
Es: A shell with higher-order functions
Paul Haahr – Adobe Systems Incorporated

Byron Rakitzis – Network Appliance Corporation

ABSTRACT
In the fall of 1990, one of us (Rakitzis) re-implemented the Plan 9 command interpreter, rc,
for use as a UNIX shell. Experience with that shell led us to wonder whether a more general
approach to the design of shells was possible, and this paper describes the result of that
experimentation. We applied concepts from modern functional programming languages, such
as Scheme and ML, to shells, which typically are more concerned with UNIX features than
language design. Our shell is both simple and highly programmable. By exposing many of
the internals and adopting constructs from functional programming languages, we have
created a shell which supports new paradigms for programmers.

Although most users think of the shell as an
interactive command interpreter, it is really a pro-
gramming language in which each statement runs a
command. Because it must satisfy both the interac-
tive and programming aspects of command execu-
tion, it is a strange language, shaped as much by
history as by design.

— Brian Kernighan & Rob Pike [1]

Introduction

A shell is both a programming language and
the core of an interactive environment. The ancestor
of most current shells is the 7th Edition Bourne
shell[2], which is characterized by simple semantics,
a minimal set of interactive features, and syntax that
is all too reminiscent of Algol. One recent shell,
rc[3], substituted a cleaner syntax but kept most of
the Bourne shell’s attributes. However, most recent
developments in shells (e.g., csh, ksh, zsh) have
focused on improving the interactive environment
without changing the structure of the underlying
language – shells have proven to be resistant to
innovation in programming languages.

While rc was an experiment in adding modern
syntax to Bourne shell semantics, es is an explora-
tion of new semantics combined with rc-influenced
syntax: es has lexically scoped variables, first-class
functions, and an exception mechanism, which are
concepts borrowed from modern programming
languages such as Scheme and ML[4, 5].

In es, almost all standard shell constructs (e.g.,
pipes and redirection) are translated into a uniform
representation: function calls. The primitive func-
tions which implement those constructs can be mani-
pulated the same way as all other functions: invoked,
replaced, or passed as arguments to other functions.
The ability to replace primitive functions in es is key
to its extensibility; for example, a user can override
the definition of pipes to cause remote execution, or
the path-searching machinery to implement a path
look-up cache.

At a superficial level, es looks like most UNIX
shells. The syntax for pipes, redirection, background
jobs, etc., is unchanged from the Bourne shell. Es’s
programming constructs are new, but reminiscent of
rc and Tcl[6].

Es is freely redistributable, and is available by
anonymous ftp from ftp.white.toronto.edu.

Using es

Commands
For simple commands, es resembles other

shells. For example, newline usually acts as a com-
mand terminator. These are familiar commands
which all work in es:

cd /tmp
rm Ex*
ps aux | grep ’^byron’ |
awk ’{print $2}’ | xargs kill -9

For simple uses, es bears a close resemblance
to rc. For this reason, the reader is referred to the
paper on rc for a discussion of quoting rules,
redirection, and so on. (The examples shown here,
however, will try to aim for a lowest common
denominator of shell syntax, so that an understanding
of rc is not a prerequisite for understanding this
paper.)
Functions

Es can be programmed through the use of shell
functions. Here is a simple function to print the date
in yy-mm-dd format:

fn d {
date +%y-%m-%d

}

Functions can also be called with arguments.
Es allows parameters to be specified to functions by
placing them between the function name and the
open-brace. This function takes a command cmd and
arguments args and applies the command to each
argument in turn:

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 53

Es: A shell with higher-order functions Haahr & Rakitzis

fn apply cmd args {
for (i = $args)

$cmd $i
}

For example:1

es> apply echo testing 1.. 2.. 3..
testing
1..
2..
3..

Note that apply was called with more than two
arguments; es assigns arguments to parameters one-
to-one, and any leftovers are assigned to the last
parameter. For example:

es> fn rev3 a b c {
echo $c $b $a

}
es> rev3 1 2 3 4 5
3 4 5 2 1

If there are fewer arguments than parameters, es
leaves the leftover parameters null:

es> rev3 1
1

So far we have only seen simple strings passed
as arguments. However, es functions can also take
program fragments (enclosed in braces) as argu-
ments. For example, the apply function defined
above can be used with program fragments typed
directly on the command line:

es> apply @ i {cd $i; rm -f *} \
/tmp /usr/tmp

This command contains a lot to understand, so let us
break it up slowly.

