
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.824 Distributed System Engineering: Fall 2007

Quiz I

All problems are open-ended questions. In order to receive credit you must answer the question
as precisely as possible. You have 80 minutes to answer this quiz.

Write your name on this cover sheet AND at the bottom of each page of this booklet.

Some questions may be much harder than others. Read them all through first and attack them in
the order that allows you to make the most progress. If you finda question ambiguous, be sure
to write down any assumptions you make. Be neat. If we can’t understand your answer, we can’t
give you credit!

THIS IS AN OPEN BOOK, OPEN NOTES QUIZ.

I (xx/25) II (xx/10) III (xx/10) IV (xx/15) V (xx/15) VI (xx/15) VII (xx/10) Total (xx/100)

Name:



Grade histogram for Quiz 1



6.824 FALL 2007, Quiz 1 Page 3 of 12

I Remote procedure call

Ben finds writing programs with the YFS RPC library painful. After struggling with sequence numbers in
lab 1 (lock server) and lab 5 (caching lock server), Ben wonders if he could get rid of sequence numbers
(and the corresponding code) if the RPC library sends all RPCs over TCP instead of UDP. TCP is a reliable
transport protocol that delivers packets to their destination even when the network may lose packets, and
delivers all packets of a connection in order.

Ben modifies lock client, server, and YFS RPC library as follows:

• He removes the code that handles sequence numbers from client and server (i.e., the code to detect
out of order, duplicate, etc. messages);

• He removes his sequence numbers as arguments fromcl.call calls (wherecl is anrpcc object);

• He changes the implementation ofcl.call to start a TCP connection to the destination, if no TCP
connection to the destination exists;

• cl.call sends the request over the TCP connection;

• He keeps the retransmission code so that the library retransmits after a second or so to recover from
potentially failed TCP connections (e.g., if the destination fails or there is long enough network par-
tition). The retry code will keep attempting to connect and set up a new TCP connection to the
destination until the source has received the RPC response from the server.

1. [10 points]: Show a scenario in which the server sees a duplicate request for lock “a” from the
same client. (Draw a message time diagram. Use a time line foreach client and server involves, and
show labeled arrows between the lines for each message.)

Any situation is fine that involved a packet being delayed long enough in the network to cause YFS
RPC to start a new TCP connection and retransmit. The simplest, and most common, solution:

Name:



6.824 FALL 2007, Quiz 1 Page 4 of 12

2. [10 points]: Show a scenario in which the server gives lock “a” to two different clients, violating
the goal that only one client should have the lock at any time.(Draw a message time diagram.)

The most straightforward solution is to have a delayed release reach the lock server after a second
acquire, falsely making the lock server think the client hadreleased its lock, freeing it up for another
client. The network or the operating system must delay the original release long enough for YFS
to create a new TCP connection and resend the release. Note that the diagram below assumes a
non-caching lock server, though you can make it work with thecaching lock server as well.

3. [5 points]: Frustrated, Ben removes the retransmission code from the RPC library too, completely
relying on TCP for retransmission. But, now he observes thatthe client can get into a state where it
cannot successfully complete its RPC (i.e., it receives no response from the lock server). Show a
scenario that results in this behavior. (Draw a message timediagram.)

Without RPC retries, any long network failure will cause TCPto give up and fail the connection,
returning -1 to the lock client’s call. For example:

Name:



6.824 FALL 2007, Quiz 1 Page 5 of 12

II Threads and mutexes

Ben used fine-grain pthread locking in lab 5, but otherwise followed the instructions of the staff. After
60 hours of debugging a concurrency hell, he throws away his fine-grained locking implementation and
switches to very coarse-grain locking. The sketch of his newclient code is as follows:

// Release l, and send the lock to the server if the lock has been revoked
release(lock l)
{

pthread_mutex_lock(&client_lock);
...
if (revoked[l])

cl.call(server, RELEASE, ...)
...
pthread_mutex_unlock(&client_lock);

}

// A revoke request from the lock server, which sets revoked for lock l
revokereq(lock l)
{

pthread_mutex_lock(&client_lock);
...
revoked[l] = true; // tell client that it should release lock l
...
pthread_mutex_unlock(&client_lock);

}

The relevant server code is as follows:

// A client asks for lock l
acquirereq(lock l)
{

pthread_mutex_lock(&server_lock);
...
if (taken[l])
cl.call(holder_of_lock, REVOKE, ...); // tell holder to release lock l

...
taken[l] = true; // a client has taken lock l
...
pthread_mutex_unlock(&server_lock);

}

// A client asks to release l
releasereq(lock l)
{

pthread_mutex_lock(&server_lock);
...
taken[l] = false; // client releases lock l
...
pthread_mutex_unlock(&server_lock);

}

Name:



6.824 FALL 2007, Quiz 1 Page 6 of 12

4. [10 points]: Now the system deadlocks once in a while. Show a scenario thatresults in a deadlock.
(Draw a message time diagram.)

