Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.824 Distributed System Engineering: Fall 2007
Quiz |

All problems are open-ended questions. In order to receiditcyou must answer the question
as precisely as possible. You have 80 minutes to answerutss g

Write your name on this cover sheet AND at the bottom of eagfe jd this booklet.

Some questions may be much harder than others. Read themoaigjh first and attack them jin
the order that allows you to make the most progress. If youdiggiestion ambiguous, be sure
to write down any assumptions you make. Be neat. If we cardetstand your answer, we can’t
give you credit!

THIS IS AN OPEN BOOK, OPEN NOTES QUIZ.

I (xx/25) | I (xx/10) | Il (xx/10) | IV (xx/15) | V (xx/15) | VI (xx/15) | VIl (xx/10) | Total (xx/100)

Name:

10 -

Grade histogram for Quiz 1

il

51-35 56-60 6&1-65 66-70 71-¥5 T76-80 81-85 @86-90 91-95 96-100

6.824 FALL 2007, Quiz 1 Page 3 of 12

| Remote procedure call

Ben finds writing programs with the YFS RPC library painfulfték struggling with sequence numbers in
lab 1 (lock server) and lab 5 (caching lock server), Ben wosdfehe could get rid of sequence numbers
(and the corresponding code) if the RPC library sends allf®@r TCP instead of UDP. TCP is a reliable
transport protocol that delivers packets to their desbna¢ven when the network may lose packets, and
delivers all packets of a connection in order.

Ben madifies lock client, server, and YFS RPC library as fe#io

e He removes the code that handles sequence numbers fromatiérserver (i.e., the code to detect
out of order, duplicate, etc. messages);

e He removes his sequence numbers as argumentscflornal | calls (wherecl is anr pcc object);

e He changes the implementationaf. cal | to start a TCP connection to the destination, if no TCP
connection to the destination exists;

e cl . cal | sends the request over the TCP connection;

e He keeps the retransmission code so that the library retigsmafter a second or so to recover from
potentially failed TCP connections (e.g., if the destioatfails or there is long enough network par-
tition). The retry code will keep attempting to connect awedl sp a new TCP connection to the
destination until the source has received the RPC respomsetfie server.

1. [10 points]: Show a scenario in which the server sees a duplicate requesick “a” from the
same client. (Draw a message time diagram. Use a time lineafcn client and server involves, and
show labeled arrows between the lines for each message.)

Any situation is fine that involved a packet being delayed lemough in the network to cause YFS
RPC to start a new TCP connection and retransmit. The sirh@esl most common, solution:

Client Server

I~ < : non
~ acquire "a
~

1 sec <)

acquire "a"
~
> Jetry
~

= A

Name:

6.824 FALL 2007, Quiz 1 Page 4 of 12

2. [10 points]: Show a scenario in which the server gives lock “a” to two défg clients, violating
the goal that only one client should have the lock at any tifDeaw a message time diagram.)

The most straightforward solution is to have a delayed de@ach the lock server after a second
acquire, falsely making the lock server think the client haldased its lock, freeing it up for another
client. The network or the operating system must delay tiginad release long enough for YFS
to create a new TCP connection and resend the release. Natahé diagram below assumes a
non-caching lock server, though you can make it work withctehing lock server as well.

Client 1 Server Client 2

[~ .
=~ & acquire "a
~

~
~

oK »
<« - -~
\release "a"
1 sec$ \ . release "a"
[~ ~ < <~ _ retry
N Bl
¢ K _ - -
™~ - \
- -\ _
acquire "a" N"_~» _
______ < acquire "a"
- — _ _OK
== >
\4 \4

3. [5 points]: Frustrated, Ben removes the retransmission code from tkeliBRry too, completely
relying on TCP for retransmission. But, now he observestti@tlient can get into a state where it
cannot successfully complete its RPC (i.e., it receivesaspaonse from the lock server). Show a
scenario that results in this behavior. (Draw a messagediagram.)

Without RPC retries, any long network failure will cause T@Ryive up and fail the connection,
returning -1 to the lock client’s call. For example:

Client Server
I~ H n n
~ . acquire "a
<
=~ ~
~ \é
oK. =
X4~
Long network
failure
\/ \/

Name:

6.824 FALL 2007, Quiz 1 Page 5 of 12

I Threads and mutexes

Ben used fine-grain pthread locking in lab 5, but otherwidlvieed the instructions of the staff. After
60 hours of debugging a concurrency hell, he throws away hesdrained locking implementation and
switches to very coarse-grain locking. The sketch of his al@wnt code is as follows:

/!l Release |, and send the lock to the server if the | ock has been revoked
rel ease(lock I)
{

pt hr ead_mut ex_| ock(&cl i ent _| ock);

if (revoked[I])
cl.call (server, RELEASE, ...)

pt hr ead_mut ex_unl ock(&cl i ent _I ock);

}

/'l A revoke request fromthe |ock server, which sets revoked for |ock |
revokereq(l ock 1)

{
pt hr ead_mut ex_| ock(&cl i ent | ock);
revoked[l] = true; /1 tell client that it should rel ease | ock |
pt hr ead_nmut ex_unl ock(&cl i ent _I ock);

}

The relevant server code is as follows:

/1 A client asks for |ock I
acquirereq(l ock I)

{ pt hread_mut ex_| ock(&erver _I ock);
it (taken[l])
cl.call (holder_of lock, REVOKE, ...); [/ tell holder to release |ock
iéken[l] = true; /1 a client has taken | ock |
} bihread_nutex_unlock(&server_lock);

/1 A client asks to rel ease |
rel easereq(lock I)

{

pt hr ead_mut ex_| ock(&server _| ock);
taken[l] = fal se; /1 client rel eases |ock |

pt hr ead_mut ex_unl ock(&erver _| ock);
}

Name:

6.824 FALL 2007, Quiz 1

Page 6 of 12

4. [10 points]: Now the system deadlocks once in a while. Show a scenariogbaits in a deadlock.
(Draw a message time diagram.)

