked during a task switch, 6-15
coprocessor segment overrun, 17-16
description of, 2-7, 5-1
device not available, 17-15
double fault, 5-38
error code, 5-20
exception bitmap, 1-2
execute-disable bit, 4-47
floating-point error, 17-16
general protection, 17-16
handler mechanism, 5-16
handler procedures, 5-16
handling, 5-15
handling in real-address mode, 15-6
handling in SMM, 1-13
handling in virtual-8086 mode, 15-16
handling through a task gate in virtual-8086 mode

, 15-21
handling through a trap or interrupt gate in

virtual-8086 mode, 15-18
IA-32e mode, 2-7
IDT, 5-12
initializing for protected-mode operation, 9-13
invalid-opcode, 17-7
masking debug exceptions, 5-10
masking when switching stack segments, 5-11
MCA error codes, 14-16
MMX instructions, 11-1
notation, 1-9
overview of, 5-1
priorities among simultaneous exceptions and

interrupts, 5-11
priority of, 17-29
priority of, x87 FPU exceptions, 17-14
reference information on all exceptions, 5-27
reference information, 64-bit mode, 5-22
restarting a task or program, 5-7
Index-6 Vol. 3B

INDEX
segment not present, 17-15
simple error codes, 14-17
sources of, 5-5
summary of, 5-3
vectors, 5-2

Executable, 3-15
Execute-disable bit capability

conditions for, 4-43
CPUID flag, 4-43
detecting and enabling, 4-43
exception handling, 4-47
page sizes, 4-43
page-fault exceptions, 5-54
paging data structures, 3-44, 3-45
physical address sizes, 4-43
protection matrix for IA-32e mode, 4-44
protection matrix for legacy modes, 4-45
reserved bit checking, 4-45

Execution events, 1-94
Exit-reason numbers

VM entries & exits, 1-1
Expand-down data segment type, 3-15
Extended signature table, 9-41
extended signature table, 9-41
External bus errors, detected with machine-check

architecture, 14-21

F
F2XM1 instruction, 17-18
Family 06H, 1-1
Family 0FH, 1-1

microcode update facilities, 9-37
Faults

description of, 5-6
restarting a program or task after, 5-7

FCMOVcc instructions, 17-5
FCOMI instruction, 17-5
FCOMIP instruction, 17-5
FCOS instruction, 17-18
FDISI instruction (obsolete), 17-20
FDIV instruction, 17-15, 17-16
FE (fixed MTRRs enabled) flag,

IA32_MTRR_DEF_TYPE MSR, 10-31
Feature

determination, of processor, 17-3
information, processor, 17-3

FENI instruction (obsolete), 17-20
FINIT/FNINIT instructions, 17-10, 17-21
FIX (fixed range registers supported) flag,

IA32_MTRRCAPMSR, 10-30
Fixed-range MTRRs

description of, 10-31
Flat segmentation model, 3-3, 3-4
FLD instruction, 17-18
FLDENV instruction, 17-15, 17-16
FLDL2E instruction, 17-19
FLDL2T instruction, 17-19

FLDLG2 instruction, 17-19
FLDLN2 instruction, 17-19
FLDPI instruction, 17-19
Floating-point error exception (#MF), 17-16
Floating-point exceptions

denormal operand exception (#D), 17-12
invalid operation (#I), 17-18
numeric overflow (#O), 17-13
numeric underflow (#U), 17-13
saved CS and EIP values, 17-14

FLUSH# pin, 5-4
FNSAVE instruction, 11-4
Focus processor, local APIC, 8-34
FORCEPR# log, 13-16
FORCPR# interrupt enable bit, 13-18
FPATAN instruction, 17-18
FPREM instruction, 17-10, 17-15, 17-16, 17-17
FPREM1 instruction, 17-10, 17-17
FPTAN instruction, 17-10, 17-17
Front_end events, 1-94
FRSTOR instruction, 11-4, 17-15, 17-16
FSAVE instruction, 11-3, 11-4
FSAVE/FNSAVE instructions, 17-15, 17-19
FSCALE instruction, 17-16
FSIN instruction, 17-18
FSINCOS instruction, 17-18
FSQRT instruction, 17-15, 17-16
FSTENV instruction, 11-3
FSTENV/FNSTENV instructions, 17-19
FTAN instruction, 17-10
FUCOM instruction, 17-17
FUCOMI instruction, 17-5
FUCOMIP instruction, 17-5
FUCOMP instruction, 17-17
FUCOMPP instruction, 17-17
FWAIT instruction, 5-36
FXAM instruction, 17-18, 17-19
FXRSTOR instruction, 2-24, 9-10, 11-3, 11-4, 11-5,

12-1, 12-2, 12-7
FXSAVE instruction, 2-24, 9-10, 11-3, 11-4, 11-5,

12-1, 12-2, 12-7
FXSR feature flag, CPUID instruction, 9-10
FXTRACT instruction, 17-12, 17-18

G
G (global) flag

page-directory entries, 10-17, 10-26
page-table entries, 3-32, 10-17, 10-26

G (granularity) flag
segment descriptor, 3-13, 3-15, 4-2, 4-6

G0-G3 (global breakpoint enable) flags
DR7 register, 18-5

Gate descriptors
call gates, 4-19
description of, 4-18
IA-32e mode, 4-20

Gates, 2-5
Vol. 3B Index -7

INDEX
IA-32e mode, 2-6
GD (general detect enable) flag

DR7 register, 18-5, 18-12
GDT

description of, 2-5, 3-20
IA-32e mode, 2-5
index field of segment selector, 3-9
initializing, 9-12
paging of, 2-8
pointers to exception/interrupt handlers, 5-16
segment descriptors in, 3-13
selecting with TI flag of segment selector, 3-10
task switching, 6-12
task-gate descriptor, 6-11
TSS descriptors, 6-7
use in address translation, 3-8

GDTR register
description of, 2-5, 2-9, 2-16, 3-21
IA-32e mode, 2-5, 2-16
limit, 4-7
loading during initialization, 9-12
storing, 3-21

GE (global exact breakpoint enable) flag
DR7 register, 18-5, 18-11

General-detect exception condition, 18-12
General-protection exception (#GP), 3-17, 4-9, 4-10,

4-16, 4-17, 5-13, 5-19, 5-50, 6-7, 17-16,
17-28, 17-29, 17-39, 17-41, 18-2

General-purpose registers, saved in TSS, 6-5
Global control MSRs, 14-2
Global descriptor table register (see GDTR)
Global descriptor table (see GDT)

H
HALT state

relationship to SMI interrupt, 1-5, 1-18
Hardware reset

description of, 9-1
processor state after reset, 9-2
state of MTRRs following, 10-28
value of SMBASE following, 1-5

Hexadecimal numbers, 1-8
high-temperature interrupt enable bit, 13-18
HITM# line, 10-6
HLT instruction, 2-29, 4-34, 5-39, 1-3, 1-18, 1-19
Hyper-Threading Technology

architectural state of a logical processor, 7-35
architecture description, 7-27
caches, 7-32
counting clockticks, 18-98
debug registers, 7-30
description of, 7-24, 17-4, 17-5
detecting, 7-40
executing multiple threads, 7-25
execution-based timing loops, 7-55
external signal compatibility, 7-33
halting logical processors, 7-53

handling interrupts, 7-26
HLT instruction, 7-47
IA32_MISC_ENABLE MSR, 7-31, 7-35
initializing IA-32 processors with, 7-25
introduction of into the IA-32 architecture, 17-4,

17-5
local a, 7-28
local APIC

functionality in logical processor, 7-29
logical processors, identifying, 7-37
machine check architecture, 7-30
managing idle and blocked conditions, 7-47
mapping resources, 7-36
memory ordering, 7-31
microcode update resources, 7-31, 7-36, 9-46
MP systems, 7-27
MTRRs, 7-29, 7-35
multi-threading feature flag, 7-24
multi-threading support, 7-24
PAT, 7-30
PAUSE instruction, 7-47, 7-48
performance monitoring, 18-90, 18-100
performance monitoring counters, 7-31, 7-35
placement of locks and semaphores, 7-55
required operating system support, 7-51
scheduling multiple threads, 7-55
self modifying code, 7-32
serializing instructions, 7-31
spin-wait loops

PAUSE instructions in, 7-51, 7-52, 7-54
thermal monitor, 7-33
TLBs, 7-33

I
IA32, 14-5, 1-5
IA-32 Intel architecture

compatibility, 17-1
processors, 17-1

IA32e mode
registers and mode changes, 9-16

IA-32e mode
address translation (2-MByte pages), 3-44
address translation (4-KByte pages), 3-43
call gates, 4-20
code segment descriptor, 4-5
D flag, 4-5
data structures and initialization, 9-15
debug registers, 2-9
debug store area, 18-73
descriptors, 2-6
DPL field, 4-5
exceptions during initialization, 9-15
feature-enable register, 2-10
gates, 2-6
global and local descriptor tables, 2-5
IA32_EFER MSR, 2-10, 4-43
initialization process, 9-14
Index-8 Vol. 3B

INDEX
interrupt stack table, 5-26
interrupts and exceptions, 2-7
IRET instruction, 5-25
L flag, 3-16, 4-5
logical address, 3-9
MOV CRn, 9-14
MTRR calculations, 10-36
NXE bit, 4-43
PAE mechanism, 3-24
PAE paging, 3-42
page level protection, 4-43
paging, 2-8, 3-42
PDE tables, 4-44
PDP tables, 4-44
PML4 tables, 3-42, 4-44
PTE tables, 4-44
registers and data structures, 2-2
segment descriptor tables, 3-22, 4-5
segment descriptors, 3-13
segment loading instructions, 3-12
segmentation, 3-6
stack switching, 4-28, 5-25
SYSCALL and SYSRET, 4-32
SYSENTER and SYSEXIT, 4-31
system descriptors, 3-19
system registers, 2-9
task switching, 6-22
task-state segments, 2-7
terminating mode operation, 9-16
See also: 64-bit mode, compatibility mode

IA32_APERF MSR, 13-2
IA32_APIC_BASE MSR, 7-16, 7-18, 8-8, 8-10, 8-11,

1-27
IA32_BIOS_SIGN_ID MSR, 1-33
IA32_BIOS_UPDT_TRIG MSR, 1-13, 1-32
IA32_BISO_SIGN_ID MSR, 1-13
IA32_CLOCK_MODULATION MSR, 7-33, 13-13,

13-14, 13-15, 1-10, 1-41, 1-83, 1-100
IA32_CTL MSR, 1-34
IA32_DEBUGCTL MSR, 1-25, 1-51
IA32_DS_AREA MSR, 18-26, 18-60, 18-70, 18-73,

18-89, 1-67
IA32_EFER MSR, 2-10, 2-12, 4-43, 1-25, 1-20
IA32_FEATURE_CONTROL MSR, 19-4
IA32_FMASK MSR, 4-32
IA32_KernelGSbase MSR, 2-10
IA32_LSTAR MSR, 2-10, 4-32
IA32_MCG_CAP MSR, 14-2, 14-3, 14-22, 1-34
IA32_MCG_CTL MSR, 14-2, 14-4
IA32_MCG_EAX MSR, 14-11
IA32_MCG_EBP MSR, 14-11
IA32_MCG_EBX MSR, 14-11
IA32_MCG_ECX MSR, 14-11
IA32_MCG_EDI MSR, 14-11
IA32_MCG_EDX MSR, 14-11
IA32_MCG_EFLAGS MSR, 14-11
IA32_MCG_EIP MSR, 14-11
IA32_MCG_ESI MSR, 14-11

IA32_MCG_ESP MSR, 14-11
IA32_MCG_MISC MSR, 14-11, 14-12, 1-37
IA32_MCG_R10 MSR, 14-12, 1-39
IA32_MCG_R11 MSR, 14-12, 1-39
IA32_MCG_R12 MSR, 14-12, 1-39
IA32_MCG_R13 MSR, 14-12, 1-40
IA32_MCG_R14 MSR, 14-12, 1-40
IA32_MCG_R15 MSR, 14-13, 1-40
IA32_MCG_R8 MSR, 14-12, 1-38
IA32_MCG_R9 MSR, 14-12, 1-39
IA32_MCG_RAX MSR, 14-11, 1-34
IA32_MCG_RBP MSR, 14-12, 1-36
IA32_MCG_RBX MSR, 14-12, 1-35
IA32_MCG_RCX MSR, 14-12, 1-35
IA32_MCG_RDI MSR, 14-12, 1-36
IA32_MCG_RDX MSR, 14-12, 1-35
IA32_MCG_RESERVEDn, 1-38
IA32_MCG_RESERVEDn MSR, 14-11
IA32_MCG_RFLAGS MSR, 14-12, 1-37
IA32_MCG_RIP MSR, 14-12, 1-37
IA32_MCG_RSI MSR, 14-12, 1-36
IA32_MCG_RSP MSR, 14-12, 1-36
IA32_MCG_STATUS MSR, 14-2, 14-4, 14-23, 14-25,

1-4
IA32_MCi_ADDR MSR, 14-9, 14-25, 1-61
IA32_MCi_CTL MSR, 14-5, 1-61
IA32_MCi_MISC MSR, 14-10, 14-25, 1-61
IA32_MCi_STATUS MSR, 14-5, 14-22, 14-25, 1-61

decoding for Family 06H, 1-1
decoding for Family 0FH, 1-1, 1-4

IA32_MISC_ENABLE MSR, 13-1, 13-9, 18-18, 18-60,
18-70, 1-42

IA32_MPERF MSR, 13-2
IA32_MTRRCAP MSR, 10-29, 10-30, 1-33
IA32_MTRR_DEF_TYPE MSR, 10-30
IA32_MTRR_FIXn, fixed ranger MTRRs, 10-31
IA32_MTRR_PHYS BASEn MTRR, 1-52
IA32_MTRR_PHYSBASEn MTRR, 1-52
IA32_MTRR_PHYSBASEn (variable range) MTRRs,

10-32
IA32_MTRR_PHYSMASKn MTRR, 1-52
IA32_MTRR_PHYSMASKn (variable range) MTRRs,

10-32
IA32_P5_MC_ADDR MSR, 1-25
IA32_P5_MC_TYPE MSR, 1-25
IA32_PAT_CR MSR, 10-45
IA32_PEBS_ENABLE MSR, 18-58, 18-61, 18-89,

1-95, 1-60
IA32_PERF_CTL MSR, 13-1
IA32_PERF_STATUS MSR, 13-1
IA32_PLATFORM_ID, 1-1, 1-26, 1-76, 1-95, 1-105
IA32_STAR MSR, 4-32
IA32_STAR_CS MSR, 2-10
IA32_STATUS MSR, 1-34
IA32_SYSCALL_FLAG_MASK MSR, 2-10
IA32_SYSENTER_CS MSR, 4-31, 4-32, 1-18, 1-33
IA32_SYSENTER_EIP MSR, 4-31, 1-25, 1-34
IA32_SYSENTER_ESP MSR, 4-31, 1-25, 1-34
Vol. 3B Index -9

INDEX
IA32_TERM_CONTROL MSR, 1-10, 1-83, 1-100
IA32_THERM_INTERRUPT MSR, 13-12, 13-15,

13-18, 1-41
FORCPR# interrupt enable bit, 13-18
high-temperature interrupt enable bit, 13-18
low-temperature interrupt enable bit, 13-18
overheat interrupt enable bit, 13-18
THERMTRIP# interrupt enable bit, 13-18
threshold #1 interrupt enable bit, 13-19
threshold #1 value, 13-18
threshold #2 interrupt enable, 13-19
threshold #2 value, 13-19