There are a few ways by which the system can deadlock. One goodway is for a release RPC and a
revoke RPC to cross paths. The server will be holding its lockwaiting for the response for the revoke,
while the client will be holding its lock waiting for the response to the release. Neither will be able
to process the incoming RPC until it gets the response for itsoutstanding RPC (which will of course
never be processed).

Name:



6.824 FALL 2007, Quiz 1 Page 7 of 12

III Peer-to-peer: lookup

The pseudocode for Chord’s join implementation, from figure7 of the paper “Chord: a scalable peer-to-peer
lookup service for Internet applications”, is as follows:

n.join(n1)
predecessor = nil;
successor = n1.find_successor(n);

n.stabilize()
x = successor.predecessor;
if (x in (n, successor))
successor = x;

successor.notify(n);

n.notify(n1)
if (predecessor is nil or n1 in (predecessor, n))
predecessor = n1;

Ben observes that the Chord code for stabilization uses an indirect method to set the predecessor of a node,
and proposes the following modifications to this pseudocode:

n.joinnew(n1)
successor = n1.find_successor(n)
if (successor is not nil)
predecessor = successor.predecessor;
if (predecessor is not nil)

predecessor.set_successor(n);
successor.set_predecessor(n);

joinnew replaces the existing join implementation from the paper, and Ben removesstabilize and
notify.

5. [10 points]: Why is this change a bad one? (Give a brief explanation and a scenario that illustrates
your explanation.)

If nodes with close node IDs join at the same time, only one might appear in the succ ring. For
example, if a Chord ring consists of nodes 1 and 4, and nodes 2 and 3 join the ring concurrently, it’s
possible for both new nodes to have node 4 for a successor, andnode 1 for a predecessor, and never
find out about each other. In addition, if node leave the system, the ring doesn’t repair because Ben
deleted stabilize.

Name:



6.824 FALL 2007, Quiz 1 Page 8 of 12

IV Peer-to-peer: data distribution

6. [5 points]: Explain briefly the purpose of Bittorrent’s choke algorithm.

To implement a tit-for-tat scheme so that nodes download at arate proportional to their upload rate.

7. [10 points]: If there are a few high-upload peers and many low-upload peers, does Bittorrent
achieve the lowest total download time (across all peers)? If yes, give a brief argument why. If no,
give a modification to the Bittorrent protocol that is likelyto reduce the total download time.

No. The choke algorithm will make it likely that high upload peers match up with other high upload
peers, and low upload peers with low upload peers. The high upload peers will finish quickly and then
are likely to leave the system. Several fixes are possible: incentive high upload peers to stay online,
remove penalty for low-upload nodes, etc.

Name:



6.824 FALL 2007, Quiz 1 Page 9 of 12

V Consistency

Ben runs the following program on a computer with two processors and a single shared memory (with
in-order execution of memory operations and no caches):

processor 0:
x = 1;
if(y == 0)

critical section;

processor 1:
y = 1;
if(x == 0)

critical section;

On his computer at most one processor enters the critical section, as it should.

8. [5 points]: Ben ports the program to the distributed shared memory (DSM)system described by
Li and Hudak in “Memory Coherence in Shared Virtual Memory Systems”. What consistency model
is implemented by DSM that makes this program work correctly? “Correctly” in this question means
if two computers sharex andy through DSM only one computer enterscritical section.
(Explain your answer briefly.)

DSM provides sequentially consistency. An implementationof a sequentially-consistent memory must
ensure that there is some total order for all concurrent readand write operations that is also consistent
with the order of the operations on a given processor. There is no total order that can result in
computer 0 and 1 both entering the critical section.