In any other shell, this command would usually
be split up into two separate commands:

es> fn cd-rm i {
cd $i
rm -f *

}
es> apply cd-rm /tmp /usr/tmp

Therefore, the construct

@ i {cd $i; rm -f *}

is just a way of inlining a function on the

1In our examples, we use ‘‘es> ’’ as es’s prompt. The
default prompt, which may be overridden, is ‘‘; ’’ which
is interpreted by es as a null command followed by a
command separator. Thus, whole lines, including
prompts, can be cut and pasted back to the shell for re-
execution. In examples, an italic fixed width font
indicates user input.

command-line. This is called a lambda.2 It takes the
form

@ parameters { commands }

In effect, a lambda is a procedure ‘‘waiting to
happen.’’ For example, it is possible to type:

es> @ i {cd $i; rm -f *} /tmp

directly at the shell, and this runs the inlined func-
tion directly on the argument /tmp.

There is one more thing to notice: the inline
function that was supplied to apply had a parame-
ter named i, and the apply function itself used a
reference to a variable called i. Note that the two
uses did not conflict: that is because es function
parameters are lexically scoped, much as variables
are in C and Scheme.
Variables

The similarity between shell functions and
lambdas is not accidental. In fact, function
definitions are rewritten as assignments of lambdas
to shell variables. Thus these two es commands are
entirely equivalent:

fn echon args {echo -n $args}
fn-echon = @ args {echo -n $args}

In order not to conflict with regular variables,
function variables have the prefix fn- prepended to
their names. This mechanism is also used at execu-
tion time; when a name like apply is seen by es, it
first looks in its symbol table for a variable by the
name fn-apply. Of course, it is always possible to
execute the contents of any variable by dereferencing
it explicitly with a dollar sign:

es> silly-command = {echo hi}
es> $silly-command
hi

The previous examples also show that variables
can be set to contain program fragments as well as
simple strings. In fact, the two can be intermixed:

es> mixed = {ls} hello, {wc} world
es> echo $mixed(2) $mixed(4)
hello, world
es> $mixed(1) | $mixed(3)

61 61 478

Variables can hold a list of commands, or even
a list of lambdas. This makes variables into versatile
tools. For example, a variable could be used as a
function dispatch table.

2The keyword @ introduces the lambda. Since @ is not a
special character in es it must be surrounded by white
space. @ is a poor substitute for the letter λ, but it was
one of the few characters left on a standard keyboard
which did not already have a special meaning.

54 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

Haahr & Rakitzis Es: A shell with higher-order functions

Binding
In the section on functions, we mentioned that

function parameters are lexically scoped. It is also
possible to use lexically-scoped variables directly.
For example, in order to avoid interfering with a glo-
bal instance of i, the following scoping syntax can
be used:

let (var = value) {
commands which use $var

}

Lexical binding is useful in shell functions, where it
becomes important to have shell functions that do
not clobber each others’ variables.

Es code fragments, whether used as arguments
to commands or stored in variables, capture the
values of enclosing lexically scoped values. For
example,

es> let (h=hello; w=world) {
hi = { echo $h, $w }

}
es> $hi
hello, world

One use of lexical binding is in redefining
functions. A new definition can store the previous
definition in a lexically scoped variable, so that it is
only available to the new function. This feature can
be used to define a function for tracing calls to other
functions:

fn trace functions {
for (func = $functions)

let (old = $(fn-$func))
fn $func args {
echo calling $func $args
$old $args

}
}

The trace function redefines all the functions
which are named on its command line with a func-
tion that prints the function name and arguments and
then calls the previous definition, which is captured
in the lexically bound variable old. Consider a
recursive function echo-nl which prints its argu-
ments, one per line:

es> fn echo-nl head tail {
if {!~ $#head 0} {

echo $head
echo-nl $tail

}
}
es> echo-nl a b c
a
b
c

Applying trace to this function yields:

es> trace echo-nl
es> echo-nl a b c
calling echo-nl a b c
a
calling echo-nl b c
b
calling echo-nl c
c
calling echo-nl

The reader should note that

!cmd

is es’s ‘‘not’’ command, which inverts the sense of
the return value of cmd, and

~ subject pattern

matches subject against pattern and returns true if
the subject is the same as the pattern. (In fact, the
matching is a bit more sophisticated, for the pattern
may include wildcards.)