IA32_THERM_STATUS MSR, 13-15, 13-16, 1-42
digital readout bits, 13-17
out-of-spec status bit, 13-17
out-of-spec status log, 13-17
PROCHOT# or FORCEPR# event bit, 13-16
PROCHOT# or FORCEPR# log, 13-16
resolution in degrees, 13-17
thermal status bit, 13-16
thermal status log, 13-16
thermal threshold #1 log, 13-17
thermal threshold #1 status, 13-17
thermal threshold #2 log, 13-17
thermal threshold #2 status, 13-17
validation bit, 13-17

IA32_TIME_STAMP_COUNTER MSR, 1-26
IA32_VMX_BASIC MSR, 1-2, 1-3, 1-13, 1-22, 1-65,

1-92, 1-1
IA32_VMX_CR0_FIXED0 MSR, 19-5, 1-5, 1-22, 1-66,

1-93, 1-4
IA32_VMX_CR0_FIXED1 MSR, 19-5, 1-5, 1-23, 1-66,

1-93, 1-4
IA32_VMX_CR4_FIXED0 MSR, 19-5, 1-6, 1-23, 1-66,

1-93, 1-5
IA32_VMX_CR4_FIXED1 MSR, 19-5, 1-6, 1-23, 1-66,

1-93, 1-5
IA32_VMX_ENTRY_CTLS MSR, 1-22, 1-65, 1-93, 1-3
IA32_VMX_EXIT_CTLS MSR, 1-5, 1-22, 1-65, 1-92,

1-3
IA32_VMX_MISC MSR, 1-6, 1-4, 1-13, 1-33, 1-22,

1-66, 1-93, 1-4
IA32_VMX_PINBASED_CTLS MSR, 1-3, 1-22, 1-65,

1-92, 1-2
IA32_VMX_PROCBASED_CTLS MSR, 1-10, 1-12, 1-3,

1-22, 1-23, 1-65, 1-92, 1-94, 1-2, 1-3
IA32_VMX_VMCS_ENUM MSR, 1-66, 1-5
ID (identification) flag

EFLAGS register, 2-15, 17-7
IDIV instruction, 5-28, 17-28
IDT

64-bit mode, 5-23
call interrupt & exception-handlers from, 5-15
change base & limit in real-address mode, 15-7
description of, 5-12
handling NMIs during initialization, 9-11
initializing protected-mode operation, 9-13
initializing real-address mode operation, 9-11

introduction to, 2-7
limit, 17-30
paging of, 2-8
structure in real-address mode, 15-7
task switching, 6-13
task-gate descriptor, 6-11
types of descriptors allowed, 5-14
use in real-address mode, 15-6

IDTR register
description of, 2-17, 5-13
IA-32e mode, 2-17
introduction to, 2-7
limit, 4-7
loading in real-address mode, 15-7
storing, 3-21

IE (invalid operation exception) flag
x87 FPU status word, 17-10

IEEE Standard 754 for Binary Floating-Point
Arithmetic, 17-11, 17-12, 17-13, 17-16,
17-17, 17-18, 17-19

IF (interrupt enable) flag
EFLAGS register, 2-13, 2-14, 5-9, 5-14, 5-19,

15-6, 15-29, 1-13
IN instruction, 7-12, 17-40, 1-3
INC instruction, 7-5
Index field, segment selector, 3-9
INIT interrupt, 8-5
Initial-count register, local APIC, 8-21, 8-22
Initialization

built-in self-test (BIST), 9-1, 9-2
CS register state following, 9-6
EIP register state following, 9-6
example, 9-19
first instruction executed, 9-6
hardware reset, 9-1
IA-32e mode, 9-14
IDT, protected mode, 9-13
IDT, real-address mode, 9-11
Intel486 SX processor and Intel 487 SX math

coprocessor, 17-22
location of software-initialization code, 9-6
machine-check initialization, 14-15
model and stepping information, 9-5
multiple-processor (MP) bootup sequence for P6

family processors, 1-1
multitasking environment, 9-14
overview, 9-1
paging, 9-13
processor state after reset, 9-2
protected mode, 9-11
real-address mode, 9-10
RESET# pin, 9-1
setting up exception- and interrupt-handling

facilities, 9-13
x87 FPU, 9-6

INIT# pin, 5-4, 9-2
INIT# signal, 2-29, 19-6
INLVPG instruction, 1-3
Index-10 Vol. 3B

INDEX
INS instruction, 18-11
Instruction operands, 1-7
Instruction-breakpoint exception condition, 18-10
Instructions

new instructions, 17-5
obsolete instructions, 17-7
privileged, 4-33
serializing, 7-14, 7-31, 17-21
supported in real-address mode, 15-4
system, 2-10, 2-25

INS/INSB/INSW/INSD instruction, 1-3
INT 3 instruction, 2-7, 5-31
INT instruction, 2-7, 4-14
INT n instruction, 3-11, 5-1, 5-5, 5-6, 18-12
INT (APIC interrupt enable) flag, PerfEvtSel0 and

PerfEvtSel1 MSRs (P6 family processors),
18-43, 18-114

INT15 and microcode updates, 9-55
INT3 instruction, 3-11, 5-6
Intel 287 math coprocessor, 17-9
Intel 387 math coprocessor system, 17-9
Intel 487 SX math coprocessor, 17-9, 17-22
Intel 64 architecture

definition of, 1-2
relation to IA-32, 1-2

Intel 8086 processor, 17-9
Intel Core Solo and Duo processors

model-specific registers, 1-75
Intel Core Solo and Intel Core Duo processors

Enhanced Intel SpeedStep technology, 13-1
event mask (Umask), 18-50, 18-52
last branch, interrupt, exception recording, 18-30
notes on P-state transitions, 13-2
performance monitoring, 18-50, 18-52
performance monitoring events, 1-2
sub-fields layouts, 18-50, 18-52
time stamp counters, 18-37

Intel developer link, 1-11
Intel NetBurst microarchitecture, 1-2
Intel software network link, 1-10
Intel SpeedStep Technology

See: Enhanced Intel SpeedStep Technology
Intel VTune Performance Analyzer

related information, 1-10
Intel Xeon processor, 1-1

last branch, interrupt, and exception recording,
18-18

time-stamp counter, 18-37
Intel Xeon processor MP

with 8MB L3 cache, 18-100, 18-105
Intel286 processor, 17-9
Intel386 DX processor, 17-9
Intel386 SL processor, 2-10
Intel486 DX processor, 17-9
Intel486 SX processor, 17-9, 17-22
Interprivilege level calls

call mechanism, 4-22
stack switching, 4-25

Interprocessor interrupt (IPIs), 8-2
Interprocessor interrupt (IPI)

in MP systems, 8-1
interrupt, 5-17
Interrupt command register (ICR), local APIC, 8-23
Interrupt gates

16-bit, interlevel return from, 17-38
clearing IF flag, 5-10, 5-19
difference between interrupt and trap gates,

5-19
for 16-bit and 32-bit code modules, 16-2
handling a virtual-8086 mode interrupt or

exception through, 15-18
in IDT, 5-14
introduction to, 2-5, 2-7
layout of, 5-14

Interrupt handler
calling, 5-15
defined, 5-1
flag usage by handler procedure, 5-19
procedures, 5-16
protection of handler procedures, 5-18
task, 5-20, 6-3

Interrupts
APIC priority levels, 8-38
automatic bus locking, 17-41
control transfers between 16- and 32-bit code

modules, 16-8
description of, 2-7, 5-1
destination, 8-35
distribution mechanism, local APIC, 8-33
enabling and disabling, 5-9
handling, 5-15
handling in real-address mode, 15-6
handling in SMM, 1-13
handling in virtual-8086 mode, 15-16
handling multiple NMIs, 5-9
handling through a task gate in virtual-8086

mode, 15-21
handling through a trap or interrupt gate in

virtual-8086 mode, 15-18
IA-32e mode, 2-7, 2-17
IDT, 5-12
IDTR, 2-17
initializing for protected-mode operation, 9-13
interrupt descriptor table register (see IDTR)
interrupt descriptor table (see IDT)
list of, 5-3, 15-8
local APIC, 8-1
maskable hardware interrupts, 2-13
masking maskable hardware interrupts, 5-9
masking when switching stack segments, 5-11
message signalled interrupts, 8-46
on-die sensors for, 13-8
overview of, 5-1
priorities among simultaneous exceptions and

interrupts, 5-11
priority, 8-38
Vol. 3B Index -11

INDEX
propagation delay, 17-30
real-address mode, 15-8
restarting a task or program, 5-7
software, 5-67
sources of, 8-1
summary of, 5-3
thermal monitoring, 13-8
user defined, 5-2, 5-67
valid APIC interrupts, 8-19
vectors, 5-2
virtual-8086 mode, 15-8

INTO instruction, 2-7, 3-11, 5-6, 5-32, 18-12
INTR# pin, 5-2, 5-9
Invalid opcode exception (#UD), 2-22, 5-34, 5-64,

11-1, 17-7, 17-14, 17-27, 17-29, 18-4,
1-4

Invalid TSS exception (#TS), 5-42, 6-8
Invalid-operation exception, x87 FPU, 17-15, 17-18
INVD instruction, 2-29, 4-34, 7-14, 10-23, 17-5
INVLPG instruction, 2-29, 4-34, 7-14, 17-5, 1-5, 1-6
IOPL (I/O privilege level) field, EFLAGS register

description of, 2-13
on return from exception, interrupt handler, 5-18
sensitive instructions in virtual-8086 mode,

15-15
virtual interrupt, 2-14, 2-15

IPI (see interprocessor interrupt)
IRET instruction, 3-11, 5-9, 5-10, 5-18, 5-19, 5-25,

6-13, 7-14, 15-6, 15-29, 1-11
IRETD instruction, 2-14, 7-14
IRR (interrupt request register), local APIC, 8-41
I/O

breakpoint exception conditions, 18-11
in virtual-8086 mode, 15-15
instruction restart flag

SMM revision identifier field, 1-21
instruction restart flag, SMM revision identifier

field, 1-21
IO_SMI bit, 1-15
I/O permission bit map, TSS, 6-6
map base address field, TSS, 6-6
restarting following SMI interrupt, 1-21
saving I/O state, 1-15
SMM state save map, 1-15

I/O APIC, 8-35
bus arbitration, 8-34
description of, 8-1
external interrupts, 5-4
information about, 8-1
interrupt sources, 8-2
local APIC and I/O APIC, 8-3, 8-4
overview of, 8-1
valid interrupts, 8-19
See also: local APIC

J
JMP instruction, 2-6, 3-11, 4-14, 4-15, 4-22, 6-3,

6-12, 6-13

K
KEN# pin, 10-17, 17-43

L
L0-L3 (local breakpoint enable) flags

DR7 register, 18-5
L1 (level 1) cache

caching methods, 10-6
CPUID feature flag, 10-23
description of, 10-3
effect of using write-through memory, 10-10
introduction of, 17-34
invalidating and flushing, 10-23
MESI cache protocol, 10-11
shared and adaptive mode, 10-23

L2 (level 2) cache
caching methods, 10-6
description of, 10-3
disabling, 10-23
effect of using write-through memory, 10-10
introduction of, 17-34
invalidating and flushing, 10-23
MESI cache protocol, 10-11

L3 (level 3) cache
caching methods, 10-6
description of, 10-3
disabling and enabling, 10-17, 10-22
effect of using write-through memory, 10-10
introduction of, 17-35
invalidating and flushing, 10-23
MESI cache protocol, 10-11

LAR instruction, 2-28, 4-35
Larger page sizes

introduction of, 17-35
support for, 17-25

Last branch
interrupt & exception recording

description of, 18-13, 18-14, 18-18, 18-22,
18-30, 18-32, 18-34

record stack, 18-15, 18-18, 18-19, 18-22, 18-24,
18-25, 18-31, 18-33, 1-51, 1-67

record top-of-stack pointer, 18-16, 18-19, 18-32,
18-34

LastBranchFromIP MSR, 18-36
LastBranchToIP MSR, 18-36
LastExceptionFromIP MSR, 18-16, 18-25, 18-32,

18-34, 18-36
LastExceptionToIP MSR, 18-16, 18-25, 18-32, 18-34,

18-36
Index-12 Vol. 3B

INDEX
LBR (last branch/interrupt/exception) flag,
DEBUGCTLMSR MSR, 18-21, 18-24, 18-35,
18-36

LDS instruction, 3-11, 4-11
LDT

associated with a task, 6-3
description of, 2-5, 2-6, 3-21
index into with index field of segment selector,

3-9
pointer to in TSS, 6-6
pointers to exception and interrupt handlers, 5-16
segment descriptors in, 3-13
segment selector field, TSS, 6-19
selecting with TI (table indicator) flag of segment

selector, 3-10
setting up during initialization, 9-12
task switching, 6-12
task-gate descriptor, 6-11
use in address translation, 3-8

LDTR register
description of, 2-5, 2-6, 2-9, 2-16, 3-21
IA-32e mode, 2-16
limit, 4-7
storing, 3-21

LE (local exact breakpoint enable) flag, DR7 register,
18-5, 18-11

LEN0-LEN3 (Length) fields, DR7 register, 18-6
LES instruction, 3-11, 4-11, 5-34
LFENCE instruction, 2-21, 7-9, 7-11, 7-12, 7-15
LFS instruction, 3-11, 4-11
LGDT instruction, 2-27, 4-34, 7-14, 9-12, 17-27
LGS instruction, 3-11, 4-11
LIDT instruction, 2-27, 4-34, 5-13, 7-14, 9-11, 15-7,

17-30
Limit checking

description of, 4-6
pointer offsets are within limits, 4-36

Limit field, segment descriptor, 4-2, 4-6
Linear address

description of, 3-8
IA-32e mode, 3-9
introduction to, 2-8

Linear address space, 3-8
defined, 3-1
of task, 6-19

Link (to previous task) field, TSS, 5-20
Linking tasks

mechanism, 6-16
modifying task linkages, 6-18

LINT pins
function of, 5-2
programming, 1-1

LLDT instruction, 2-27, 4-34, 7-14
LMSW instruction, 2-27, 4-34, 1-3, 1-11
Local APIC

64-bit mode, 8-43
APIC_ID value, 7-36
arbitration over the APIC bus, 8-34

arbitration over the system bus, 8-34
block diagram, 8-6
cluster model, 8-31
CR8 usage, 8-43
current-count register, 8-22
description of, 8-1
detecting with CPUID, 8-10
DFR (destination format register), 8-31
divide configuration register, 8-22
enabling and disabling, 8-10
external interrupts, 5-2
features

Pentium 4 and Intel Xeon, 17-31
Pentium and P6, 17-31

focus processor, 8-34
global enable flag, 8-11
IA32_APIC_BASE MSR, 8-11
initial-count register, 8-21, 8-22
internal error interrupts, 8-2
interrupt command register (ICR), 8-23
interrupt destination, 8-35
interrupt distribution mechanism, 8-33
interrupt sources, 8-2
IRR (interrupt request register), 8-41
I/O APIC, 8-1
local APIC and 82489DX, 17-30
local APIC and I/O APIC, 8-3, 8-4
local vector table (LVT), 8-16
logical destination mode, 8-30
LVT (local-APIC version register), 8-15
mapping of resources, 7-36
MDA (message destination address), 8-30
overview of, 8-1
performance-monitoring counter, 18-116
physical destination mode, 8-30
receiving external interrupts, 5-2
register address map, 8-8
shared resources, 7-36
SMI interrupt, 1-3
spurious interrupt, 8-44
spurious-interrupt vector register, 8-11
state after a software (INIT) reset, 8-14
state after INIT-deassert message, 8-15
state after power-up reset, 8-13
state of, 8-45
SVR (spurious-interrupt vector register), 8-11
timer, 8-21
timer generated interrupts, 8-2
TMR (trigger mode register), 8-41
valid interrupts, 8-19
version register, 8-15