Name:



6.824 FALL 2007, Quiz 1 Page 10 of 12

Ben modifies DSM slightly to get a bit more parallelism. The relevant portion of the pseudocode is the
following fragment from section 3.2:

Write fault handler:
lock(ptable[p].lock);
IF I am manager THEN BEGIN
receive page p from owner[p];

ELSE
ask manager for write access to p;

invalidate(p, ptable[p].copyset);
ptable[p].access = write;
ptable[p].copy_set = {};
unlock(ptable[p].lock)

Ben changes the implementation ofinvalidate. The implementation in the paper returns from the call
to invalidate after it has received acknowledgements from all of the computers listed incopyset.
Ben modifiesinvalidate to return as soon it has sent off the invalidation messages toall computers in
copyset. His hope is to get better performance because the write fault handler doesn’t have to wait until
the acknowledgements on the invalidate messages have been received.

9. [10 points]: Does Ben’s program still run correctly? (Briefly explain.)

No. For example, consider the case that processor 0 and 1 haveboth a read-only copy of the pages
that contain x and y, and that x and y are on different pages. After processor 0 updates x, it may take a
long time before processor 1 finds out about the update and processor 0 doesn’t wait until processor
1 acknowledges that it has received the update. In the mean time processor 1 can get ownership of
the page that contains y, update y, and then read its out-of-date copy of the page that contains x. The
update of y might not arrive at processor 0 before it has read an out-of-date copy of the page that
contains y. Processor 0 will read 0 for x and processor 1 will 0for y, and both will enter the critical
section.

Name:



6.824 FALL 2007, Quiz 1 Page 11 of 12

VI Caching in YFS

When running YFS with the caching lock server and extent server (lab 6), an alert 6.824 student observes
the following communication pattern often. When two clients are sharing the same file “f”, YFS transfers
the extent for file “f” between the two clients through the extent server. That is, when client 1 has modified
“f” and client 2 wants the file, client 1 writes the extent on the release of the lock for file “f” to the extent
server. When client 2 receives the lock for file “f” from the lock server, it reads the extent for file “f” from
the extent server. The extent for file f is transferred twice over the network, and when “f” is large, the student
observes long delays before client 2 receives the extent for“f”.

10. [15 points]: Describe a small, simple set of changes to the YFS protocols used in lab 6 so that
YFS transfers the extent for “f” only once over the network (i.e., directly from client 1 to 2). Your
modified protocol should pass all the tests for lab 6 and work under lossy conditions (i.e., the network
may lose packets). Make sure to specify the RPCs in your modified protocol, their arguments, and
their results.

There were several possible correct solutions to this problem. One very simple one is to storepointers
to extents at the extent server, rather than the extents themselves. Thus, on adorelease()/flush(),
the YFS server willput() its own hostname:port on the extent server, instead of the extent itself, and
keep the extent locally cached. Then aget() call from another client fetches the hostname:port,
and then uses a new RPC (sayget cached extent) to retrieve the extent directly from the client.
Though this adds an extra round trip time, it doesn’t involvemodifying the lock protocol. This assumes
clients never fail.

– put(extentid t id, int seqno, std::string &client)

– get cached extent(extentid t id, int &dummy)

Note that the sequence number is necessary in the put to avoida duplicated delayed packet in a lossy
network overwriting the put from a newer extent owner. The usual extent-locking convention ensures
that aget() always see the most recent writer’s hostname:port.

Another workable solution involves modifying the lock protocol to send extents directly to the new
lock owner as part of thedorelease()/flush()method. In this solution, the lock server adds
the hostname:port of the new lock holder in therevoke()RPC to the current lock holder. The cur-
rent lock holder must then remember this address, and pass itto flush()when the lock is released.
Then it sends a new RPC (sayput cached extent()) to the new lock holder’s YFS server, which
must add the extent to its cache. After that RPC is complete, the current lock holder can release the
lock back to the lock server, which can grant it to the new lockholder. Once the new owner receives
the lock, it is guaranteed to have the current version of the extent in its cache. Note that there should
be a sequence number attached to the new RPC to avoid problemswith delayed puts.

Name:



6.824 FALL 2007, Quiz 1 Page 12 of 12

VII 6.824

11. [5 points]: Describe the most memorable error you have made so far in one of the labs. (Provide
enough detail so that we can understand your answer.)

We would like to hear your opinions about 6.824, so please answer the following two questions. (Any
relevant answer will receive full credit!)

12. [3 points]: What is the best aspect of 6.824?

13. [2 points]: What is the worst aspect of 6.824?

End of Quiz I

Name:


