
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.824 Distributed System Engineering: Spring 2011

Quiz II Solutions
Grade histogram for Quiz II

 0

 1

 2

 3

 4

 5

 6

 7

 8

5
1
-5

5

5
6
-6

0

6
1
-6

5

6
6
-7

0

7
1
-7

5

7
6
-8

0

8
1
-8

5

8
6
-9

0

9
1
-9

5

9
6
-1

0
0

min = 60

max = 100

median = 85

average = 83

σ = 11



6.824 Spring 2011, Quiz II Solutions Page 2 of 9

I Paxos

1. [5 points]: Circle the earliest point at which Paxos has agreed on a value. There’s a copy of the
Paxos algorithm below.

A. A leader receives prepare ok messages from a majority.

B. A majority send accept ok messages with the same n.

C. A leader receives accept ok messages from a majority, with the n the leader expects.

D. A majority of nodes receive decided messages.

Answer: B. Once a majority has received and accepted a given value v, then all future proposed values will
also be v.

2. [5 points]: It is possible for two Paxos leaders (for the same Paxos instance) to both see
prepare ok messages from a majority of nodes. Describe a scenario in which this happens.

Answer: Yes. Suppose there are four nodes, n1..4. n1 sends out prepare messages with n = 10 and gets
replies from all nodes. Then n1 crashes. After a while, node n2’s hearbeat times out and decides to become
a leader for the same Paxos instance, and sends out prepare messages with n = 11. n2 will likely receive
responses from n2, n3, and n4, a majority of nodes.

state:
must persist across reboots
n_p (highest prepare seen)
n_a, v_a (highest accept seen)

proposer(v):
choose n, unique and higher than any n seen so far
send prepare(n) to all servers including self
if prepare_ok(n_a, v_a) from majority:

v’ = v_a with highest n_a; choose own v otherwise
send accept(n, v’) to all
if accept_ok(n) from majority:

send decided(v’) to all

acceptor’s prepare(n) handler:
if n > n_p

n_p = n
reply prepare_ok(n_a, v_a)

acceptor’s accept(n, v) handler:
if n >= n_p

n_a = n
v_a = v
reply accept_ok(n)



6.824 Spring 2011, Quiz II Solutions Page 3 of 9

II Two-phase Commit

3. [5 points]: Ben is building a replicated storage system. There is just one client, and the client
performs just one storage operation (read or write) at a time, waiting for each operation to complete
before starting the next. Ben wishes to store the data on two servers in order that the system be
available (that it continue operating) even if one server fails. He wants to ensure that the data on
the two servers stay identical, and is worried about the possibility that only one of the two servers
might execute a client write. Ben wonders whether making the writes at the two servers atomic using
two-phase commit (as in Lecture 11) would be a good idea, to ensure both-or-nothing behavior.

In the design he has in mind, the client acts as the transaction coordinator (TC). The client would
execute a write as described in lecture:

client sends write RPCs to server1 and server2
client waits for replies to both write RPCs
client sends prepare messages to server1 and server2
if both repond "yes"

client sends commit messages to server1 and server2

The system uses the timeout recovery scheme explained in lecture.

Ben thinks about this design for a while, and eventually realizes that two-phase commit as described
in Lecture 11 is fundamentally not suited to providing availability via replication. Please explain why.

Answer: If one of the two servers is down, two-phase commit will abort every write; this defeats Ben’s goal
of availability.

4. [5 points]: Halfway down page 386 of Liskov and Scheifler’s “Guardians and Actions” paper
about Argus, the text says that a parent inherits the locks of a committing subaction. Suppose instead
that a commiting subaction released any locks it held that its parent did not also hold. Explain how that
would result in actions not being indivisible. See the top of page 384 for a definition of indivisibility.

Answer: Here’s a situation in which action A1 executes in a way that another action A2 sees something
other than the state before or after A1 (i.e., the system does not provide indivisibility). Suppose atomic
objectsX and Y both start out with value 0. Action A1 setsX to 1 in one sub-action, and then sets Y to 1 in
a second sub-action, and then commits. If A1 doesn’t inherit the first sub-action’s lock on X , then action A2

could execute between A1’s two sub-actions and observe X = 1 and Y = 0, which is not the state before
or after A1.