Local descriptor table register (see LDTR)
Local descriptor table (see LDT)
Local vector table (LVT)

description of, 8-16
thermal entry, 13-12

LOCK prefix, 2-29, 2-30, 5-34, 7-2, 7-3, 7-5, 7-11,
17-41
Vol. 3B Index -13

INDEX
Locked (atomic) operations
automatic bus locking, 7-4
bus locking, 7-3
effects on caches, 7-7
loading a segment descriptor, 17-26
on IA-32 processors, 17-41
overview of, 7-2
software-controlled bus locking, 7-5

LOCK# signal, 2-30, 7-2, 7-3, 7-5, 7-7
Logical address

description of, 3-8
IA-32e mode, 3-9

Logical address space, of task, 6-20
Logical destination mode, local APIC, 8-30
Logical processors

per physical package, 7-24
low-temperature interrupt enable bit, 13-18
LSL instruction, 2-28, 4-36
LSS instruction, 3-11, 4-11
LTR instruction, 2-27, 4-34, 6-9, 7-14, 9-14
LVT (see Local vector table)

M
Machine check architecture

VMX considerations, 1-13
Machine-check architecture

availability of MCA and exception, 14-14
compatibility with Pentium processor, 14-1
compound error codes, 14-18
CPUID flags, 14-14, 14-15
error codes, 14-16, 14-17, 14-18
error-reporting bank registers, 14-2
error-reporting MSRs, 14-5
extended machine check state MSRs, 14-10
external bus errors, 14-21
first introduced, 17-29
global MSRs, 14-2
initialization of, 14-15
interpreting error codes, example (P6 family

processors), 1-1
introduction of in IA-32 processors, 17-43
logging correctable errors, 14-24
machine-check exception handler, 14-22
machine-check exception (#MC), 14-1
MSRs, 14-2
overview of MCA, 14-1
Pentium processor exception handling, 14-24
Pentium processor style error reporting, 14-13
simple error codes, 14-17
VMX considerations, 1-12
writing machine-check software, 14-21

Machine-check exception (#MC), 5-62, 14-1, 14-14,
14-22, 17-28, 17-43

Mapping of shared resources, 7-36
Maskable hardware interrupts

description of, 5-4
handling with virtual interrupt mechanism, 15-22

masking, 2-13, 5-9
MCA flag, CPUID instruction, 14-14
MCE flag, CPUID instruction, 14-14
MCE (machine-check enable) flag

CR4 control register, 2-24, 17-24
MDA (message destination address)

local APIC, 8-30
Memory, 10-1
Memory management

introduction to, 2-8
overview, 3-1
paging, 3-1, 3-2, 3-22
registers, 2-15
segments, 3-1, 3-2, 3-3, 3-9
virtual memory, 3-22
virtualization of, 1-3

Memory ordering
in IA-32 processors, 17-40
out of order stores for string operations, 7-10
overview, 7-8
processor ordering, 7-8
snooping mechanism, 7-9
strengthening or weakening, 7-11
write forwarding, 7-9
write ordering, 7-8

Memory type range registers (see MTRRs)
Memory types

caching methods, defined, 10-6
choosing, 10-10
MTRR types, 10-28
selecting for Pentium III and Pentium 4

processors, 10-20
selecting for Pentium Pro and Pentium II

processors, 10-18
UC (strong uncacheable), 10-6
UC- (uncacheable), 10-7
WB (write back), 10-8
WC (write combining), 10-7
WP (write protected), 10-8
writing values across pages with different

memory types, 10-21
WT (write through), 10-8

MemTypeGet() function, 10-39
MemTypeSet() function, 10-40
MESI cache protocol, 10-5, 10-11
Message address register, 8-47
Message data register format, 8-48
Message signalled interrupts

message address register, 8-46
message data register format, 8-46

MFENCE instruction, 2-21, 7-9, 7-11, 7-12, 7-15
Microcode update facilities

authenticating an update, 9-48
BIOS responsibilities, 9-49
calling program responsibilities, 9-52
checksum, 9-44
extended signature table, 9-41
family 0FH processors, 9-37
Index-14 Vol. 3B

INDEX
field definitions, 9-37
format of update, 9-37
function 00H presence test, 9-56
function 01H write microcode update data, 9-57
function 02H microcode update control, 9-62
function 03H read microcode update data, 9-63
general description, 9-37
HT Technology, 9-46
INT 15H-based interface, 9-55
overview, 9-36
process description, 9-37
processor identification, 9-41
processor signature, 9-41
return codes, 9-64
update loader, 9-45
update signature and verification, 9-47
update specifications, 9-49
VMX non-root operation, 1-13, 1-12
VMX support

early loading, 1-12
late loading, 1-12
virtualization issues, 1-11

Mixing 16-bit and 32-bit code
in IA-32 processors, 17-38
overview, 16-1

MMX technology
debugging MMX code, 11-6
effect of MMX instructions on pending x87

floating-point exceptions, 11-6
emulation of the MMX instruction set, 11-1
exceptions that can occur when executing MMX

instructions, 11-1
introduction of into the IA-32 architecture, 17-3
register aliasing, 11-1
state, 11-1
state, saving and restoring, 11-4
system programming, 11-1
task or context switches, 11-5
using TS flag to control saving of MMX state, 12-9

Mode switching
example, 9-19
real-address and protected mode, 9-17
to SMM, 1-3

Model and stepping information, following processor
initialization or reset, 9-5

Model-specific registers (see MSRs)
Modes of operation (see Operating modes)
MONITOR instruction, 1-3
MOV instruction, 3-11, 4-11
MOV (control registers) instructions, 2-27, 2-28,

4-34, 7-14, 9-17
MOV (debug registers) instructions, 2-29, 4-34, 7-14,

18-12
MOVNTDQ instruction, 7-9, 10-5, 10-23
MOVNTI instruction, 2-21, 7-9, 10-5, 10-23
MOVNTPD instruction, 7-9, 10-5, 10-23
MOVNTPS instruction, 7-9, 10-5, 10-23
MOVNTQ instruction, 7-9, 10-5, 10-23

MP (monitor coprocessor) flag
CR0 control register, 2-21, 2-22, 5-36, 9-6, 9-8,

11-1, 17-9
MSR, 1-69
MSRs

architectural, 1-117
description of, 9-9
introduction of in IA-32 processors, 17-42
introduction to, 2-9
list of, 1-1
machine-check architecture, 14-2
P6 family processors, 1-105
Pentium 4 processor, 1-1, 1-25, 1-72
Pentium processors, 1-117
reading and writing, 2-31
reading & writing in 64-bit mode, 2-31
virtualization support, 1-18
VMX support, 1-18

MSR_ TC_PRECISE_EVENT MSR, 1-94
MSR_DEBUBCTLB MSR, 18-15, 18-31, 18-33
MSR_DEBUGCTLA, 18-24
MSR_DEBUGCTLA MSR, 18-18, 18-21, 18-25, 18-26,

18-27, 18-28, 18-30, 18-48, 18-53,
18-57, 18-70, 1-51

MSR_DEBUGCTLB MSR, 18-14, 18-30, 18-32, 1-17,
1-88, 1-103

MSR_EBC_FREQUENCY_ID MSR, 1-30, 1-32
MSR_EBC_HARD_POWERON MSR, 1-27
MSR_EBC_SOFT_POWERON MSR, 1-29
MSR_IFSB_CNTR7 MSR, 18-104
MSR_IFSB_CTRL6 MSR, 18-104
MSR_IFSB_DRDY0 MSR, 18-103
MSR_IFSB_DRDY1 MSR, 18-103
MSR_IFSB_IBUSQ0 MSR, 18-101
MSR_IFSB_IBUSQ1 MSR, 18-101
MSR_IFSB_ISNPQ0 MSR, 18-102
MSR_IFSB_ISNPQ1 MSR, 18-102
MSR_LASTBRANCH _TOS, 1-51
MSR_LASTBRANCH_n MSR, 18-19, 18-22, 18-24,

18-25, 1-51
MSR_LASTBRANCH_n_FROM_LIP MSR, 18-16, 18-19,

18-22, 18-23, 18-24, 18-25, 1-67
MSR_LASTBRANCH_n_TO_LIP, 18-20
MSR_LASTBRANCH_n_TO_LIP MSR, 18-16, 18-22,

18-23, 18-24, 18-25, 1-69
MSR_LASTBRANCH_TOS MSR, 18-19, 18-22
MSR_LER_FROM_LIP MSR, 18-16, 18-25, 18-32,

18-34, 1-50
MSR_LER_TO_LIP MSR, 18-16, 18-25, 18-32, 18-34,

1-50
MSR_PEBS_ MATRIX_VERT MSR, 1-95
MSR_PEBS_MATRIX_VERT MSR, 1-61
MSR_PLATFORM_BRV, 1-49
MTRR feature flag, CPUID instruction, 10-29
MTRRcap MSR, 10-29
MTRRfix MSR, 10-32
MTRRs, 7-11

base & mask calculations, 10-35, 10-36
Vol. 3B Index -15

INDEX
cache control, 10-17
description of, 9-9, 10-27
dual-core processors, 7-35
enabling caching, 9-8
feature identification, 10-29
fixed-range registers, 10-31
IA32_MTRRCAP MSR, 10-29
IA32_MTRR_DEF_TYPE MSR, 10-30
initialization of, 10-38
introduction of in IA-32 processors, 17-42
introduction to, 2-9
large page size considerations, 10-43
logical processors, 7-35
mapping physical memory with, 10-29
memory types and their properties, 10-28
MemTypeGet() function, 10-39
MemTypeSet() function, 10-40
multiple-processor considerations, 10-42
precedence of cache controls, 10-18
precedences, 10-37
programming interface, 10-38
remapping memory types, 10-38
state of following a hardware reset, 10-28
variable-range registers, 10-32

Multi-core technology
See multi-threading support

Multiple-processor management
bus locking, 7-3
guaranteed atomic operations, 7-3
initialization

MP protocol, 7-15
procedure, 1-2

local APIC, 8-1
memory ordering, 7-8
MP protocol, 7-15
overview of, 7-1
propagation of page table and page directory

entry changes, 7-13
SMM considerations, 1-22
VMM design, 1-12

asymmetric, 1-12
CPUID emulation, 1-14
external data structures, 1-14
index-data registers, 1-13
initialization, 1-12
moving between processors, 1-13
symmetric, 1-12

Multiple-processor system
local APIC and I/O APICs, Pentium 4, 8-4
local APIC and I/O APIC, P6 family, 8-4

Multisegment model, 3-5
Multitasking

initialization for, 9-14
initializing IA-32e mode, 9-14
linking tasks, 6-16
mechanism, description of, 6-3
overview, 6-1
setting up TSS, 9-14

setting up TSS descriptor, 9-14
Multi-threading support

executing multiple threads, 7-25
handling interrupts, 7-26
logical processors per package, 7-24
mapping resources, 7-36
microcode updates, 7-36
performance monitoring counters, 7-35
programming considerations, 7-36
See also: Hyper-Threading Technology and

dual-core technology
MWAIT instruction, 1-4

power management extensions, 13-7
MXCSR register, 5-64, 9-10, 12-7

N
NaN, compatibility, IA-32 processors, 17-11
NE (numeric error) flag

CR0 control register, 2-20, 5-58, 9-6, 9-8, 17-9,
17-24

NEG instruction, 7-5
NetBurst microarchitecture (see Intel NetBurst

microarchitecture)
NMI interrupt, 2-29, 8-5

description of, 5-2
handling during initialization, 9-11
handling in SMM, 1-14
handling multiple NMIs, 5-9
masking, 17-30
receiving when processor is shutdown, 5-39
reference information, 5-30
vector, 5-2

NMI# pin, 5-2, 5-30
Nominal CPI method, 18-97
Nonconforming code segments

accessing, 4-16
C (conforming) flag, 4-16
description of, 3-18

Non-halted clockticks, 18-97
setting up counters, 18-97

Non-Halted CPI method, 18-97
Nonmaskable interrupt (see NMI)
Non-precise event-based sampling

defined, 18-64
used for at-retirement counting, 18-86
writing an interrupt service routine for, 18-29

Non-retirement events, 18-63, 1-55
Non-sleep clockticks, 18-97

setting up counters, 18-97
NOT instruction, 7-5
Notation

bit and byte order, 1-6
conventions, 1-5
exceptions, 1-9
hexadecimal and binary numbers, 1-8
Instructions

operands, 1-7
Index-16 Vol. 3B

INDEX
reserved bits, 1-6
segmented addressing, 1-8

NT (nested task) flag
EFLAGS register, 2-13, 6-13, 6-16

Null segment selector, checking for, 4-9
Numeric overflow exception (#O), 17-13
Numeric underflow exception (#U), 17-13
NV (invert) flag, PerfEvtSel0 MSR

(P6 family processors), 18-43, 18-114
NW (not write-through) flag

CR0 control register, 2-20, 9-8, 10-15, 10-16,
10-22, 10-42, 10-43, 17-24, 17-26, 17-34

NXE bit, 4-43

O
Obsolete instructions, 17-7, 17-20
OF flag, EFLAGS register, 5-32
On die digital thermal sensor, 13-16

relevant MSRs, 13-15
sensor enumeration, 13-15

On-Demand
clock modulation enable bits, 13-14

On-demand
clock modulation duty cycle bits, 13-14

On-die sensors, 13-8
Opcodes

undefined, 17-7
Operands

instruction, 1-7
operand-size prefix, 16-2

Operating modes
64-bit mode, 2-10
compatibility mode, 2-10
IA-32e mode, 2-10, 2-11
introduction to, 2-10
protected mode, 2-10
SMM (system management mode), 2-10
transitions between, 2-11
virtual-8086 mode, 2-11
VMX operation

emulation of, 1-2
enabling and entering, 19-4
guest environments, 1-1

OR instruction, 7-5
OS (operating system mode) flag

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 only),
18-42, 18-114

OSFXSR (FXSAVE/FXRSTOR support) flag
CR4 control register, 2-24, 9-10, 12-2

OSXMMEXCPT (SIMD floating-point exception
support) flag, CR4 control register, 2-25,
5-64, 9-10, 12-2

OUT instruction, 7-12, 1-3
Out-of-spec status bit, 13-17
Out-of-spec status log, 13-17
OUTS/OUTSB/OUTSW/OUTSD instruction, 18-11, 1-3
Overflow exception (#OF), 5-32

Overheat interrupt enable bit, 13-18

P
P (present) flag

page-directory entry, 5-54
page-table entries, 3-30
page-table entry, 5-54
segment descriptor, 3-14

P5_MC_ADDR MSR, 14-13, 14-24, 1-1, 1-76, 1-95,
1-105, 1-117

P5_MC_TYPE MSR, 14-13, 14-24, 1-1, 1-76, 1-95,
1-105, 1-117

P6 family processors
compatibility with FP software, 17-9
description of, 1-1
last branch, interrupt, and exception recording,

18-34
list of performance-monitoring events, 1-106
MSR supported by, 1-105

PAE paging
enhanced legacy paging, 3-34
feature flag, CR4 register, 2-24
flag, CPUID instruction, 3-33
flag, CR4 control register, 3-7, 3-23, 3-34, 3-40,

17-23, 17-25
IA-32e mode, 3-42
PML4 tables, 3-42
See also: paging

Page attribute table (PAT)
compatibility with earlier IA-32 processors, 10-48
detecting support for, 10-44
IA32_CR_PAT MSR, 10-45
introduction to, 10-44
memory types that can be encoded with, 10-46
MSR, 10-17
precedence of cache controls, 10-18
programming, 10-47
selecting a memory type with, 10-46