Shells like the Bourne shell and rc support a
form of local assignment known as dynamic binding.
The shell syntax for this is typically:

var=value command

That notation conflicts with es’s syntax for assign-
ment (where zero or more words are assigned to a
variable), so dynamic binding has the syntax:

local (var = value) {
commands which use $var

}

The difference between the two forms of bind-
ing can be seen in an example:

es> x = foo
es> let (x = bar) {

echo $x
fn lexical { echo $x }

}
bar
es> lexical
bar
es> local (x = baz) {

echo $x
fn dynamic { echo $x }

}
baz
es> dynamic
foo

Settor Variables
In addition to the prefix (fn-) for function exe-

cution described earlier, es uses another prefix to
search for settor variables. A settor variable set-
foo is a variable which gets evaluated every time the
variable foo changes value. A good example of set-
tor variable use is the watch function:

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 55

Es: A shell with higher-order functions Haahr & Rakitzis

fn watch vars {
for (var = $vars) {

set-$var = @ {
echo old $var ’=’ $$var
echo new $var ’=’ $*
return $*

}
}

}

Watch establishes a settor function for each of its
parameters; this settor prints the old and new values
of the variable to be set, like this:

es> watch x
es> x=foo bar
old x =
new x = foo bar
es> x=fubar
old x = foo bar
new x = fubar

Return Values
UNIX programs exit with a single number

between 0 and 255 reported as their statuses. Es
supplants the notion of an exit status with ‘‘rich’’
return values. An es function can return not only a
number, but any object: a string, a program frag-
ment, a lambda, or a list which mixes such values.

The return value of a command is accessed by
prepending the command with <>:

es> fn hello-world {
return ’hello, world’

}
es> echo <>{hello-world}
hello, world

This example shows rich return values being
used to implement hierarchical lists:

fn cons a d {
return @ f { $f $a $d }

}
fn car p { $p @ a d { return $a } }
fn cdr p { $p @ a d { return $d } }

The first function, cons, returns a function
which takes as its argument another function to run
on the parameters a and d. car and cdr each
invoke the kind of function returned by cons, sup-
plying as the argument a function which returns the
first or second parameter, respectively. For example:

es> echo <>{car <>{cdr <>{
cons 1 <>{cons 2 <>{cons 3 nil}}

}}}
2

Exceptions
In addition to traditional control flow constructs

– loops, conditionals, subroutines – es has an excep-
tion mechanism which is used for implementing

non-structured control flow. The built-in function
throw raises an exception, which typically consists
of a string which names the exception and other
arguments which are specific to the named exception
type. For example, the exception error is caught
by the default interpreter loop, which treats the
remaining arguments as an error message. Thus:

es> fn in dir cmd {
if {~ $#dir 0} {
throw error ’usage: in dir cmd’

}
fork # run in a subshell
cd $dir
$cmd

}
es> in
usage: in dir cmd
es> in /tmp ls
webster.socket yacc.312

By providing a routine which catches error excep-
tions, a programmer can intercept internal shell
errors before the message gets printed.

Exceptions are also used to implement the
break and return control flow constructs, and to
provide a way for user code to interact with UNIX
signals. While six error types are known to the
interpreter and have special meanings, any set of
arguments can be passed to throw.

Exceptions are trapped with the built-in
catch, which typically takes the form

catch @ e args { handler } { body }

Catch first executes body; if no exception is raised,
catch simply returns, passing along body’s return
value. On the other hand, if anything invoked by
body throws an exception, handler is run, with e
bound to the exception that caused the problem. For
example, the last two lines of in above can be
replaced with:

catch @ e msg {
if {~ $e error} {

echo >[1=2] in $dir: $msg
} {

throw $e $msg
}

} {
cd $dir
$cmd

}

to better identify for a user where an error came
from:

es> in /temp ls
in /temp: chdir /temp:

No such file or directory

56 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

Haahr & Rakitzis Es: A shell with higher-order functions

Spoofing

Es’s versatile functions and variables are only
half of the story; the other part is that es’s shell syn-
tax is just a front for calls on built-in functions. For
example:

ls > /tmp/foo

is internally rewritten as

%create 1 /tmp/foo {ls}

before it is evaluated. %create is the built-in func-
tion which opens /tmp/foo on file-descriptor 1
and runs ls.

The value of this rewriting is that the
%create function (and that of just about any other
shell service) can be spoofed, that is, overridden by
the user: when a new %create function is defined,
the default action of redirection is overridden.

es> let (pipe = $fn-%pipe) {
fn %pipe first out in rest {

if {~ $#out 0} {
time $first

} {
$pipe {time $first} $out $in {%pipe $rest}

}
}

}
es> cat paper9 | tr -cs a-zA-Z0-9 ’\012’ | sort | uniq -c | sort -nr | sed 6q
213 the
150 a
120 to
115 of
109 is
96 and
2r 0.3u 0.2s cat paper9
2r 0.3u 0.2s tr -cs a-zA-Z0-9 \012
2r 0.5u 0.2s sort
2r 0.4u 0.2s uniq -c
3r 0.2u 0.1s sed 6q
3r 0.6u 0.2s sort -nr

Figure 1: Timing pipeline elements

Furthermore, %create is not really the built-
in file redirection service. It is a hook to the primi-
tive $&create, which itself cannot be overridden.
That means that it is always possible to access the
underlying shell service, even when its hook has
been reassigned.

Keeping this in mind, here is a spoof of the
redirection operator that we have been discussing.
This spoof is simple: if the file to be created exists
(determined by running test -f), then the com-
mand is not run, similar to the C-shell’s
‘‘noclobber’’ option:

fn %create fd file cmd {
if {test -f $file} {

throw error $file exists
} {

$&create $fd $file $cmd
}

}

In fact, most redefinitions do not refer to the
$&-forms explicitly, but capture references to them
with lexical scoping. Thus, the above redefinition
would usually appear as

let (create = $fn-%create)
fn %create fd file cmd {

if {test -f $file} {
throw error $file exists

} {
$create $fd $file $cmd

}
}

The latter form is preferable because it allows multi-
ple redefinitions of a function; the former version
would always throw away any previous redefinitions.

Overriding traditional shell built-ins is another
common example of spoofing. For example, a cd
operation which also places the current directory in
the title-bar of the window (via the hypothetical
command title) can be written as:

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 57

Es: A shell with higher-order functions Haahr & Rakitzis

let (cd = $fn-%cd)
fn cd {

$cd $*
title ‘{pwd}

}

Spoofing can also be used for tasks which other
shells cannot do; one example is timing each ele-
ment of a pipeline by spoofing %pipe, along the
lines of the pipeline profiler suggested by Jon Bent-
ley[7]; see Figure 1.

let (search = $fn-%pathsearch) {
fn %pathsearch prog {

let (file = <>{$search $prog}) {
if {~ $#file 1 && ~ $file /*} {

path-cache = $path-cache $prog
fn-$prog = $file

}
return $file

}
}

}
fn recache {

for (i = $path-cache)
fn-$i =

path-cache =
}

Figure 2: Path caching

fn %interactive-loop {
let (result = 0) {

catch @ e msg {
if {~ $e eof} {

return $result
} {~ $e error} {

echo >[1=2] $msg
} {

echo >[1=2] uncaught exception: $e $msg
}
throw retry

} {
while {} {

%prompt
let (cmd = <>{%parse $prompt}) {

result = <>{$cmd}
}

}
}

}
}

Figure 3: Default interactive loop

Many shells provide some mechanism for cach-
ing the full pathnames of executables which are

looked up in a user’s $PATH. Es does not provide
this functionality in the shell, but it can easily be
added by any user who wants it. The function
%pathsearch (see Figure 2) is invoked to look-up
non-absolute file names which are used as com-
mands.

One other piece of es which can be replaced is
the interpreter loop. In fact, the default interpreter is
written in es itself; see Figure 3.

A few details from this example need further
explanation. The exception retry is intercepted by
catch when an exception handler is running, and
causes the body of the catch routine to be re-run.

58 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

Haahr & Rakitzis Es: A shell with higher-order functions

%parse prints its first argument to standard error,
reads a command (potentially more than one line
long) from the current source of command input, and
throws the eof exception when the input source is
exhausted. The hook %prompt is provided for the
user to redefine, and by default does nothing.

Other spoofing functions which either have
been suggested or are in active use include: a ver-
sion of cd which asks the user whether to create a
directory if it does not already exist; versions of
redirection and program execution which try spelling
correction if files are not found; a %pipe to run
pipeline elements on (different) remote machines to
obtain parallel execution; automatic loading of shell
functions; and replacing the function which is used
for tilde expansion to support alternate definitions of
home directories. Moreover, for debugging pur-
poses, one can use trace on hook functions.

Implementation

Es is implemented in about 8000 lines of C.
Although we estimate that about 1000 lines are
devoted to portability issues between different ver-
sions of UNIX, there are also a number of work-
arounds that es must use in order to blend with UNIX.
The path variable is a good example.

The es convention for path searching involves
looking through the list elements of a variable called
path. This has the advantage that all the usual list
operations can be applied equally to path as any
other variable. However, UNIX programs expect the
path to be a colon-separated list stored in PATH.
Hence es must maintain a copy of each variable,
with a change in one reflected as a change in the
other.
Initialization

Much of es’s initialization is actually done by
an es script, called initial.es, which is con-
verted by a shell script to a C character string at
compile time and stored internally. The script illus-
trates how the default actions for es’s parser is set
up, as well as features such as the path/PATH
aliasing mentioned above.

Much of the script consists of lines like:

fn-%and = $&and
fn-%append = $&append
fn-%background = $&background

which bind the shell services such as short-circuit-
and, backgrounding, etc., to the %-prefixed hook
variables.

There are also a set of assignments which bind
the built-in shell functions to their hook variables:

fn-. = $&dot
fn-break = $&break
fn-catch = $&catch

The difference with these is that they are given
names invoked directly by the user; ‘‘.’’ is the
Bourne-compatible command for ‘‘sourcing’’ a file.

Finally, some settor functions are defined to
work around UNIX path searching (and other) conven-
tions. For example,

set-path = @ {
local (set-PATH =)

PATH = <>{%flatten : $*}
return $*

}
set-PATH = @ {

local (set-path =)
path = <>{%fsplit : $*}

return $*
}

A note on implementation: these functions tem-
porarily assign their opposite-case settor cousin to
null before making the assignment to the opposite-
case variable. This avoids infinite recursion between
the two settor functions.
The Environment

UNIX shells typically maintain a table of vari-
able definitions which is passed on to child processes
when they are created. This table is loosely referred
to as the environment or the environment variables.
Although traditionally the environment has been
used to pass values of variables only, the duality of
functions and variables in es has made it possible to
pass down function definitions to subshells. (While
rc also offered this functionality, it was more of a
kludge arising from the restriction that there was not
a separate space for ‘‘environment functions.’’)

Having functions in the environment brings
them into the same conceptual framework as vari-
ables – they follow identical rules for creation, dele-
tion, presence in the environment, and so on. Addi-
tionally, functions in the environment are an optimi-
zation for file I/O and parsing time. Since nearly all
shell state can now be encoded in the environment,
it becomes superfluous for a new instance of es, such
as one started by xterm(1), to run a configuration
file. Hence shell startup becomes very quick.