6.824 Spring 2011, Quiz II Solutions Page 4 of 9

5. [10 points]: Here’s a simplified version of some code in Figure 2 of the Argus paper, from the
add user handler:

action
drop.add_user(user)
reg.add_user(user, drop)

end

This code first sends an RPC to a maildrop server to create storage for the user’s mail messages, then
sends an RPC to the registry asking it to add an entry to its table mapping each user name to the
maildrop server that holds the user’s mail messages.

Suppose the RPC to the registry server times out (no reply is received).

If this code were using the YFS RPC package, it would not know whether the registry server had
received and processed the RPC. So it would not know whether to recover by asking the maildrop
server to delete the server (correct if the registry server didn’t receive the RPC) or whether to leave
the user’s entry on the maildrop server (correct if the registry server did receive the RPC).

Explain how Argus handles the above situation.

Answer: Argus uses two-phase commit to ensure that either both the maildrop server and the registry
server add the user, or neither does. Both servers modify a shadow copy of their data when they execute the
RPC. If both RPCs succeed and the action finishes normally, then Argus will execute two-phase commit to
tell both servers to copy the shadow data to the real data storage. If one of the RPCs fails (or anything else
causes the action to abort), then Argus will tell all servers that participated to abort their part of the action
and throw away the shadow copy of the data.



6.824 Spring 2011, Quiz II Solutions Page 5 of 9

III PNUTS

You’re running a PNUTS system (see the paper by Cooper et al.). Records X and Y both start with value
zero. Here are two functions that use the API described in Section 2.2 of the PNUTS paper:

fn1:
x1 = read-any(X)
x1 = x1 + 1
write(X, x1) // X = x1
write(Y, x1) // Y = x1

fn2:
x1 = read-any(X)
x2 = read-latest(X)
y1 = read-any(Y)
print x1, x2, y1

You execute two calls to fn1, at different sites, at the same time. After both calls to fn1 have returned, you
execute fn2 at a third site. There is no activity in the system other than described here, and no crashes or
network failures.

6. [10 points]: What output is it possible to see from fn2, given the design of PNUTS and the above
scenario? Circle Yes for outputs that PNUTS could produce, and No for outputs that PNUTS could
not produce.

2, 2, 1 Yes

1, 2, 2 Yes

1, 1, 2 No

2, 1, 1 No

0, 0, 0 No



6.824 Spring 2011, Quiz II Solutions Page 6 of 9

IV Practical Byzantine Fault Tolerance

7. [10 points]: Consider Castro and Liskov’s paper “Practical Byzantine Fault Tolerance.” Suppose
a client sends a request to the primary, as described in Section 4.1, and then waits for f + 1 replies
to its request with valid signatures from different replicas. Assume that the network never discards
messages, that the network delivers packets quickly, that the PBFT servers are lightly loaded, and that
no computer crashes or becomes disconnected from the network.

Suppose the client waits for a long time (much longer than the time for the network to deliver all
PBFT protocol messages and for the servers to process them), and still has received fewer than f + 1
messages. Must it then be the case that the primary is faulty (either buggy or malicious)? If yes,
explain why. If no, explain why or give a counter-example.

Answer: If f or fewer servers are faulty, then the primary must be faulty. If the primary had sent out correct
messages to all servers, then (given the questions assumptions) at least f + 1 replies would have arrived at
the client.

If more than 2f servers are faulty, they can conspire to make a correct primary look faulty by not sending
anything to the client.



6.824 Spring 2011, Quiz II Solutions Page 7 of 9

V SUNDR

8. [5 points]: Alice and Bob share a SUNDR server (see the paper “Secure Untrusted Data Reposi-
tory (SUNDR)” by Li et al.). There are just two files on their SUNDR server, called fx and fy. Both
files start out containing the text “empty”.