Page base address field, page-table entries, 3-28,
3-42

Page directories, 2-8
Page directory

base address, 3-28
base address (PDBR), 6-6
description of, 3-24
introduction to, 2-8
overview, 3-2
setting up during initialization, 9-13

Page directory pointers, 2-8
Page frame (see Page)
Page tables, 2-8

description of, 3-24
introduction to, 2-8
overview, 3-2
setting up during initialization, 9-13

Page-directory entries, 3-24, 3-28, 3-29, 3-30, 3-39,
3-42, 7-4, 10-4
Vol. 3B Index -17

INDEX
Page-directory-pointer (PDPTR) table, 3-34
Page-directory-pointer-table entries, 3-39
Page-fault exception (#PF), 3-22, 5-54, 17-29
Pages

description of, 3-24
disabling protection of, 4-1
enabling protection of, 4-1
introduction to, 2-8
overview, 3-2
PG flag, CR0 control register, 4-2
sizes, 3-25
split, 17-20

Page-table base address field, page-directory entries,
3-28, 3-42

Page-table entries, 3-24, 3-28, 3-29, 3-39, 7-4, 10-4,
10-25

Paging
32-bit physical addressing, 3-25
36-bit physical addressing, using PAE paging

mechanism, 3-33
36-bit physical addressing, using PSE-36 paging

mechanism, 3-40
combining segment and page-level protection,

4-41
combining with segmentation, 3-7
defined, 3-1
enhanced legacy paging, 3-34
IA-32e mode, 2-8, 3-24
initializing, 9-13
introduction to, 2-8
large page size MTRR considerations, 10-43
mapping segments to pages, 3-49
mixing 4-KByte and 4-MByte pages, 3-27
options, 3-23
overview, 3-22
page, 3-24
page boundaries regarding TSS, 6-6
page directory, 3-24
page sizes, 3-25
page table, 3-24
page-directory-pointer table, 3-24
page-fault exception, 5-54
page-level protection, 4-2, 4-5, 4-39
page-level protection flags, 4-40
physical address sizes, 3-25
virtual-8086 tasks, 15-10

Parameter
passing, between 16- and 32-bit call gates, 16-8
translation, between 16- and 32-bit code

segments, 16-8
PAUSE instruction, 2-21, 1-4
PBi (performance monitoring/breakpoint pins) flags,

DEBUGCTLMSR MSR, 18-33, 18-35
PC (pin control) flag, PerfEvtSel0 and PerfEvtSel1

MSRs (P6 family processors), 18-43,
18-114

PC0 and PC1 (pin control) fields, CESR MSR (Pentium
processor), 18-118

PCD pin (Pentium processor), 10-17
PCD (page-level cache disable) flag

CR3 control register, 2-22, 10-17, 17-24, 17-34
page-directory entries, 9-8, 10-16, 10-18, 10-44
page-table entries, 3-31, 9-8, 10-16, 10-18,

10-44, 17-36
PCE (performance monitoring counter enable) flag,

CR4 control register, 2-24, 4-34, 18-67,
18-115

PCE (performance-monitoring counter enable) flag,
CR4 control register, 17-23

PDBR (see CR3 control register)
PE (protection enable) flag, CR0 control register,

2-22, 4-1, 9-13, 9-17, 1-12
PEBS records, 18-74
PEBS (precise event-based sampling) facilities

availability of, 18-89
description of, 18-64, 18-88
DS save area, 18-70
IA-32e mode, 18-74
PEBS buffer, 18-70, 18-89
PEBS records, 18-70, 18-72
writing a PEBS interrupt service routine, 18-89
writing interrupt service routine, 18-29

PEBS_UNAVAILABLE flag
IA32_MISC_ENABLE MSR, 18-70, 1-45

Pentium 4 processor, 1-1
compatibility with FP software, 17-9
last branch, interrupt, and exception recording,

18-18
list of performance-monitoring events, 1-1, 1-54
MSRs supported, 1-1, 1-25, 1-72
time-stamp counter, 18-37

Pentium II processor, 1-2
Pentium III processor, 1-2
Pentium M processor

last branch, interrupt, and exception recording,
18-32

MSRs supported by, 1-94
time-stamp counter, 18-37

Pentium Pro processor, 1-2
Pentium processor, 1-1, 17-9

compatibility with MCA, 14-1
list of performance-monitoring events, 1-124
MSR supported by, 1-117
performance-monitoring counters, 18-117

PerfCtr0 and PerfCtr1 MSRs
(P6 family processors), 18-113, 18-115

PerfEvtSel0 and PerfEvtSel1 MSRs
(P6 family processors), 18-113

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family
processors), 18-113

Performance events
architectural, 18-39
Intel Core Solo and Intel Core Duo processors,

18-39
non-architectural, 18-39
Index-18 Vol. 3B

INDEX
non-retirement events (Pentium 4 processor),
1-55

P6 family processors, 1-106
Pentium 4 and Intel Xeon processors, 18-18
Pentium M processors, 18-32
Pentium processor, 1-124

Performance state, 13-2
Performance-monitoring counters

counted events (P6 family processors), 1-106
counted events (Pentium 4 processor), 1-1, 1-54
counted events (Pentium processors), 18-119
description of, 18-39, 18-40
events that can be counted (Pentium processors),

1-124
interrupt, 8-2
introduction of in IA-32 processors, 17-43
monitoring counter overflow (P6 family

processors), 18-116
overflow, monitoring (P6 family processors),

18-116
overview of, 2-10
P6 family processors, 18-112
Pentium II processor, 18-112
Pentium Pro processor, 18-112
Pentium processor, 18-117
reading, 2-30, 18-115
setting up (P6 family processors), 18-113
software drivers for, 18-116
starting and stopping, 18-115

PG (paging) flag
CR0 control register, 2-19, 3-23, 3-31, 3-34,

3-40, 4-2
PG (paging) flag, CR0 control register, 9-13, 9-17,

17-36, 1-12
PGE (page global enable) flag, CR4 control register,

2-24, 3-32, 10-17, 17-23, 17-25
PhysBase field, IA32_MTRR_PHYSBASEn MTRR,

10-33
Physical address extension

accessing full extended physical address space,
3-37

introduction to, 3-7
page-directory entries, 3-37, 3-42, 3-45
page-table entries, 3-37, 3-45
using PAE paging mechanism, 3-33
using PSE-32 paging mechanism, 3-40

Physical address space
4 GBytes, 3-7
64 GBytes, 3-7
addressing, 2-8
defined, 3-1
description of, 3-7
guest and host spaces, 1-3
IA-32e mode, 3-8
mapped to a task, 6-19
mapping with variable-range MTRRs, 10-32
memory virtualization, 1-3
See also: VMM, VMX

Physical destination mode, local APIC, 8-30
PhysMask

IA32_MTRR_PHYSMASKn MTRR, 10-33
PM0/BP0 and PM1/BP1 (performance-monitor) pins

(Pentium processor), 18-117, 18-119
PML4 tables, 2-8
Pointers

code-segment pointer size, 16-5
limit checking, 4-36
validation, 4-34

POP instruction, 3-11
POPF instruction, 5-10, 18-12
Power consumption

software controlled clock, 13-8, 13-13
Precise event-based sampling (see PEBS)
PREFETCHh instruction, 2-21, 10-5, 10-23
Previous task link field, TSS, 6-6, 6-16, 6-18
Priority levels, APIC interrupts, 8-38
Privilege levels

checking when accessing data segments, 4-11
checking, for call gates, 4-22
checking, when transferring program control

between code segments, 4-14
description of, 4-9
protection rings, 4-11

Privileged instructions, 4-33
Processor families

06H, 1-1
0FH, 1-1

Processor management
initialization, 9-1
local APIC, 8-1
microcode update facilities, 9-36
overview of, 7-1
snooping mechanism, 7-9
See also: multiple-processor management

Processor ordering, description of, 7-8
PROCHOT# log, 13-16
PROCHOT# or FORCEPR# event bit, 13-16
Protected mode

IDT initialization, 9-13
initialization for, 9-11
mixing 16-bit and 32-bit code modules, 16-2
mode switching, 9-17
PE flag, CR0 register, 4-1
switching to, 4-1, 9-17
system data structures required during

initialization, 9-11, 9-12
Protection

combining segment & page-level, 4-41
disabling, 4-1
enabling, 4-1
flags used for page-level protection, 4-2, 4-5
flags used for segment-level protection, 4-2
IA-32e mode, 4-5
of exception, interrupt-handler procedures, 5-18
overview of, 4-1
page level, 4-1, 4-39, 4-41, 4-43
Vol. 3B Index -19

INDEX
page level, overriding, 4-41
page-level protection flags, 4-40
read/write, page level, 4-40
segment level, 4-1
user/supervisor type, 4-40

Protection rings, 4-11
PS (page size) flag, page-table entries, 3-32
PSE (page size extension) flag

CR4 control register, 2-23, 3-23, 3-26, 3-27,
3-40, 10-26, 17-24, 17-25

PSE-36 feature flag, CPUID instruction, 3-24, 3-40
PSE-36 page size extension, 3-7
Pseudo-infinity, 17-12
Pseudo-NaN, 17-12
Pseudo-zero, 17-12
P-state, 13-2
PUSH instruction, 17-8
PUSHF instruction, 5-10, 17-8
PVI (protected-mode virtual interrupts) flag

CR4 control register, 2-14, 2-15, 2-23, 17-24
PWT pin (Pentium processor), 10-17
PWT (page-level write-through) flag

CR3 control register, 2-23, 10-17, 17-24, 17-34
page-directory entries, 9-8, 10-17, 10-44
page-table entries, 3-31, 9-8, 10-17, 10-44,

17-36

Q
QNaN, compatibility, IA-32 processors, 17-11

R
RDMSR instruction, 2-31, 4-34, 17-6, 17-42, 18-22,

18-36, 18-38, 18-67, 18-113, 18-115,
18-117, 1-4, 1-13

RDPMC instruction, 2-30, 4-34, 17-5, 17-23, 17-44,
18-66, 18-113, 18-115, 1-4

in 64-bit mode, 2-31
RDTSC instruction, 2-30, 4-34, 17-6, 18-38, 1-4, 1-13

in 64-bit mode, 2-31
reading sensors, 13-16
Read/write

protection, page level, 4-40
rights, checking, 4-36

Real-address mode
8086 emulation, 15-1
address translation in, 15-3
description of, 15-1
exceptions and interrupts, 15-8
IDT initialization, 9-11
IDT, changing base and limit of, 15-7
IDT, structure of, 15-7
IDT, use of, 15-6
initialization, 9-10
instructions supported, 15-4
interrupt and exception handling, 15-6
interrupts, 15-8

introduction to, 2-10
mode switching, 9-17
native 16-bit mode, 16-1
overview of, 15-1
registers supported, 15-4
switching to, 9-18

Recursive task switching, 6-18
Related literature, 1-10
Replay events, 1-95
Requested privilege level (see RPL)
Reserved bits, 1-6, 17-2
RESET# pin, 5-4, 17-21
RESET# signal, 2-29
Resolution in degrees, 13-17
Restarting program or task, following an exception or

interrupt, 5-7
Restricting addressable domain, 4-40
RET instruction, 4-14, 4-15, 4-28, 16-7
Returning

from a called procedure, 4-28
from an interrupt or exception handler, 5-18

RF (resume) flag
EFLAGS register, 2-14, 5-10

RPL
description of, 3-10, 4-11
field, segment selector, 4-2

RSM instruction, 2-29, 7-14, 17-6, 1-4, 1-1, 1-3, 1-4,
1-16, 1-21, 1-25

R/S# pin, 5-4
R/W (read/write) flag

page-directory entry, 4-2, 4-3, 4-40
page-table entries, 3-31
page-table entry, 4-2, 4-3, 4-40

R/W0-R/W3 (read/write) fields
DR7 register, 17-26, 18-5

S
S (descriptor type) flag

segment descriptor, 3-14, 3-16, 4-2, 4-7
SBB instruction, 7-5
Segment descriptors

access rights, 4-35
access rights, invalid values, 17-26
automatic bus locking while updating, 7-4
base address fields, 3-14
code type, 4-3
data type, 4-3
description of, 2-5, 3-13
DPL (descriptor privilege level) field, 3-14, 4-2
D/B (default operation size/default stack pointer

size and/or upper bound) flag, 3-15, 4-6
E (expansion direction) flag, 4-2, 4-6
G (granularity) flag, 3-15, 4-2, 4-6
limit field, 4-2, 4-6
loading, 17-26
P (segment-present) flag, 3-14
S (descriptor type) flag, 3-14, 3-16, 4-2, 4-7
Index-20 Vol. 3B

INDEX
segment limit field, 3-13
system type, 4-3
tables, 3-20
TSS descriptor, 6-7, 6-8
type field, 3-14, 3-16, 4-2, 4-7
type field, encoding, 3-19
when P (segment-present) flag is clear, 3-15

Segment limit
checking, 2-28
field, segment descriptor, 3-13

Segment not present exception (#NP), 3-14
Segment registers

description of, 3-10
IA-32e mode, 3-12
saved in TSS, 6-5

Segment selectors
description of, 3-9
index field, 3-9
null, 4-9
null in 64-bit mode, 4-9
RPL field, 3-10, 4-2
TI (table indicator) flag, 3-10

Segmented addressing, 1-8
Segment-not-present exception (#NP), 5-46
Segments

64-bit mode, 3-6
basic flat model, 3-3
code type, 3-16
combining segment, page-level protection, 4-41
combining with paging, 3-7
compatibility mode, 3-6
data type, 3-16
defined, 3-1
disabling protection of, 4-1
enabling protection of, 4-1
mapping to pages, 3-49
multisegment usage model, 3-5
protected flat model, 3-4
segment-level protection, 4-2, 4-5
segment-not-present exception, 5-46
system, 2-5
types, checking access rights, 4-35
typing, 4-7
using, 3-3
wraparound, 17-39

Self-modifying code, effect on caches, 10-24
Serializing, 7-14
Serializing instructions

CPUID, 7-14
HT technology, 7-31
non-privileged, 7-14
privileged, 7-14

SF (stack fault) flag, x87 FPU status word, 17-10
SFENCE instruction, 2-21, 7-9, 7-11, 7-12, 7-15
SGDT instruction, 2-27, 3-21
Shared resources

mapping of, 7-36

Shutdown
resulting from double fault, 5-39
resulting from out of IDT limit condition, 5-39

SIDT instruction, 2-27, 3-21, 5-13
SIMD floating-point exception (#XF), 2-25, 5-64, 9-10
SIMD floating-point exceptions

description of, 5-64, 12-6
handler, 12-2
support for, 2-25

Single-stepping
breakpoint exception condition, 18-12
on branches, 18-24
on exceptions, 18-24
on interrupts, 18-24
TF (trap) flag, EFLAGS register, 18-12

SLDT instruction, 2-27
SLTR instruction, 3-21
SMBASE

default value, 1-5
relocation of, 1-20

SMI handler
description of, 1-1
execution environment for, 1-12
exiting from, 1-4
location in SMRAM, 1-5
VMX treatment of, 1-23

SMI interrupt, 2-29, 8-5
description of, 1-1, 1-3
IO_SMI bit, 1-15
priority, 1-4
switching to SMM, 1-3
synchronous and asynchronous, 1-15
VMX treatment of, 1-23

SMI# pin, 5-4, 1-3, 1-21
SMM

asynchronous SMI, 1-15
auto halt restart, 1-18
executing the HLT instruction in, 1-19
exiting from, 1-4
handling exceptions and interrupts, 1-13
introduction to, 2-10
I/O instruction restart, 1-21
I/O state implementation, 1-15
native 16-bit mode, 16-1
overview of, 1-1
revision identifier, 1-18
revision identifier field, 1-18
switching to, 1-3
switching to from other operating modes, 1-3
synchronous SMI, 1-15
using x87 FPU in, 1-17
VMX operation

default RSM treatment, 1-24
default SMI delivery, 1-23
dual-monitor treatment, 1-25
overview, 1-2
protecting CR4.VMXE, 1-25
RSM instruction, 1-25
Vol. 3B Index -21

INDEX
SMM monitor, 1-2
SMM VM exits, 1-1, 1-25
SMM-transfer VMCS, 1-26
SMM-transfer VMCS pointer, 1-26
VMCS pointer preservation, 1-23
VMX-critical state, 1-23

SMRAM
caching, 1-11
description of, 1-1
state save map, 1-6
structure of, 1-5

SMSW instruction, 2-27, 1-13
SNaN, compatibility, IA-32 processors, 17-11, 17-18
Snooping mechanism, 7-9, 10-6
Software controlled clock

modulation control bits, 13-14
power consumption, 13-8, 13-13

Software interrupts, 5-5
Software-controlled bus locking, 7-5
Split pages, 17-20
Spurious interrupt, local APIC, 8-44
SSE extensions

checking for with CPUID, 12-2
checking support for FXSAVE/FXRSTOR, 12-2
CPUID feature flag, 9-10
EM flag, 2-22
emulation of, 12-7
facilities for automatic saving of state, 12-8
initialization, 9-10
introduction of into the IA-32 architecture, 17-3
providing exception handlers for, 12-4, 12-6
providing operating system support for, 12-1
saving and restoring state, 12-7
saving state on task, context switches, 12-7
SIMD Floating-point exception (#XF), 5-64
system programming, 12-1
using TS flag to control saving of state, 12-9

SSE feature flag
CPUID instruction, 12-2

SSE2 extensions
checking for with CPUID, 12-2
checking support for FXSAVE/FXRSTOR, 12-2
CPUID feature flag, 9-10
EM flag, 2-22
emulation of, 12-7
facilities for automatic saving of state, 12-8
initialization, 9-10
introduction of into the IA-32 architecture, 17-4
providing exception handlers for, 12-4, 12-6
providing operating system support for, 12-1
saving and restoring state, 12-7
saving state on task, context switches, 12-7
SIMD Floating-point exception (#XF), 5-64
system programming, 12-1
using TS flag to control saving state, 12-9

SSE2 feature flag
CPUID instruction, 12-2

SSE3 extensions
checking for with CPUID, 12-2
CPUID feature flag, 9-10
EM flag, 2-22
emulation of, 12-7
example verifying SS3 support, 7-44, 7-48, 13-3
facilities for automatic saving of state, 12-8
initialization, 9-10
introduction of into the IA-32 architecture, 17-4
providing exception handlers for, 12-4, 12-6
providing operating system support for, 12-1
saving and restoring state, 12-7
saving state on task, context switches, 12-7
system programming, 12-1
using TS flag to control saving of state, 12-9

SSE3 feature flag
CPUID instruction, 12-2

Stack fault exception (#SS), 5-48
Stack fault, x87 FPU, 17-10, 17-17
Stack pointers

privilege level 0, 1, and 2 stacks, 6-6
size of, 3-15

Stack segments
paging of, 2-8
privilege level check when loading SS register,

4-14
size of stack pointer, 3-15

Stack switching
exceptions/interrupts when switching stacks,

5-11
IA-32e mode, 5-25
inter-privilege level calls, 4-25

Stack-fault exception (#SS), 17-39
Stacks

error code pushes, 17-37
faults, 5-48
for privilege levels 0, 1, and 2, 4-26
interlevel RET/IRET

from a 16-bit interrupt or call gate, 17-38
interrupt stack table, 64-bit mode, 5-26
management of control transfers for

16- and 32-bit procedure calls, 16-5
operation on pushes and pops, 17-36
pointers to in TSS, 6-6
stack switching, 4-25, 5-25
usage on call to exception

or interrupt handler, 17-37
Stepping information, following processor

initialization or reset, 9-5
STI instruction, 5-10
Store buffer

caching terminology, 10-6
characteristics of, 10-3
description of, 10-5, 10-27
in IA-32 processors, 17-40
location of, 10-1
operation of, 10-27

STPCLK# pin, 5-4
Index-22 Vol. 3B

INDEX
STR instruction, 2-27, 3-21, 6-9
Strong uncached (UC) memory type

description of, 10-6
effect on memory ordering, 7-12
use of, 9-9, 10-10

Sub C-state, 13-6
SUB instruction, 7-5
Supervisor mode

description of, 4-40
U/S (user/supervisor) flag, 4-40

SVR (spurious-interrupt vector register), local APIC,
8-11, 17-30

SWAPGS instruction, 2-10, 1-19
SYSCALL instruction, 2-10, 4-32, 1-19
SYSENTER instruction, 3-11, 4-14, 4-15, 4-30, 4-31,

1-19, 1-20
SYSENTER_CS_MSR, 4-30
SYSENTER_EIP_MSR, 4-30
SYSENTER_ESP_MSR, 4-30
SYSEXIT instruction, 3-11, 4-14, 4-15, 4-30, 4-31,

1-19, 1-20
SYSRET instruction, 2-10, 4-32, 1-19
System

architecture, 2-2, 2-3
data structures, 2-3
instructions, 2-10, 2-25
registers in IA-32e mode, 2-9
registers, introduction to, 2-9
segment descriptor, layout of, 4-3
segments, paging of, 2-8

System programming
MMX technology, 11-1
SSE/SSE2/SSE3 extensions, 12-1
virtualization of resources, 1-1

System-management mode (see SMM)

T
T (debug trap) flag, TSS, 6-6
Task gates

descriptor, 6-11
executing a task, 6-3
handling a virtual-8086 mode interrupt or

exception through, 15-21
IA-32e mode, 2-7
in IDT, 5-14
introduction for IA-32e, 2-6
introduction to, 2-5, 2-6, 2-7
layout of, 5-14
referencing of TSS descriptor, 5-20

Task management, 6-1
data structures, 6-4
mechanism, description of, 6-3

Task register, 3-21
description of, 2-17, 6-1, 6-9
IA-32e mode, 2-17
initializing, 9-14
introduction to, 2-9

Task switching
description of, 6-3
exception condition, 18-12
operation, 6-13
preventing recursive task switching, 6-18
saving MMX state on, 11-5
saving SSE/SSE2/SSE3 state

on task or context switches, 12-7
T (debug trap) flag, 6-6

Tasks
address space, 6-19
description of, 6-1
exception-handler task, 5-16
executing, 6-3
Intel 286 processor tasks, 17-44
interrupt-handler task, 5-16
interrupts and exceptions, 5-20
linking, 6-16
logical address space, 6-20
management, 6-1
mapping linear and physical address space, 6-19
restart following an exception or interrupt, 5-7
state (context), 6-2, 6-3
structure, 6-1
switching, 6-3
task management data structures, 6-4

Test registers, 17-27
TF (trap) flag, EFLAGS register, 2-12, 5-19, 15-6,

15-29, 18-12, 18-14, 18-21, 18-24,
18-31, 18-32, 18-35, 1-13

Thermal monitoring
advanced power management, 13-6
automatic, 13-9
automatic thermal monitoring, 13-8
catastrophic shutdown detector, 13-8, 13-9
clock-modulation bits, 13-14
C-state, 13-6
detection of facilities, 13-15
Enhanced Intel SpeedStep Technology, 13-1
IA32_APERF MSR, 13-2
IA32_MPERF MSR, 13-2
IA32_THERM_INTERRUPT MSR, 13-15
IA32_THERM_STATUS MSR, 13-15, 13-16
interrupt enable/disable flags, 13-12
interrupt mechanisms, 13-8
MWAIT extensions for, 13-7
on die sensors, 13-8, 13-15
overview of, 13-1, 13-8
performance state transitions, 13-11
sensor interrupt, 8-2
setting thermal thresholds, 13-15
software controlled clock modulation, 13-8, 13-13
status flags, 13-11
status information, 13-11, 13-13
stop clock mechanism, 13-8
thermal monitor 1 (TM1), 13-9
thermal monitor 2 (TM2), 13-10
TM flag, CPUID instruction, 13-15
Vol. 3B Index -23

INDEX
Thermal status bit, 13-16
Thermal status log bit, 13-16
Thermal threshold #1 log, 13-17
Thermal threshold #1 status, 13-17
Thermal threshold #2 log, 13-17
Thermal threshold #2 status, 13-17
THERMTRIP# interrupt enable bit, 13-18
thread timeout indicator, 1-4
Threshold #1 interrupt enable bit, 13-19
Threshold #1 value, 13-18
Threshold #2 interrupt enable, 13-19
Threshold #2 value, 13-19
TI (table indicator) flag, segment selector, 3-10
Timer, local APIC, 8-21
Time-stamp counter

counting clockticks, 18-97
description of, 18-37
IA32_TIME_STAMP_COUNTER MSR, 18-37
RDTSC instruction, 18-37
reading, 2-30
software drivers for, 18-116
TSC flag, 18-37
TSD flag, 18-37

TLBs
description of, 3-23, 10-1, 10-4
flushing, 10-26
invalidating (flushing), 2-29
relationship to PGE flag, 3-32, 17-25
relationship to PSE flag, 3-27, 10-26
TLB shootdown, 7-13
virtual TLBs, 1-5

TM1 and TM2
See: thermal monitoring, 13-10

TMR (Trigger Mode Register), local APIC, 8-41
TR (trace message enable) flag

DEBUGCTLMSR MSR, 18-15, 18-21, 18-31, 18-33,
18-35

Trace cache, 10-4
Transcendental instruction accuracy, 17-10, 17-19
Translation lookaside buffer (see TLB)
Trap gates

difference between interrupt and trap gates,
5-19

for 16-bit and 32-bit code modules, 16-2
handling a virtual-8086 mode interrupt or

exception through, 15-18
in IDT, 5-14
introduction for IA-32e, 2-6
introduction to, 2-5, 2-7
layout of, 5-14

Traps
description of, 5-6
restarting a program or task after, 5-7

TS (task switched) flag
CR0 control register, 2-20, 2-28, 5-36, 11-1,

12-3, 12-9
TSD (time-stamp counter disable) flag

CR4 control register, 2-23, 4-34, 17-24, 18-38

TSS
16-bit TSS, structure of, 6-21
32-bit TSS, structure of, 6-4
64-bit mode, 6-22
CR3 control register (PDBR), 6-5, 6-19
description of, 2-5, 2-6, 6-1, 6-4
EFLAGS register, 6-5
EFLAGS.NT, 6-16
EIP, 6-6
executing a task, 6-3
floating-point save area, 17-16
format in 64-bit mode, 6-22
general-purpose registers, 6-5
IA-32e mode, 2-7
initialization for multitasking, 9-14
interrupt stack table, 6-23
invalid TSS exception, 5-42
IRET instruction, 6-16
I/O map base address field, 6-6, 17-33
I/O permission bit map, 6-6, 6-23
LDT segment selector field, 6-6, 6-19
link field, 5-20
order of reads/writes to, 17-32
page-directory base address (PDBR), 3-28
pointed to by task-gate descriptor, 6-11
previous task link field, 6-6, 6-16, 6-18
privilege-level 0, 1, and 2 stacks, 4-26
referenced by task gate, 5-20
segment registers, 6-5
T (debug trap) flag, 6-6
task register, 6-9
using 16-bit TSSs in a 32-bit environment, 17-32
virtual-mode extensions, 17-32

TSS descriptor
B (busy) flag, 6-7
busy flag, 6-18
initialization for multitasking, 9-14
structure of, 6-7, 6-8

TSS segment selector
field, task-gate descriptor, 6-11
writes, 17-32

Type
checking, 4-7
field, IA32_MTRR_DEF_TYPE MSR, 10-30
field, IA32_MTRR_PHYSBASEn MTRR, 10-33
field, segment descriptor, 3-14, 3-16, 3-19, 4-2,

4-7
of segment, 4-7

U
UC- (uncacheable) memory type, 10-7
UD2 instruction, 17-5
Uncached (UC-) memory type, 10-10
Uncached (UC) memory type (see Strong uncached

(UC) memory type)
Undefined opcodes, 17-7
Index-24 Vol. 3B

INDEX
Unit mask field, PerfEvtSel0 and PerfEvtSel1 MSRs
(P6 family processors), 18-42, 18-45,
18-46, 18-47, 18-54, 18-55, 18-56,
18-114

Un-normal number, 17-12
User mode

description of, 4-40
U/S (user/supervisor) flag, 4-40

User-defined interrupts, 5-2, 5-67
USR (user mode) flag, PerfEvtSel0 and PerfEvtSel1

MSRs (P6 family processors), 18-42,
18-45, 18-46, 18-47, 18-54, 18-55,
18-56, 18-114

U/S (user/supervisor) flag
page-directory entry, 4-2, 4-3, 4-40
page-table entries, 3-31, 15-11
page-table entry, 4-2, 4-3, 4-40

V
V (valid) flag

IA32_MTRR_PHYSMASKn MTRR, 10-33
Variable-range MTRRs, description of, 10-32
VCNT (variable range registers count) field,

IA32_MTRRCAP MSR, 10-29
Vectors

exceptions, 5-2
interrupts, 5-2
reserved, 8-38

VERR instruction, 2-28, 4-36
VERW instruction, 2-28, 4-36
VIF (virtual interrupt) flag

EFLAGS register, 2-14, 2-15, 17-7, 17-8
VIP (virtual interrupt pending) flag

EFLAGS register, 2-14, 2-15, 17-7, 17-8
Virtual memory, 2-8, 3-1, 3-2, 3-22
Virtual-8086 mode

8086 emulation, 15-1
description of, 15-8
emulating 8086 operating system calls, 15-27
enabling, 15-9
entering, 15-11
exception and interrupt handling overview, 15-16
exceptions and interrupts, handling through a task

gate, 15-20
exceptions and interrupts, handling through a trap

or interrupt gate, 15-18
handling exceptions and interrupts through a task

gate, 15-21
interrupts, 15-8
introduction to, 2-11
IOPL sensitive instructions, 15-15
I/O-port-mapped I/O, 15-15
leaving, 15-14
memory mapped I/O, 15-16
native 16-bit mode, 16-1
overview of, 15-1
paging of virtual-8086 tasks, 15-10

protection within a virtual-8086 task, 15-11
special I/O buffers, 15-16
structure of a virtual-8086 task, 15-9
virtual I/O, 15-15
VM flag, EFLAGS register, 2-14

Virtual-8086 tasks
paging of, 15-10
protection within, 15-11
structure of, 15-9

Virtualization
debugging facilities, 1-1
interrupt vector space, 1-4
memory, 1-3
microcode update facilities, 1-11
operating modes, 1-3
page faults, 1-8
system resources, 1-1
TLBs, 1-5

VM
OSs and application software, 1-1
programming considerations, 1-1

VM entries
basic VM-entry checks, 1-2
checking guest state

control registers, 1-9
debug registers, 1-9
descriptor-table registers, 1-12
MSRs, 1-9
non-register state, 1-13
RIP and RFLAGS, 1-12
segment registers, 1-9

checks on controls, host-state area, 1-3
registers and MSRs, 1-7
segment and descriptor-table registers, 1-7
VMX control checks, 1-3

exit-reason numbers, 1-1
loading guest state, 1-16

control and debug registers, MSRs, 1-16
RIP, RSP, RFLAGS, 1-18
segment & descriptor-table registers, 1-17

loading MSRs, 1-19
failure cases, 1-19
VM-entry MSR-load area, 1-19

overview of failure conditions, 1-1
overview of steps, 1-1
VMLAUNCH and VMRESUME, 1-1
See also: VMCS, VMM, VM exits