As a consequence of this support for the
environment, a fair amount of es must be devoted to
‘‘unparsing’’ function definitions so that they may be
passed as environment strings. This is complicated a
bit more because the lexical environment of a func-
tion definition must be preserved at unparsing. This
is best illustrated by an example:

es> let (a=b) fn foo {echo $a}

which lexically binds b to the variable a for the
scope of this function definition. Therefore, the
external representation of this function must make
this information explicit. It is encoded as:

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 59

Es: A shell with higher-order functions Haahr & Rakitzis

es> whatis foo
%closure(a=b)@ * {echo $a}

(Note that for cultural compatibility with other
shells, functions with no named parameters use ‘‘*’’
for binding arguments.)
Interactions With Unix

Unlike most traditional shells, which have
feature sets dictated by the UNIX system call inter-
face, es contains features which do not interact well
with UNIX itself. For example, rich return values
make sense from shell functions (which are run
inside the shell itself) but cannot be returned from
shell scripts or other external programs, because the
exit/wait interface only supports passing small
integers. This has forced us to build some things
into the shell which otherwise could be external.

The exception mechanism has similar problems.
When an exception is raised from a shell function, it
propagates as expected; if raised from a subshell, it
cannot be propagated as one would like it to be:
instead, a message is printed on exit from the sub-
shell and a false exit status is returned. We consider
this unfortunate, but there seemed no reasonable way
to tie exception propagation to any existing UNIX
mechanism. In particular, the signal machinery is
unsuited to the task. In fact, signals complicate the
control flow in the shell enough, and cause enough
special cases throughout the shell, so as to be more
of a nuisance than a benefit.

One other unfortunate consequence of our
shoehorning es onto UNIX systems is the interaction
between lexically scoped variables, the environment,
and subshells. Two functions, for example, may
have been defined in the same lexical scope. If one
of them modifies a lexically scoped variable, that
change will affect the variable as seen by the other
function. On the other hand, if the functions are run
in a subshell, the connection between their lexical
scopes is lost as a consequence of them being
exported in separate environment strings. This does
not turn out to be a significant problem, but it does
not seem intuitive to a programmer with a back-
ground in functional languages.

One restriction on es that arose because it had
to work in a traditional UNIX environment is that lists
are not hierarchical; that is, lists may not contain
lists as elements. In order to be able to pass lists to
external programs with the same semantics as pass-
ing them to shell functions, we had to restrict lists to
the same structure as exec-style argument vectors.
Therefore all lists are flattened, as in rc and csh.
Garbage Collection

Since es incorporates a true lambda calculus, it
includes the ability to create true recursive struc-
tures, that is, objects which include pointers to them-
selves, either directly or indirectly. While this
feature can be useful for programmers, it has the

unfortunate consequence of making memory
management in es more complex than that found in
other shells. Simple memory reclamation strategies
such as arena style allocation [8] or reference count-
ing are unfortunately inadequate; a full garbage col-
lection system is required to plug all memory leaks.

Based on our experience with rc’s memory use,
we decided that a copying garbage collector would
be appropriate for es. The observations leading to
this conclusion were: (1) between two separate com-
mands little memory is preserved (it roughly
corresponds to the storage for environment vari-
ables); (2) command execution can consume large
amounts of memory for a short time, especially
when loops are involved; and, (3) however much
memory is used, the working set of the shell will
typically be much smaller than the physical memory
available. Thus, we picked a strategy where we
traded relatively fast collection times for being
somewhat wasteful in the amount of memory used in
exchange. While a generational garbage collector
might have made sense for the same reasons that we
picked a copying collector, we decided to avoid the
added complexity implied by switching to the gen-
erational model.

During normal execution of the shell, memory
is acquired by incrementing a pointer through a pre-
allocated block. When this block is exhausted, all
live pointers from outside of garbage collector
memory, the rootset, are examined, and any structure
that they point to is copied to a new block. When
the rootset has been scanned, all the freshly copied
data is scanned similarly, and the process is repeated
until all reachable data has been copied to the new
block. At this point, the memory request which trig-
gered the collection should be able to succeed. If
not, a larger block is allocated and the collection is
redone.

During some parts of the shell’s execution –
notably while the yacc parser driver is running – it is
not possible to identify all of the rootset, so garbage
collection is disabled. If an allocation request is
made during this time for which there is not enough
memory available in the arena, a new chunk of
memory is grabbed so that allocation can continue.

