The Confused Deputy
(or why capabilities might have been invented)

Norm Hardy
Senior Architect
Key Logic
5200 Great America Parkway
Santa Clara, CA 95054-1108

This is a nearly true story (inessential details have been changed). The events happened about
eleven years ago at Tymshare, a company which provided commercial timesharing services. Be-
fore this happened I had heard of capabilities and thought that they were neat and tidy, but was not
yet convinced that they were necessary. This occasion convinced me that they were necessary.

Our operating system was much like Unix (™ of AT&T) in its protection structures. A compiler
was installed in a directory called SYSX. A user would use the compiler by saying “RUN
(SYSX)FORT™, and could provide the name of a file to receive some optional debugging output.
We had instrumented the compiler to collect statistics about language feature usage. The statistics
file was called (SYSX)STAT, a name which was assembled into the compiler. To enable the
compiler to write the (SYSX)STAT file, we marked the file holding the compiler
{(SYSX)FORT} with home files license. The operating system allowed a program with such
license to write files in its home directory, SYSX in our case.

The billing information file (SYSX)BILL was also stored in SYSX. Some user came to know the
name (SYSX)BILL and supplied it to the compiler as the name of the file to receive the debugging
information. The compiler passed the name to the operating system in a request to open that file for
output. The operating system, observing that the compiler had home files license, let the compiler
write debugging information over (SYSX)BILL. The billing information was lost.

Who is to blame? What can we change to rectify the problem? Will that cause other problems?
How can we foresee such problems?

The code to deposit the debugging output in the file named by the user cannot be blamed. Must the
compiler check to see if the output file name is in another directory by scanning the file name?
No—it is useful to specify the name of a file in another directory to receive output. Should the
compiler check for directory name SYSX? No—the name “SYSX” had not been invented when
this code was written. Indeed there might be a legitimate request for the compiler to deposit its out-
put in some file in SYSX made by someone with legitimate access to that directory. Should the
compiler check for the name (SYSX)BILL? That is not the only sensitive file in SYSX. Must the
compiler be modified whenever new files are added to SYSX?

When the code was written to produce the output it was correct! What happened to make it wrong?
The precise answer is that it became wrong when we added home files license to (SYSX)FORT.
To determine this, however, would have required examination of every situation in which the
compiler wrote a file. Even when we identify those situations it is not clear what to do.

36



Another indication of trouble was that the rules allowing a program to open a file grew more com-
plex. The rules were suffering from the law that complex things become more complex. Every time
we added a clause enabling the opening of a file in a categorical situation we would introduce
security problems in programs that had been secure. Every time we added restrictions to these cat-
egories we broke other legitimate programs. The last time that I wrote down the requirements for a
program to open a file, it required fourteen boolean operators (“and”’s & “or’’s)!

The fundamental problem is that the compiler runs with authority stemming from two sources.
(That’s why the compiler is a confused deputy.)

The invoker yields his authority to the compiler when he says “RUN (SYSX) FORT”. (This is of
course the tool of Trojan horses which is the companion problem in these access list architectures.)
The other authority of the compiler stems from its home files license. The compiler serves two
masters and carries some authority from each to perform its respective duties. It has no way to
keep them apart. When it produces statistics it intends to use the authority granted by its home files
license. When it produces its debugging output it intends to use authority from its invoker. The
compiler had no way of expressing these intents!

The system was modified by providing a new system call to switch hats which could be used to
select one of its two authorities. Note the increase in complexity! The compiler would then be able
to use its home files license or the invoker’s license explicitly—in the later case, for example,
saying “by the authority vested in me by my invoker I hereby request the opening of
(SYSX)BILL” which would then properly fail. It soon became clear, however, that more than two
“authorities” were necessary for some of our applications. A further problem was that there were
other authority mechanisms besides access to files. Generalizations were not obvious and the
modifications to the system were not localized. (Exercise for the reader: Show that access lists do
not solve this problem.)

Another indication of poor design is that disparate mechanisms were necessary to arrange sepa-
rately that the compiler (1) know what file to write on and (2) be authorized to write on that file.
The crime was perpetrated through unintended application of the compiler’s authority over SYSX
when writing the user’s data. (If you try to solve this problem without capabilities, remember that
the file (SYSX)STAT must also be protected.)

The capability solution would endow the compiler with a direct capability to the statistics file. In-
stead of referring to the name of the file, the compiler would merely designate that capability when
depositing the statistics. The capability both identifies the file and authorizes the compiler to write
there. When producing the debugging output the compiler would merely refer to a capability
provided by the invoker to the place he meant to hold that output. The same mechanism is used in
each case—no ASCII character names are required, no authority checking mechanisms are
executed. We must not only endow the compiler with authority over the STAT file but require the
compiler to explicitly designate that authority. In this case there is no need for the compiler to know
any textual file name.

Before we implemented the capability ideas, we feared that a system built on these principles
would use most of the storage to hold these mysterious new capabilities. Instead it turned out that
capabilities replaced so many other ad-hoc mechanisms that our capability-based systems were
usually smaller than equivalent access-list based systems, because they unified not only various
naming functions, but also made older basic security mechanisms largely unnecessary. That per-
formance was excellent was a pleasant extra.

37



Some systems tried to add capabilities to the traditional mechanisms and sometimes suffered more
from the combined disadvantages than benefitted from the combined advantages. Our view is that
capabilities must be the foundation of the system. We have carried out that program more com-
pletely in some ways in our implementation of the KeyKOS system [1, 2] than previous systems
have. KeyKOS has directories and other such traditional operating system facilities—they are im-
plemented and accessed, however, via capabilities.

KeyKOS provides patented facilities [3] to aid deputies (and defeat Trojan horses, viruses, and
other related security threats), while also providing flexibility to meet a broad range of security

policies—from government-style “orange book” policies [4] to useful commercial policies
including those requiring the solution of the mutually suspicious users problem [5].

Bibliography

[1] Hardy, N., “KeyKOS Architecture,” Operating Systems Review, Association for Computing
Machinery September, 1985. (Also available in an modified version as publication KLO68 from
Key Logic.)

[2] Rajunas, S.A,, et al., “Security in KeyKOS,” Proceedings of the 1986 IEEE Symposium on
Security and Privacy, IEEE.

[3] U.S. patent number 4,584,639.

[4] Department of Defense Trusted Computer System Evaluation Criteria, U.S. Department of
Defense, DOD 5200.28-STD, December, 1985.}

[5] KeyKOS and Mutually Suspicious Users (KL108), 1987, Key Logic.

38