VM exits
architectural state

existing before exit, 1-1
updating state before exit, 1-2

basic VM-exit information fields, 1-5
basic exit reasons, 1-5
exit qualification, 1-5

exception bitmap, 1-1
exceptions (faults, traps, and aborts), 1-8
exit-reason numbers, 1-1
external interrupts, 1-9
Vol. 3B Index -25

INDEX
handling of exits due to exceptions, 1-8
IA-32 faults and VM exits, 1-1
INITs, 1-9
instructions that cause:

conditional exits, 1-2
unconditional exits, 1-2

interrupt-window exiting, 1-10
non-maskable interrupts (NMIs), 1-9
overview of, 1-1
page faults, 1-9
reflecting exceptions to guest, 1-8
resuming guest after exception handling, 1-10
start-up IPIs (SIPIs), 1-9
task switches, 1-9
See also: VMCS, VMM, VM entries

VM (virtual-8086 mode) flag
EFLAGS register, 2-11, 2-14

VMCLEAR instruction, 1-6
VMCS

activating and de-activating, 1-1
error numbers, 1-1
field encodings, 1-5, 1-1

16-bit guest-state fields, 1-1
16-bit host-state fields, 1-2
32-bit control fields, 1-4
32-bit guest-state fields, 1-5
32-bit read-only data fields, 1-5
64-bit control fields, 1-2
64-bit guest-state fields, 1-3
natural-width control fields, 1-7
natural-width guest-state fields, 1-8
natural-width host-state fields, 1-9
natural-width read-only data fields, 1-7

format of VMCS region, 1-2
guest-state area, 1-3

guest non-register state, 1-6
guest register state, 1-3

host-state area, 1-3, 1-8
introduction, 1-1
migrating between processors, 1-25
software access to, 1-24
VMCS data, 1-2
VMCS pointer, 1-1, 1-2
VMCS region, 1-1, 1-2
VMCS revision identifier, 1-2
VM-entry control fields, 1-3, 1-18

entry controls, 1-18
entry controls for event injection, 1-19
entry controls for MSRs, 1-19

VM-execution control fields, 1-3, 1-9
controls for CR8 accesses, 1-14
CR3-target controls, 1-14
exception bitmap, 1-13
I/O bitmaps, 1-13
masks & read shadows CR0 & CR4, 1-13
pin-based controls, 1-9
processor-based controls, 1-10
time-stamp counter offset, 1-13

VM-exit control fields, 1-3, 1-16
exit controls, 1-16
exit controls for MSRs, 1-17

VM-exit information fields, 1-3, 1-20
basic exit information, 1-20, 1-1
basic VM-exit information, 1-20
exits due to instruction execution, 1-23
exits due to vectored events, 1-21
exits occurring during event delivery, 1-22
VM-instruction error field, 1-24

VM-instruction error field, 1-2, 1-1
VMREAD instruction, 1-2

field encodings, 1-5, 1-1
VMWRITE instruction, 1-2

field encodings, 1-5, 1-1
VMX-abort indicator, 1-2
See also: VM entries, VM exits, VMM, VMX

VME (virtual-8086 mode extensions) flag, CR4 control
register, 2-14, 2-15, 2-23, 17-24

VMLAUNCH instruction, 1-7
VMM

asymmetric design, 1-12
control registers, 1-21
CPUID instruction emulation, 1-14
debug exceptions, 1-2
debugging facilities, 1-1, 1-2
emulating guest execution, 1-2
emulation responsibilites, 1-2
entering VMX root operation, 1-5
error handling, 1-5
exception bitmap, 1-2
external interrupts, 1-1
fast instruction set emulator, 1-1
index data pairs, usage of, 1-13
interrupt handling, 1-1
interrupt vectors, 1-4
leaving VMX operation, 1-6
machine checks, 1-12, 1-13
memory virtualization, 1-3
microcode update facilities, 1-11
multi-processor considerations, 1-12
operating modes, 1-14
programming considerations, 1-1
response to page faults, 1-8
root VMCS, 1-3
SMI transfer monitor, 1-6
steps for launching VMs, 1-6
SWAPGS instruction, 1-19
symmetric design, 1-12
SYSCALL/SYSRET instructions, 1-19
SYSENTER/SYSEXIT instructions, 1-19
triple faults, 1-1
virtual TLBs, 1-5
virtual-8086 container, 1-2
virtualization of system resources, 1-1
VM exits, 1-1
VM exits, handling of, 1-8
VMCLEAR instruction, 1-6
Index-26 Vol. 3B

INDEX
VMCS field width, 1-15
VMCS pointer, 1-2
VMCS region, 1-2
VMCS revision identifier, 1-3
VMCS, writing/reading fields, 1-3
VM-exit failures, 1-11
VMLAUNCH instruction, 1-7
VMREAD instruction, 1-3
VMRESUME instruction, 1-7
VMWRITE instruction, 1-3, 1-6
VMXOFF instruction, 1-6
See also: VMCS, VM entries, VM exits, VMX

VMM software interrupts, 1-1
VMREAD instruction, 1-2, 1-3

field encodings, 1-1
VMRESUME instruction, 1-7
VMWRITE instruction, 1-2, 1-3, 1-6

field encodings, 1-1
VMX

A20M# signal, 19-5
capability MSRs

overview, 19-4, 1-1
IA32_VMX_BASIC MSR, 1-2, 1-3, 1-13, 1-22,

1-65, 1-92, 1-1
IA32_VMX_CR0_FIXED0 MSR, 19-5, 1-5,

1-22, 1-66, 1-93, 1-4
IA32_VMX_CR0_FIXED1 MSR, 19-5, 1-5,

1-23, 1-66, 1-93, 1-4
IA32_VMX_CR4_FIXED0 MSR, 19-5, 1-6,

1-23, 1-66, 1-93
IA32_VMX_CR4_FIXED1 MSR, 19-5, 1-6,

1-23, 1-66, 1-93
IA32_VMX_ENTRY_CTLS MSR, 1-22, 1-65,

1-93, 1-3
IA32_VMX_EXIT_CTLS MSR, 1-5, 1-22, 1-65,

1-92, 1-3
IA32_VMX_MISC MSR, 1-6, 1-4, 1-13, 1-33,

1-22, 1-66, 1-93, 1-4
IA32_VMX_PINBASED_CTLS MSR, 1-3, 1-22,

1-65, 1-92, 1-2
IA32_VMX_PROCBASED_CTLS MSR, 1-10,

1-12, 1-3, 1-22, 1-23, 1-65, 1-92, 1-94,
1-2, 1-3

IA32_VMX_VMCS_ENUM MSR, 1-66
CPUID instruction, 19-3, 1-1
CR4 control register, 19-4
CR4 fixed bits, 1-4
debugging facilities, 1-1
EFLAGS, 1-5
entering operation, 19-4
entering root operation, 1-5
error handling, 1-5
guest software, 19-1
IA32_FEATURE_CONTROL MSR, 19-4
INIT# signal, 19-6
instruction set, 19-3

error numbers, 1-1
VM-instruction error field, 1-1

introduction, 19-1
memory virtualization, 1-3
microcode update facilities, 1-13, 1-11, 1-12
non-root operation, 19-1

event blocking, 1-18
instruction changes, 1-10
overview, 1-1
task switches not allowed, 1-18
see VM exits

operation restrictions, 19-5
root operation, 19-1
SMM

CR4.VMXE reserved, 1-25
overview, 1-2
RSM instruction, 1-25
VMCS pointer, 1-23
VMX-critical state, 1-23

testing for support, 19-3
virtual TLBs, 1-5
virtual-machine control structure (VMCS), 19-3
virtual-machine monitor (VMM), 19-1
vitualization of system resources, 1-1
VM entries and exits, 19-1
VM exits, 1-1
VMCS pointer, 19-3
VMM life cycle, 19-2
VMXOFF instruction, 19-4
VMXON instruction, 19-4
VMXON pointer, 19-5
VMXON region, 19-5
See also:VMM, VMCS, VM entries, VM exits

VMXOFF instruction, 19-4
VMXON instruction, 19-4

W
WAIT/FWAIT instructions, 5-36, 17-9, 17-20
WB (write back) memory type, 7-13, 10-8, 10-10
WB (write-back) pin (Pentium processor), 10-17
WBINVD instruction, 2-29, 4-34, 7-14, 10-22, 10-23,

17-5
WB/WT# pins, 10-17
WC buffer (see Write combining (WC) buffer)
WC (write combining)

flag, IA32_MTRRCAP MSR, 10-30
memory type, 10-7, 10-10

WP (write protected) memory type, 10-8
WP (write protect) flag

CR0 control register, 2-20, 4-41, 17-24
Write

forwarding, 7-9
hit, 10-6

Write combining (WC) buffer, 10-3, 10-9
Write-back caching, 10-6
WRMSR instruction, 2-30, 2-31, 4-34, 7-14, 17-6,

17-42, 18-21, 18-34, 18-38, 18-67,
18-113, 18-115, 18-117, 1-4, 1-13
Vol. 3B Index -27

INDEX
WT (write through) memory type, 10-8, 10-10
WT# (write-through) pin (Pentium processor), 10-17

X
x87 FPU

compatibility with IA-32 x87 FPUs and math
coprocessors, 17-9

configuring the x87 FPU environment, 9-6
device-not-available exception, 5-36
effect of MMX instructions on pending x87

floating-point exceptions, 11-6
effects of MMX instructions on x87 FPU state,

11-3
effects of MMX, x87 FPU, FXSAVE, and FXRSTOR

instructions on x87 FPU tag word, 11-3
error signals, 17-14
initialization, 9-6
instruction synchronization, 17-20
register stack, aliasing with MMX registers, 11-2
setting up for software emulation of x87 FPU

functions, 9-7
using in SMM, 1-17
using TS flag to control saving of x87 FPU state,

12-9
x87 floating-point error exception (#MF), 5-58

x87 FPU control word
compatibility, IA-32 processors, 17-10

x87 FPU floating-point error exception (#MF), 5-58
x87 FPU status word

condition code flags, 17-10
x87 FPU tag word, 17-11
XADD instruction, 7-5, 17-5
xAPIC

determining lowest priority processor, 8-33
interrupt control register, 8-27
introduction to, 8-5
message passing protocol on system bus, 8-45
new features, 17-31
spurious vector, 8-44
using system bus, 8-5

XCHG instruction, 7-4, 7-5, 7-12
XMM registers, saving, 12-7
XOR instruction, 7-5

Z
ZF flag, EFLAGS register, 4-36
Index-28 Vol. 3B

INTEL SALES OFFICES

ASIA PACIFIC
Australia
Intel Corp.
Level 2
448 St Kilda Road
Melbourne VIC
3004
Australia
Fax:613-9862 5599

China
Intel Corp.
Rm 709, Shaanxi
Zhongda Int'l Bldg
No.30 Nandajie Street
Xian AX710002
China
Fax:(86 29) 7203356

Intel Corp.
Rm 2710, Metropolian
Tower
68 Zourong Rd
Chongqing CQ
400015
China

Intel Corp.
C1, 15 Flr, Fujian
Oriental Hotel
No. 96 East Street
Fuzhou FJ
350001
China

Intel Corp.
Rm 5803 CITIC Plaza
233 Tianhe Rd
Guangzhou GD
510613
China

Intel Corp.
Rm 1003, Orient Plaza
No. 235 Huayuan Street
Nangang District
Harbin HL
150001
China

Intel Corp.
Rm 1751 World Trade
Center, No 2
Han Zhong Rd
Nanjing JS
210009
China

Intel Corp.
Hua Xin International
Tower
215 Qing Nian St.
ShenYang LN
110015
China

Intel Corp.
Suite 1128 CITIC Plaza
Jinan
150 Luo Yuan St.
Jinan SN
China

Intel Corp.
Suite 412, Holiday Inn
Crowne Plaza
31, Zong Fu Street
Chengdu SU
610041
China
Fax:86-28-6785965

Intel Corp.
Room 0724, White Rose
Hotel
No 750, MinZhu Road
WuChang District
Wuhan UB
430071
China

India
Intel Corp.
Paharpur Business
Centre
21 Nehru Place
New Delhi DH
110019
India

Intel Corp.
Hotel Rang Sharda, 6th
Floor
Bandra Reclamation
Mumbai MH
400050
India
Fax:91-22-6415578

Intel Corp.
DBS Corporate Club
31A Cathedral Garden
Road
Chennai TD
600034
India

Intel Corp.
DBS Corporate Club
2nd Floor, 8 A.A.C. Bose
Road
Calcutta WB
700017
India

Japan
Intel Corp.
Kokusai Bldg 5F, 3-1-1,
Marunouchi
Chiyoda-Ku, Tokyo
1000005
Japan

Intel Corp.
2-4-1 Terauchi
Toyonaka-Shi
Osaka
5600872
Japan

Malaysia
Intel Corp.
Lot 102 1/F Block A
Wisma Semantan
12 Jalan Gelenggang
Damansara Heights
Kuala Lumpur SL
50490
Malaysia

Thailand
Intel Corp.
87 M. Thai Tower, 9th Fl.
All Seasons Place,
Wireless Road
Lumpini, Patumwan
Bangkok
10330
Thailand

Viet Nam
Intel Corp.
Hanoi Tung Shing
Square, Ste #1106
2 Ngo Quyen St
Hoan Kiem District
Hanoi
Viet Nam

EUROPE & AFRICA
Belgium
Intel Corp.
Woluwelaan 158
Diegem
1831
Belgium

Czech Rep
Intel Corp.
Nahorni 14
Brno
61600
Czech Rep

Denmark
Intel Corp.
Soelodden 13
Maaloev
DK2760
Denmark

Germany
Intel Corp.
Sandstrasse 4
Aichner
86551
Germany

Intel Corp.
Dr Weyerstrasse 2
Juelich
52428
Germany

Intel Corp.
Buchenweg 4
Wildberg
72218
Germany

Intel Corp.
Kemnader Strasse 137
Bochum
44797
Germany

Intel Corp.
Klaus-Schaefer Strasse
16-18
Erfstadt NW
50374
Germany

Intel Corp.
Heldmanskamp 37
Lemgo NW
32657
Germany

Italy
Intel Corp Italia Spa
Milanofiori Palazzo E/4
Assago
Milan
20094
Italy
Fax:39-02-57501221

Netherland
Intel Corp.
Strausslaan 31
Heesch
5384CW
Netherland

Poland
Intel Poland
Developments, Inc
Jerozolimskie Business
Park
Jerozolimskie 146c
Warsaw
2305
Poland
Fax:+48-22-570 81 40

Portugal
Intel Corp.
PO Box 20
Alcabideche
2765
Portugal

Spain
Intel Corp.
Calle Rioja, 9
Bajo F Izquierda
Madrid
28042
Spain

South Africa
Intel SA Corporation
Bldg 14, South Wing,
2nd Floor
Uplands, The Woodlands
Western Services Road
Woodmead
2052
Sth Africa
Fax:+27 11 806 4549

Intel Corp.
19 Summit Place,
Halfway House
Cnr 5th and Harry
Galaun Streets
Midrad
1685
Sth Africa

United Kingdom
Intel Corp.
The Manse
Silver Lane
Needingworth CAMBS
PE274SL
UK

Intel Corp.
2 Cameron Close
Long Melford SUFFK
CO109TS
UK

Israel
Intel Corp.
MTM Industrial Center,
P.O.Box 498
Haifa
31000
Israel
Fax:972-4-8655444