Garbage collectors have developed a reputation
for being hard to debug. The collection routines
themselves typically are not the source of the
difficulty. Even more sophisticated algorithms than
the one found in es are usually only a few hundred
lines of code. Rather, the most common form of GC
bug is failing to identify all elements of the rootset,
since this is a rather open-ended problem which has
implications for almost every routine. To find this
form of bug, we used a modified version of the gar-
bage collector which has two key features: (1) a
collection is initiated at every allocation when the
collector is not disabled, and (2) after a collection
finishes, access to all the memory from the old

60 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

Haahr & Rakitzis Es: A shell with higher-order functions

region is disabled.3 Thus, any reference to a pointer
in garbage collector space which could be invali-
dated by a collection immediately causes a memory
protection fault. We strongly recommend this tech-
nique to anyone implementing a copying garbage
collector.

There are two performance implications of the
garbage collector; the first is that, occasionally,
while the shell is running, all action must stop while
the collector is invoked. This takes roughly 4% of
the running time of the shell. More serious is that at
the time of any potential allocation, either the collec-
tor must be disabled, or all pointers to structures in
garbage collector memory must be identified, effec-
tively requiring them to be in memory at known
addresses, which defeats the registerization optimiza-
tions required for good performance from modern
architectures. It is hard to quantify the performance
consequences of this restriction.

The garbage collector consists of about 250
lines of code for the collector itself (plus another
300 lines of debugging code), along with numerous
declarations that identify variables as being part of
the rootset and small (typically 5 line) procedures to
allocate, copy, and scan all the structure types allo-
cated from collector space.

Future Work

There are several places in es where one would
expect to be able to redefine the built-in behavior
and no such hook exists. The most notable of these
is the wildcard expansion, which behaves identically
to that in traditional shells. We hope to expose
some of the remaining pieces of es in future ver-
sions.

One of the least satisfying pieces of es is its
parser. We have talked of the distinction between
the core language and the full language; in fact, the
translation of syntactic sugar (i.e., the convenient
UNIX shell syntax presented to the user) to core
language features is done in the same yacc-generated
parser as the recognition of the core language.
Unfortunately, this ties the full language in to the
core very tightly, and offers little room for a user to
extend the syntax of the shell.

We can imagine a system where the parser only
recognizes the core language, and a set of exposed
transformation rules would map the extended syntax
which makes es feel like a shell, down to the core
language. The extend-syntax [9] system for Scheme
provides a good example of how to design such a
mechanism, but it, like most other macro systems
designed for Lisp-like languages, does not mesh well
with the free-form syntax that has evolved for UNIX
shells.

3This disabling depends on operating system support.

The current implementation of es has the
undesirable property that all function calls cause the
C stack to nest. In particular, tail calls consume
stack space, something they could be optimized not
to do. Therefore, properly tail recursive functions,
such as echo-nl above, which a Scheme or ML
programmer would expect to be equivalent to loop-
ing, have hidden costs. This is an implementation
deficiency which we hope to remedy in the near
future.

Es, in addition to being a good language for
shell programming, is a good candidate for a use as
an embeddable ‘‘scripting’’ language, along the lines
of Tcl. Es, in fact, borrows much from Tcl – most
notably the idea of passing around blocks of code as
unparsed strings – and, since the requirements on the
two languages are similar, it is not surprising that
the syntaxes are so similar. Es has two advantages
over most embedded languages: (1) the same code
can be used by the shell or other programs, and
many functions could be identical; and (2) it sup-
ports a wide variety of programming constructs, such
as closures and exceptions. We are currently work-
ing on a ‘‘library’’ version of es which could be
used stand-alone as a shell or linked in other pro-
grams, with or without shell features such as wild-
card expansion or pipes.

Conclusions

There are two central ideas behind es. The first
is that a system can be made more programmable by
exposing its internals to manipulation by the user.
By allowing spoofing of heretofore unmodifiable
shell features, es gives its users great flexibility in
tailoring their programming environment, in ways
that earlier shells would have supported only with
modification of shell source itself.