One day Alice executes the following commands on her workstation, in the directory served by the
SUNDR server; she runs the commands one at a time and in this order:

echo x > fx
echo y > fy

The next day, Bob runs these commands on his workstation in the directory served by the SUNDR
server; he runs the commands one at a time and in this order:

cat fy
cat fx

No user sends any operations to the SUNDR server between Alice’s commands and Bob’s commands.
Given the paper’s description of SUNDR, which of the following cat outputs is it possible for Bob
to see? Circle Yes or No for each line.

fy: empty, fx: empty Yes The server can show Bob the state before any of Alice’s operations.

fy: empty, fx: x Yes The server can show Bob the state after Alice’s write to fx but before her write
to fy.

fy: y, fx: empty No The signature on Alice’s write to fy covers her write to fx, so when Bob reads
fy the log must contain Alice’s write to fx. Once Bob has seen the contents of fy, his client will
append a read operation to the log, and his signature on the read operation will cover Alice’s write to
fx. When Bob reads fx, his client ensure that his previous read operation is in the log, and checks
its signature, which ensures that Alice’s write to fx is in the log.

fy: y, fx: x Yes

9. [5 points]: At the top of the right-hand column on page 3, the SUNDR paper says that a client
checks that its own user’s most recent operation is in the log. This step might be inconvenient –
perhaps the user has rebooted her workstation or switched workstations, making it difficult for the
client to know what the user’s most recent operation is. Suppose a SUNDR client omitted the check
for the user’s most recent operation. Would that change the correct answer to the previous question?
How?

Answer: Yes, now the third scenario is possible. The server can first show Bob the log after Alice’s write
to fy, then show Bob the log before Alice’s write to fx.



6.824 Spring 2011, Quiz II Solutions Page 8 of 9

VI Coral

10. [10 points]: CoralCDN, as described in “Democratizing content publication with Coral by
Feedman et al., is aimed at dramatically reducing the load on very low-capacity origin servers. One
could argue that CoralCDN sacrifices client response speed in order to reduce origin server load.
Propose a change that would significantly reduce client latency at the expense of a modest increase in
the load on the origin server.

Answer: You could use all layers of the DSHT when finding a Coral HTTP proxy near to a client, but only
the local DSHT cluster when finding a copy of a page. If the page isn’t in the local cluster, fetch it from the
origin server. This eliminates high-delay global searches for pages, but keeps the load on the origin server
for popular pages down to one fetch per local cluster.

VII Tor

11. [10 points]: Consider a Tor system with a few dozen Tor routers (see “Tor: The Second-
Generation Onion Router” by Dingledine et al.). Clients always use paths that include exactly three
Tor routers. Describe a serious attack on anonymity that would be possible if an attacker controlled
two Tor routers, but that would not be possible if the attacker controlled only one Tor router.

Answer: If there are lots of users, then some of them will use one of the attacker’s routers as the entry
router and the other as the exit router. Suppose user U1 is talking to server S1 via OR1, OR2, and OR3, and
that the attacker controls OR1 and OR3. The attacker will observe packets from U1 arriving at OR1 that
need to be forwarded to OR2, and packets from OR2 arriving at OR3 that need to be forwarded to S1. That’s
not quite enough to conclude that U1 is talking to S1, since there might be other users generating OR1/OR2
and OR2/OR3 traffic. If the attacker sees similar patterns in arrival times of the U1/OR1/OR2 traffic and the
OR2/OR3/S1 traffic, that might be enough to conclude that U1 was talking to S1 with reasonable certainty.



6.824 Spring 2011, Quiz II Solutions Page 9 of 9

VIII Chord

12. [10 points]: You read the Chord paper (“Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications” by Stoica et al.) and decide to design a slightly different distributed hash table
called Slice. Slice is identical to Chord except that it has different finger table contents. A Slice node’s
finger table contains 11 entries. The first entry points to the node’s immediate successor in the ring
(just as in Chord). The other 10 entries point to randomly chosen nodes in the ring. Roughly how
many messages will the find successor() pseudo-code in Figure 4 send in order to perform a
lookup in Slice, as a function of the number of nodes N in the Chord ring? It is OK to be inaccurate
by a constant factor. Briefly explain your answer.

Answer: O(N) messages. The fingers will rapidly take the lookup to within 1/10th of the ring of the
destination, but then the lookup will have to proceed hop by hop via the successors.

IX 6.824

13. [10 points]: If you could change one thing in 6.824 in order to improve the course for future
generations, what would it be?

Answer: Better documented lab code, FUSE in particular; select papers that are more recent or describe
more practical systems; answers to reading questions; less time for lab6 and more time for lab7/8.

End of Quiz II