LATIN AMERICA &
CANADA
Argentina
Intel Corp.
Dock IV - Bldg 3 - Floor 3
Olga Cossettini 240
Buenos Aires
C1107BVA
Argentina

Brazil
Intel Corp.
Rua Carlos Gomez
111/403
Porto Alegre
90480-003
Brazil

Intel Corp.
Av. Dr. Chucri Zaidan
940 - 10th Floor
San Paulo
04583-904
Brazil

Intel Corp.
Av. Rio Branco,
1 - Sala 1804
Rio de Janeiro
20090-003
Brazil

Columbia
Intel Corp.
Carrera 7 No. 71021
Torre B, Oficina 603
Santefe de Bogota
Columbia

Mexico
Intel Corp.
Av. Mexico No. 2798-9B,
S.H.
Guadalajara
44680
Mexico

Intel Corp.
Torre Esmeralda II,
7th Floor
Blvd. Manuel Avila
Comacho #36
Mexico Cith DF
11000
Mexico

Intel Corp.
Piso 19, Suite 4
Av. Batallon de San
Patricio No 111
Monterrey, Nuevo le
66269
Mexico

Canada
Intel Corp.
168 Bonis Ave, Suite 202
Scarborough
MIT3V6
Canada
Fax:416-335-7695

Intel Corp.
3901 Highway #7,
Suite 403
Vaughan
L4L 8L5
Canada
Fax:905-856-8868

Intel Corp.
999 CANADA PLACE,
Suite 404,#11
Vancouver BC
V6C 3E2
Canada
Fax:604-844-2813

Intel Corp.
2650 Queensview Drive,
Suite 250
Ottawa ON
K2B 8H6
Canada
Fax:613-820-5936

Intel Corp.
190 Attwell Drive,
Suite 500
Rexcdale ON
M9W 6H8
Canada
Fax:416-675-2438

Intel Corp.
171 St. Clair Ave. E,
Suite 6
Toronto ON
Canada

Intel Corp.
1033 Oak Meadow Road
Oakville ON
L6M 1J6
Canada

USA
California
Intel Corp.
551 Lundy Place
Milpitas CA
95035-6833
USA
Fax:408-451-8266

Intel Corp.
1551 N. Tustin Avenue,
Suite 800
Santa Ana CA
92705
USA
Fax:714-541-9157

Intel Corp.
Executive Center del Mar
12230 El Camino Real
Suite 140
San Diego CA
92130
USA
Fax:858-794-5805

Intel Corp.
1960 E. Grand Avenue,
Suite 150
El Segundo CA
90245
USA
Fax:310-640-7133

Intel Corp.
23120 Alicia Parkway,
Suite 215
Mission Viejo CA
92692
USA
Fax:949-586-9499

Intel Corp.
30851 Agoura Road
Suite 202
Agoura Hills CA
91301
USA
Fax:818-874-1166

Intel Corp.
28202 Cabot Road,
Suite #363 & #371
Laguna Niguel CA
92677
USA

Intel Corp.
657 S Cendros Avenue
Solana Beach CA
90075
USA

Intel Corp.
43769 Abeloe Terrace
Fremont CA
94539
USA

Intel Corp.
1721 Warburton, #6
Santa Clara CA
95050
USA

Colorado
Intel Corp.
600 S. Cherry Street,
Suite 700
Denver CO
80222
USA
Fax:303-322-8670

Connecticut
Intel Corp.
Lee Farm Corporate Pk
83 Wooster Heights
Road
Danbury CT
6810
USA
Fax:203-778-2168

Florida
Intel Corp.
7777 Glades Road
Suite 310B
Boca Raton FL
33434
USA
Fax:813-367-5452

Georgia
Intel Corp.
20 Technology Park,
Suite 150
Norcross GA
30092
USA
Fax:770-448-0875

Intel Corp.
Three Northwinds Center
2500 Northwinds
Parkway, 4th Floor
Alpharetta GA
30092
USA
Fax:770-663-6354

Idaho
Intel Corp.
910 W. Main Street, Suite
236
Boise ID
83702
USA
Fax:208-331-2295

Illinois
Intel Corp.
425 N. Martingale Road
Suite 1500
Schaumburg IL
60173
USA
Fax:847-605-9762

Intel Corp.
999 Plaza Drive
Suite 360
Schaumburg IL
60173
USA

Intel Corp.
551 Arlington Lane
South Elgin IL
60177
USA

Indiana
Intel Corp.
9465 Counselors Row,
Suite 200
Indianapolis IN
46240
USA
Fax:317-805-4939

Massachusetts
Intel Corp.
125 Nagog Park
Acton MA
01720
USA
Fax:978-266-3867

Intel Corp.
59 Composit Way
suite 202
Lowell MA
01851
USA

Intel Corp.
800 South Street,
Suite 100
Waltham MA
02154
USA

Maryland
Intel Corp.
131 National Business
Parkway, Suite 200
Annapolis Junction MD
20701
USA
Fax:301-206-3678

Michigan
Intel Corp.
32255 Northwestern
Hwy., Suite 212
Farmington Hills MI
48334
USA
Fax:248-851-8770

MInnesota
Intel Corp.
3600 W 80Th St
Suite 450
Bloomington MN
55431
USA
Fax:952-831-6497

North Carolina
Intel Corp.
2000 CentreGreen Way,
Suite 190
Cary NC
27513
USA
Fax:919-678-2818

New Hampshire
Intel Corp.
7 Suffolk Park
Nashua NH
03063
USA

New Jersey
Intel Corp.
90 Woodbridge Center
Dr, Suite. 240
Woodbridge NJ
07095
USA
Fax:732-602-0096

New York
Intel Corp.
628 Crosskeys Office Pk
Fairport NY
14450
USA
Fax:716-223-2561

Intel Corp.
888 Veterans Memorial
Highway
Suite 530
Hauppauge NY
11788
USA
Fax:516-234-5093

Ohio
Intel Corp.
3401 Park Center Drive
Suite 220
Dayton OH
45414
USA
Fax:937-890-8658

Intel Corp.
56 Milford Drive
Suite 205
Hudson OH
44236
USA
Fax:216-528-1026

Oregon
Intel Corp.
15254 NW Greenbrier
Parkway, Building B
Beaverton OR
97006
USA
Fax:503-645-8181

Pennsylvania
Intel Corp.
925 Harvest Drive
Suite 200
Blue Bell PA
19422
USA
Fax:215-641-0785

Intel Corp.
7500 Brooktree
Suite 213
Wexford PA
15090
USA
Fax:714-541-9157

Texas
Intel Corp.
5000 Quorum Drive,
Suite 750
Dallas TX
75240
USA
Fax:972-233-1325

Intel Corp.
20445 State Highway
249, Suite 300
Houston TX
77070
USA
Fax:281-376-2891

Intel Corp.
8911 Capital of Texas
Hwy, Suite 4230
Austin TX
78759
USA
Fax:512-338-9335

Intel Corp.
7739 La Verdura Drive
Dallas TX
75248
USA

Intel Corp.
77269 La Cabeza Drive
Dallas TX
75249
USA

Intel Corp.
3307 Northland Drive
Austin TX
78731
USA

Intel Corp.
15190 Prestonwood
Blvd. #925
Dallas TX
75248
USA
Intel Corp.

Washington
Intel Corp.
2800 156Th Ave. SE
Suite 105
Bellevue WA
98007
USA
Fax:425-746-4495

Intel Corp.
550 Kirkland Way
Suite 200
Kirkland WA
98033
USA

Wisconsin
Intel Corp.
405 Forest Street
Suites 109/112
Oconomowoc Wi
53066
USA

	Intel® 64 and IA-32 Architectures Software Developer’s Manual
	Disclaimer
	Chapter 18 Debugging and Performance Monitoring
	18.1 Overview of Debug Support Facilities
	18.2 Debug Registers
	18.2.1 Debug Address Registers (DR0-DR3)
	18.2.2 Debug Registers DR4 and DR5
	18.2.3 Debug Status Register (DR6)
	18.2.4 Debug Control Register (DR7)
	18.2.5 Breakpoint Field Recognition
	18.2.6 Debug Registers and Intel® 64 Processors

	18.3 Debug Exceptions
	18.3.1 Debug Exception (#DB)-Interrupt Vector 1
	18.3.1.1 Instruction-Breakpoint Exception Condition
	18.3.1.2 Data Memory and I/O Breakpoint Exception Conditions
	18.3.1.3 General-Detect Exception Condition
	18.3.1.4 Single-Step Exception Condition
	18.3.1.5 Task-Switch Exception Condition

	18.3.2 Breakpoint Exception (#BP)-Interrupt Vector 3

	18.4 Last Branch Recording Overview
	18.5 Last Branch, Interrupt, and Exception Recording (Intel® Core™2 Duo Processor Family)
	18.5.1 IA32_DEBUGCTL MSR
	18.5.2 BTS and Related Facilities
	18.5.2.1 Freezing LBR and Performance Counters on PMI
	18.5.2.2 Debug Store (DS) Mechanism

	18.6 Last Branch, Interrupt, and Exception Recording (Processors based on Intel NetBurst® Microarchitecture)
	18.6.1 CPL-Qualified Last Branch Recording Mechanism
	18.6.2 MSR_DEBUGCTLA MSR
	18.6.3 LBR Stack
	18.6.3.1 LBR Stack and Intel® 64 Processors

	18.6.4 Monitoring Branches, Exceptions, and Interrupts
	18.6.5 Single-Stepping on Branches, Exceptions, and Interrupts
	18.6.6 Branch Trace Messages
	18.6.7 Last Exception Records
	18.6.7.1 Last Exception Records and Intel 64 Architecture

	18.6.8 Branch Trace Store (BTS)
	18.6.8.1 Detection of the BTS Facilities
	18.6.8.2 Setting Up the DS Save Area
	18.6.8.3 Setting Up the BTS Buffer
	18.6.8.4 Setting Up CPL-Qualified BTS
	18.6.8.5 Writing the DS Interrupt Service Routine

	18.7 Last Branch, Interrupt, and Exception Recording (Intel® Core™ Solo and Intel® Core™ Duo Processors)
	18.8 Last Branch, Interrupt, and Exception Recording (Pentium M Processors)
	18.9 Last Branch, Interrupt, and Exception Recording (P6 Family Processors)
	18.9.1 DEBUGCTLMSR Register
	18.9.2 Last Branch and Last Exception MSRs
	18.9.3 Monitoring Branches, Exceptions, and Interrupts

	18.10 Time-Stamp Counter
	18.11 Performance Monitoring Overview
	18.12 Architectural Performance Monitoring
	18.12.1 Architectural Performance Monitoring Version 1
	18.12.1.1 Architectural Performance Monitoring Version 1 Facilities

	18.12.2 Architectural Performance Monitoring Version 2
	18.12.2.1 Architectural Performance Monitoring Version 2 Facilities

	18.12.3 Pre-defined Architectural Performance Events

	18.13 Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo Processors)
	18.14 Performance Monitoring (Processors based on Intel® Core™ Microarchitecture)
	18.14.1 Fixed-function Performance Counters
	18.14.2 Global Counter Control Facilities
	18.14.3 At-Retirement Events
	18.14.4 Precise Even Based Sampling (PEBS)
	18.14.4.1 Setting up the PEBS Buffer
	18.14.4.2 Writing a PEBS Interrupt Service Routine

	18.15 Performance Monitoring (Processors Based on Intel NetBurst microarchitecture)
	18.15.1 ESCR MSRs
	18.15.2 Performance Counters
	18.15.3 CCCR MSRs
	18.15.4 Debug Store (DS) Mechanism
	18.15.5 DS Save Area
	18.15.5.1 DS Save Area and IA-32e Mode Operation

	18.15.6 Programming the Performance Counters for Non-Retirement Events
	18.15.6.1 Selecting Events to Count
	18.15.6.2 Filtering Events
	18.15.6.3 Starting Event Counting
	18.15.6.4 Reading a Performance Counter’s Count
	18.15.6.5 Halting Event Counting
	18.15.6.6 Cascading Counters
	18.15.6.7 EXTENDED CASCADING
	18.15.6.8 Generating an Interrupt on Overflow
	18.15.6.9 Counter Usage Guideline

	18.15.7 At-Retirement Counting
	18.15.7.1 Using At-Retirement Counting
	18.15.7.2 Tagging Mechanism for Front_end_event
	18.15.7.3 Tagging Mechanism For Execution_event
	18.15.7.4 Tagging Mechanism for Replay_event

	18.15.8 Precise Event-Based Sampling (PEBS)
	18.15.8.1 Detection of the Availability of the PEBS Facilities
	18.15.8.2 Setting Up the DS Save Area
	18.15.8.3 Setting Up the PEBS Buffer
	18.15.8.4 Writing a PEBS Interrupt Service Routine
	18.15.8.5 Other DS Mechanism Implications

	18.15.9 Operating System Implications

	18.16 Performance Monitoring and Hyper- Threading Technology
	18.16.1 ESCR MSRs
	18.16.2 CCCR MSRs
	18.16.3 IA32_PEBS_ENABLE MSR
	18.16.4 Performance Monitoring Events

	18.17 Counting Clocks
	18.17.1 Non-Halted Clockticks
	18.17.2 Non-Sleep Clockticks
	18.17.3 Incrementing the Time-Stamp Counter
	18.17.4 Non-Halted Reference Clockticks
	18.17.5 Cycle Counting and Opportunistic Processor Operation

	18.18 Performance Monitoring and Dual-Core Technology
	18.19 Performance Monitoring on 64-bit Intel Xeon Processor MP with Up to 8-MByte L3 Cache
	18.20 Performance Monitoring on Dual-Core Intel Xeon Processor 7100 Series
	18.20.1 GBSQ Event Interface
	18.20.2 GSNPQ Event Interface
	18.20.3 FSB Event Interface
	18.20.3.1 FSB Sub-Event Mask Interface

	18.20.4 Common Event Control Interface

	18.21 Performance Monitoring (P6 Family Processor)
	18.21.1 PerfEvtSel0 and PerfEvtSel1 MSRs
	18.21.2 PerfCtr0 and PerfCtr1 MSRs
	18.21.3 Starting and Stopping the Performance-Monitoring Counters
	18.21.4 Event and Time-Stamp Monitoring Software
	18.21.5 Monitoring Counter Overflow

	18.22 Performance Monitoring (Pentium Processors)
	18.22.1 Control and Event Select Register (CESR)
	18.22.2 Use of the Performance-Monitoring Pins
	18.22.3 Events Counted

	Chapter 19 Introduction to Virtual-Machine Extensions
	19.1 Overview
	19.2 Virtual Machine Architecture
	19.3 Introduction to VMX Operation
	19.4 Life Cycle of VMM Software
	19.5 Virtual-Machine Control Structure
	19.6 Discovering Support for VMX
	19.7 Enabling and Entering VMX Operation
	19.8 Restrictions on VMX Operation

	Chapter 20 Virtual-Machine Control Structures
	20.1 Overview
	20.2 Format of the VMCS Region
	20.3 Organization of VMCS Data
	20.4 Guest-State Area
	20.4.1 Guest Register State
	20.4.2 Guest Non-Register State

	20.5 Host-State Area
	20.6 VM-Execution Control Fields
	20.6.1 Pin-Based VM-Execution Controls
	20.6.2 Processor-Based VM-Execution Controls
	20.6.3 Exception Bitmap
	20.6.4 I/O-Bitmap Addresses
	20.6.5 Time-Stamp Counter Offset
	20.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4
	20.6.7 CR3-Target Controls
	20.6.8 Controls for APIC Accesses
	20.6.9 MSR-Bitmap Address
	20.6.10 Executive-VMCS Pointer