Second, es was designed to support a model of
programming where code fragments could be treated
as just one more form of data. This feature is often
approximated in other shells by passing commands
around as strings, but this approach requires resort-
ing to baroque quoting rules, especially if the nesting
of commands is several layers deep. In es, once a
construct is surrounded by braces, it can be stored or
passed to a program with no fear of mangling.

Es contains little that is completely new. It is
a synthesis of the attributes we admire most from
two shells – the venerable Bourne shell and Tom
Duff’s rc – and several programming languages, not-
ably Scheme and Tcl. Where possible we tried to
retain the simplicity of es’s predecessors, and in
several cases, such as control flow constructs, we
believe that we have simplified and generalized what
was found in earlier shells.

We do not believe that es is the ultimate shell.
It has a cumbersome and non-extensible syntax, the
support for traditional shell notations forced some

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 61

Es: A shell with higher-order functions Haahr & Rakitzis

unfortunate design decisions, and some of es’s
features, such as exceptions and rich return values,
do not interact as well with UNIX as we would like
them to. Nonetheless, we think that es is successful
as both a shell and a programming language, and
would miss its features and extensibility if we were
forced to revert to other shells.
Acknowledgements

We’d like to thank the many people who
helped both with the development of es and the writ-
ing of this paper. Dave Hitz supplied essential
advice on where to focus our efforts. Chris Sieben-
mann maintained the es mailing list and ftp distribu-
tion of the source. Donn Cave, Peter Ho, Noel
Hunt, John Mackin, Bruce Perens, Steven Rezsutek,
Rich Salz, Scott Schwartz, Alan Watson, and all
other contributors to the list provided many sugges-
tions, which along with a ferocious willingness to
experiment with a not-ready-for-prime-time shell,
were vital to es’s development. Finally, Susan Karp
and Beth Mitcham read many drafts of this paper
and put up with us while es was under development.

References

1. Brian W. Kernighan and Rob Pike, The UNIX
Programming Environment, Prentice-Hall,
1984.

2. S. R. Bourne, ‘‘The UNIX Shell,’’ Bell Sys.
Tech. J., vol. 57, no. 6, pp. 1971-1990, 1978.

3. Tom Duff, ‘‘Rc – A Shell for Plan 9 and Unix
Systems,’’ in UKUUG Conference Proceedings,
pp. 21-33, Summer 1990.

4. William Clinger and Jonathan Rees (editors),
The Revised4 Report on the Algorithmic
Language Scheme, 1991.

5. Robin Milner, Mads Tofte, and Robert Harper,
The Definition of Standard ML, MIT Press,
1990.

6. John Ousterhout, ‘‘Tcl: An Embeddable Com-
mand Language,’’ in Usenix Conference
Proceedings, pp. 133-146, Winter 1990.

7. Jon L. Bentley, More Programming Pearls,
Addison-Welsey, 1988.

8. David R. Hanson, ‘‘Fast allocation and deallo-
cation of memory based on object lifetimes,’’
Software—Practice and Experience, vol. 20, no.
1, pp. 5-12, January, 1990.

9. R. Kent Dybvig, The Scheme Programming
Language, Prentice-Hall, 1987.

Author Information

Paul Haahr is a computer scientist at Adobe
Systems Incorporated where he works on font
rendering technology. His interests include program-
ming languages, window systems, and computer
architecture. Paul received an A.B. in computer sci-
ence from Princeton University in 1990. He can be

reached by electronic mail at haahr@adobe.com or
by surface mail at Adobe Systems Incorporated,
1585 Charleston Road, Mountain View, CA 94039.

Byron Rakitzis is a system programmer at Net-
work Appliance Corporation, where he works on the
design and implementation of their network file
server. In his spare time he works on shells and win-
dow systems. His free-software contributions
include a UNIX version of rc, the Plan 9 shell, and
pico, a version of Gerard Holzmann’s picture editor
popi with code generators for SPARC and MIPS. He
received an A.B. in Physics from Princeton Univer-
sity in 1990. He has two cats, Pooh-Bah and Goldi-
locks, who try to rule his home life. Byron can be
reached at byron@netapp.com or at Network Appli-
ance Corporation, 2901 Tasman Drive, Suite 208
Santa Clara, CA 95054.

62 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