	20.7 VM-Exit Control Fields
	20.7.1 VM-Exit Controls
	20.7.2 VM-Exit Controls for MSRs

	20.8 VM-Entry Control Fields
	20.8.1 VM-Entry Controls
	20.8.2 VM-Entry Controls for MSRs
	20.8.3 VM-Entry Controls for Event Injection

	20.9 VM-Exit Information Fields
	20.9.1 Basic VM-Exit Information
	20.9.2 Information for VM Exits Due to Vectored Events
	20.9.3 Information for VM Exits That Occur During Event Delivery
	20.9.4 Information for VM Exits Due to Instruction Execution
	20.9.5 VM-Instruction Error Field

	20.10 Software Access to the VMCS and Related Structures
	20.10.1 Software Access to the Virtual-Machine Control Structure
	20.10.2 VMREAD, VMWRITE, and Encodings of VMCS Fields
	20.10.3 Software Access to Related Structures
	20.10.4 VMXON Region

	20.11 Using VMCLEAR to Initialize a VMCS Region

	Chapter 21 VMX Non-Root Operation
	21.1 Instructions That Cause VM Exits
	21.1.1 Relative Priority of Faults and VM Exits
	21.1.2 Instructions That Cause VM Exits Unconditionally
	21.1.3 Instructions That Cause VM Exits Conditionally

	21.2 APIC-Access VM Exits
	21.2.1 Linear Accesses to the APIC-Access Page
	21.2.1.1 Linear Accesses That Cause APIC-Access VM Exits
	21.2.1.2 Priority of APIC-Access VM Exits Caused by Linear Accesses
	21.2.1.3 Instructions That May Cause Page Faults Without Accessing Memory

	21.2.2 Physical Accesses to the APIC-Access Page
	21.2.3 VTPR Accesses

	21.3 Other Causes of VM Exits
	21.4 Changes to Instruction Behavior in VMX Non- Root Operation
	21.5 APIC Accesses That Do Not Cause VM Exits
	21.5.1 Linear Accesses to the APIC-Access Page Using Large-Page Translations
	21.5.2 Physical Accesses to the APIC-Access Page
	21.5.3 VTPR Accesses
	21.5.3.1 Treatment of Individual VTPR Accesses
	21.5.3.2 Operations with Multiple Accesses
	21.5.3.3 TPR-Shadow Updates

	21.6 Other Changes in VMX Non-Root Operation
	21.6.1 Event Blocking
	21.6.2 Treatment of Task Switches

	Chapter 22 VM Entries
	22.1 Basic VM-Entry Checks
	22.2 Checks on VMX Controls and Host-State Area
	22.2.1 Checks on VMX Controls
	22.2.1.1 VM-Execution Control Fields
	22.2.1.2 VM-Exit Control Fields
	22.2.1.3 VM-Entry Control Fields

	22.2.2 Checks on Host Control Registers and MSRs
	22.2.3 Checks on Host Segment and Descriptor-Table Registers
	22.2.4 Checks Related to Address-Space Size

	22.3 Checking and Loading Guest State
	22.3.1 Checks on the Guest State Area
	22.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRs
	22.3.1.2 Checks on Guest Segment Registers
	22.3.1.3 Checks on Guest Descriptor-Table Registers
	22.3.1.4 Checks on Guest RIP and RFLAGS
	22.3.1.5 Checks on Guest Non-Register State
	22.3.1.6 Checks on Guest Page-Directory Pointers

	22.3.2 Loading Guest State
	22.3.2.1 Loading Guest Control Registers, Debug Registers, and MSRs
	22.3.2.2 Loading Guest Segment Registers and Descriptor-Table Registers
	22.3.2.3 Loading Guest RIP, RSP, and RFLAGS
	22.3.2.4 Loading Page-Directory Pointers

	22.3.3 Clearing Address-Range Monitoring

	22.4 Loading MSRs
	22.5 Event Injection
	22.5.1 Details of Event Injection
	22.5.2 VM Exits During Event Injection

	22.6 Special Features of VM Entry
	22.6.1 Interruptibility State
	22.6.2 Activity State
	22.6.3 Delivery of Pending Debug Exceptions after VM Entry
	22.6.4 Interrupt-Window Exiting
	22.6.5 NMI-Window Exiting
	22.6.6 VM Exits Induced by the TPR Shadow
	22.6.7 VM Entries and Advanced Debugging Features

	22.7 VM-Entry Failures During or After Loading Guest State
	22.8 Machine Checks During VM Entry

	Chapter 23 VM Exits
	23.1 Architectural State Before a VM Exit
	23.2 Recording VM-Exit Information and Updating Controls
	23.2.1 Basic VM-Exit Information
	23.2.2 Information for VM Exits Due to Vectored Events
	23.2.3 Information for VM Exits During Event Delivery
	23.2.4 Information for VM Exits Due to Instruction Execution

	23.3 Saving Guest State
	23.3.1 Saving Control Registers, Debug Registers, and MSRs
	23.3.2 Saving Segment Registers and Descriptor-Table Registers
	23.3.3 Saving RIP, RSP, and RFLAGS
	23.3.4 Saving Non-Register State

	23.4 Saving MSRs
	23.5 Loading Host State
	23.5.1 Loading Host Control Registers, Debug Registers, MSRs
	23.5.2 Loading Host Segment and Descriptor-Table Registers
	23.5.3 Loading Host RIP, RSP, and RFLAGS
	23.5.4 Checking and Loading Host Page-Directory Pointers
	23.5.5 Updating Non-Register State
	23.5.6 Clearing Address-Range Monitoring

	23.6 Loading MSRs
	23.7 VMX Aborts
	23.8 Machine Check During VM Exit

	Chapter 24 System Management
	24.1 System Management Mode Overview
	24.1.1 System Management Mode and VMX Operation

	24.2 System Management Interrupt (SMI)
	24.3 Switching Between SMM and the Other Processor Operating Modes
	24.3.1 Entering SMM
	24.3.2 Exiting From SMM

	24.4 SMRAM
	24.4.1 SMRAM State Save Map
	24.4.1.1 SMRAM State Save Map and Intel 64 Architecture

	24.4.2 SMRAM Caching

	24.5 SMI Handler Execution Environment
	24.6 Exceptions and Interrupts Within SMM
	24.7 Managing Synchronous and Asynchronous System Management Interrupts
	24.7.1 I/O State Implementation

	24.8 NMI Handling While in SMM
	24.9 Saving the x87 FPU State While in SMM
	24.10 SMM Revision Identifier
	24.11 Auto HALT Restart
	24.11.1 Executing the HLT Instruction in SMM

	24.12 SMBASE Relocation
	24.12.1 Relocating SMRAM to an Address Above 1 MByte

	24.13 I/O Instruction Restart
	24.13.1 Back-to-Back SMI Interrupts When I/O Instruction Restart Is Being Used

	24.14 SMM Multiple-Processor Considerations
	24.15 Default Treatment of SMIs and SMM with VMX
	24.15.1 Default Treatment of SMI Delivery
	24.15.2 Default Treatment of RSM
	24.15.3 Protection of CR4.VMXE in SMM

	24.16 Dual-Monitor Treatment of SMIs and SMM
	24.16.1 Dual-Monitor Treatment Overview
	24.16.2 SMM VM Exits
	24.16.2.1 Architectural State Before a VM Exit
	24.16.2.2 Updating the Current-VMCS and Executive-VMCS Pointers
	24.16.2.3 Recording VM-Exit Information
	24.16.2.4 Saving Guest State
	24.16.2.5 Updating Non-Register State

	24.16.3 Operation of an SMM Monitor
	24.16.4 VM Entries that Return from SMM
	24.16.4.1 Checks on the Executive-VMCS Pointer Field
	24.16.4.2 Checks on VM-Execution Control Fields
	24.16.4.3 Checks on Guest Non-Register State
	24.16.4.4 Loading Guest State
	24.16.4.5 Updating the Current-VMCS and SMM-Transfer VMCS Pointers
	24.16.4.6 VM Exits Induced by VM Entry
	24.16.4.7 SMI Blocking
	24.16.4.8 Failures of VM Entries That Return from SMM

	24.16.5 Enabling the Dual-Monitor Treatment
	24.16.6 Activating the Dual-Monitor Treatment
	24.16.6.1 Initial Checks
	24.16.6.2 MSEG Checking
	24.16.6.3 Updating the Current-VMCS and Executive-VMCS Pointers
	24.16.6.4 Loading Host State
	24.16.6.5 Loading MSRs

	24.16.7 Deactivating the Dual-Monitor Treatment

	Chapter 25 Virtual-Machine Monitor Programming Considerations
	25.1 VMX System Programming Overview
	25.2 Supporting Processor Operating Modes in Guest Environments
	25.2.1 Emulating Guest Execution

	25.3 Managing VMCS Regions and Pointers
	25.4 Using VMX Instructions
	25.5 VMM Setup & Tear Down
	25.6 Preparation and Launching a Virtual Machine
	25.7 Handling of VM Exits
	25.7.1 Handling VM Exits Due to Exceptions
	25.7.1.1 Reflecting Exceptions to Guest Software
	25.7.1.2 Resuming Guest Software after Handling an Exception

	25.8 Multi-Processor Considerations
	25.8.1 Initialization
	25.8.2 Moving a VMCS Between Processors
	25.8.3 Paired Index-Data Registers
	25.8.4 External Data Structures
	25.8.5 CPUID Emulation

	25.9 32-Bit and 64-Bit Guest Environments
	25.9.1 Operating Modes of Guest Environments
	25.9.2 Handling Widths of VMCS Fields
	25.9.2.1 Natural-Width VMCS Fields
	25.9.2.2 64-Bit VMCS Fields

	25.9.3 IA-32e Mode Hosts
	25.9.4 IA-32e Mode Guests
	25.9.5 32-Bit Guests

	25.10 Handling Model Specific Registers
	25.10.1 Using VM-Execution Controls
	25.10.2 Using VM-Exit Controls for MSRs
	25.10.3 Using VM-Entry Controls for MSRs
	25.10.4 Handling Special-Case MSRs and Instructions
	25.10.4.1 Handling IA32_EFER MSR
	25.10.4.2 Handling the SYSENTER and SYSEXIT Instructions
	25.10.4.3 Handling the SYSCALL and SYSRET Instructions
	25.10.4.4 Handling the SWAPGS Instruction
	25.10.4.5 Implementation Specific Behavior on Writing to Certain MSRs

	25.10.5 Handling Accesses to Reserved MSR Addresses

	25.11 Handling Accesses to Control Registers
	25.12 Performance Considerations

	Chapter 26 Virtualization of System Resources
	26.1 Overview
	26.2 Virtualization Support for Debugging Facilities
	26.2.1 Debug Exceptions

	26.3 Memory Virtualization
	26.3.1 Processor Operating Modes & Memory Virtualization
	26.3.2 Guest & Host Physical Address Spaces
	26.3.3 Virtualizing Virtual Memory by Brute Force
	26.3.4 Alternate Approach to Memory Virtualization
	26.3.5 Details of Virtual TLB Operation
	26.3.5.1 Initialization of Virtual TLB
	26.3.5.2 Response to Page Faults
	26.3.5.3 Response to Uses of INVLPG
	26.3.5.4 Response to CR3 Writes

	26.4 Microcode Update Facility
	26.4.1 Early Load of Microcode Updates
	26.4.2 Late Load of Microcode Updates

	Chapter 27 Handling Boundary Conditions in a Virtual Machine Monitor
	27.1 Overview
	27.2 Interrupt Handling in VMX Operation
	27.3 External Interrupt Virtualization
	27.3.1 Virtualization of Interrupt Vector Space
	27.3.2 Control of Platform Interrupts
	27.3.2.1 PIC Virtualization
	27.3.2.2 xAPIC Virtualization
	27.3.2.3 Local APIC Virtualization
	27.3.2.4 I/O APIC Virtualization
	27.3.2.5 Virtualization of Message Signaled Interrupts

	27.3.3 Examples of Handling of External Interrupts
	27.3.3.1 Guest Setup
	27.3.3.2 Processor Treatment of External Interrupt
	27.3.3.3 Processing of External Interrupts by VMM
	27.3.3.4 Generation of Virtual Interrupt Events by VMM

	27.4 Error Handling by VMM
	27.4.1 VM-Exit Failures
	27.4.2 Machine Check Considerations

	27.5 Handling Activity States by VMM

	Appendix A Performance-Monitoring Events
	A.1 Architectural Performance-Monitoring Events
	A.2 Performance Monitoring Events for Intel® Xeon® Processor 3000, 3200, 5100, 5300 Series and Intel® Core™2 Duo ProcessorS
	A.3 Performance Monitoring Events for Intel® Core™ Solo and Intel® Core™ Duo ProcessorS
	A.4 Pentium 4 and Intel Xeon Processor Performance-Monitoring Events
	A.5 Performance Monitoring Events for Intel® Pentium® M ProcessorS
	A.6 P6 Family Processor Performance- Monitoring Events
	A.7 Pentium Processor Performance- Monitoring Events

	Appendix B Model-Specific Registers (MSRs)
	B.1 MSRs In the Intel® Core™ 2 Processor Family
	B.2 MSRs In the Pentium® 4 and Intel® Xeon® Processors
	B.2.1 MSRs Unique to Intel Xeon Processor MP with L3 Cache

	B.3 MSRs In Intel® Core™ Solo and Intel® Core™ Duo Processors
	B.4 MSRs In the Pentium M Processor
	B.5 MSRs In the P6 Family Processors
	B.6 MSRs in Pentium Processors
	B.7 Architectural MSRs

	Appendix C MP Initialization For P6 Family Processors
	C.1 Overview of the MP Initialization Process For P6 Family Processors
	C.2 MP Initialization Protocol Algorithm
	C.2.1 Error Detection and Handling During the MP Initialization Protocol

	Appendix D Programming the LINT0 and LINT1 Inputs
	D.1 Constants
	D.2 LINT[0:1] Pins Programming Procedure

	Appendix E Interpreting Machine-Check Error Codes
	E.1 Incremental Decoding Information: Processor Family 06H Machine Error Codes For Machine Check
	E.2 Incremental Decoding Information: Processor Family 0FH Machine Error Codes For Machine Check

	Appendix F APIC Bus Message Formats
	F.1 Bus Message Formats
	F.2 EOI Message
	F.2.1 Short Message
	F.2.2 Non-focused Lowest Priority Message
	F.2.3 APIC Bus Status Cycles

	Appendix G VMX Capability Reporting Facility
	G.1 Basic VMX Information
	G.2 VM-Execution Controls
	G.3 VM-Exit Controls
	G.4 VM-Entry Controls
	G.5 Miscellaneous Data
	G.6 VMX-Fixed Bits in CR0
	G.7 VMX-Fixed Bits in CR4
	G.8 VMCS Enumeration

	Appendix H Field Encoding in VMCS
	H.1 16-Bit Fields
	H.1.1 16-Bit Guest-State Fields
	H.1.2 16-Bit Host-State Fields

	H.2 64-Bit Fields
	H.2.1 64-Bit Control Fields
	H.2.2 64-Bit Guest-State Fields

	H.3 32-Bit Fields
	H.3.1 32-Bit Control Fields
	H.3.2 32-Bit Read-Only Data Fields
	H.3.3 32-Bit Guest-State Fields
	H.3.4 32-Bit Host-State Field

	H.4 Natural-Width Fields
	H.4.1 Natural-Width Control Fields
	H.4.2 Natural-Width Read-Only Data Fields
	H.4.3 Natural-Width Guest-State Fields
	H.4.4 Natural-Width Host-State Fields

	Appendix I VMX Basic Exit Reasons
	Appendix J VM Instruction Error Numbers
	J.1 Error Numbers

	Index for Volumes 3A & 3B
	Intel Sales Offices