There are a few ways by which the system can deadlock. Onevggpds for a release RPC and a
revoke RPC to cross paths. The server will be holding its Veaiing for the response for the revoke,
while the client will be holding its lock waiting for the resmse to the release. Neither will be able
to process the incoming RPC until it gets the response farutstanding RPC (which will of course

never be processed).

Client 1 Server Client 2
L acquire "a"
OK_ _ _ - - >
| acquire "b" i
————— acquire "a" _|
OK _ _ _ - = ')_ -
= - -
revoke "a'. — ~ T~ fETRY
< ~ OK >
______ »| acquire "b" -
_releafe a _ - Jf — _ RETRY
‘—«5 == =
« revoke "b"
\/ \4 \/

Name:

6.824 FALL 2007, Quiz 1 Page 7 of 12

Il Peer-to-peer: lookup

The pseudocode for Chord’s join implementation, from figuod the paper “Chord: a scalable peer-to-peer
lookup service for Internet applications”, is as follows:

n.j oi n(nl)
predecessor = nil
successor = nl.find_successor(n);

n.stabilize()
X = successor. predecessor
if (x in (n, successor))
successor = X;
successor. notify(n);

n.notify(nl)
if (predecessor is nil or nl in (predecessor, n))
predecessor = nl,;

Ben observes that the Chord code for stabilization usesdareat method to set the predecessor of a node,
and proposes the following modifications to this pseudocode

n.j oi nnew(nl)
successor = nl.find_successor(n)
if (successor is not nil)
predecessor = successor. predecessor
if (predecessor is not nil)
predecessor. set _successor(n);
successor. set _predecessor(n);

j oi nnew replaces the existing join implementation from the paped Ben removest abi | i ze and
notify.

5. [10 points]: Why is this change a bad one? (Give a brief explanation andraasio that illustrates
your explanation.)

If nodes with close node IDs join at the same time, only onéntragpear in the succ ring. For
example, if a Chord ring consists of nodes 1 and 4, and nodesl B3oin the ring concurrently, it's
possible for both new nodes to have node 4 for a successonauel 1 for a predecessor, and never
find out about each other. In addition, if node leave the systle ring doesn't repair because Ben
deleted stabilize.

Name:

6.824 FALL 2007, Quiz 1 Page 8 of 12

IV Peer-to-peer: data distribution

6. [5 points]: Explain briefly the purpose of Bittorrent’s choke algorithm
To implement a tit-for-tat scheme so that nodes downloadrateaproportional to their upload rate.

7. [10 points]: If there are a few high-upload peers and many low-uploadspekres Bittorrent
achieve the lowest total download time (across all peerkyRd, give a brief argument why. If no,
give a modification to the Bittorrent protocol that is likeétyreduce the total download time.

No. The choke algorithm will make it likely that high uploagkeps match up with other high upload
peers, and low upload peers with low upload peers. The hi¢dagipeers will finish quickly and then
are likely to leave the system. Several fixes are possibteniive high upload peers to stay online,
remove penalty for low-upload nodes, etc.

Name:

6.824 FALL 2007, Quiz 1 Page 9 of 12

V Consistency

Ben runs the following program on a computer with two prooessand a single shared memory (with
in-order execution of memory operations and no caches):

processor O:
X = 1;
if(y == 0)
critical section;

processor 1:
y = 1;
if(x == 0)
critical section;

On his computer at most one processor enters the criticabseas it should.

8. [5 points]: Ben ports the program to the distributed shared memory (DSigem described by
Li and Hudak in “Memory Coherence in Shared Virtual Memong@nms”. What consistency model
is implemented by DSM that makes this program work corréctigorrectly” in this question means
if two computers share& andy through DSM only one computer entetsi ti cal secti on.
(Explain your answer briefly.)

DSM provides sequentially consistency. An implementati@sequentially-consistent memory must
ensure that there is some total order for all concurrent raad write operations that is also consistent
with the order of the operations on a given processor. Therad total order that can result in
computer 0 and 1 both entering the critical section.

Name:

6.824 FALL 2007, Quiz 1 Page 10 of 12

Ben modifies DSM slightly to get a bit more parallelism. Thkvant portion of the pseudocode is the
following fragment from section 3.2:

Wite fault handler:
| ock(ptabl e[p]. I ock);
IF I am manager THEN BEG N
receive page p from owner[p];
ELSE
ask manager for wite access to p;
i nval i date(p, ptable[p].copyset);
pt abl e[p] . access = wite;

pt abl e[p] . copy_set = {};
unl ock(pt abl e[p] . | ock)

Ben changes the implementationiaival i dat e. The implementation in the paper returns from the call
toi nval i dat e after it has received acknowledgements from all of the cderguisted incopyset .
Ben modifies nval i dat e to return as soon it has sent off the invalidation messagai tmmputers in
copyset . His hope is to get better performance because the writeandler doesn’t have to wait until
the acknowledgements on the invalidate messages have dxssved.

9. [10 points]: Does Ben'’s program still run correctly? (Briefly explain.)

No. For example, consider the case that processor 0 and 1 batrea read-only copy of the pages
that contain x and y, and that x and y are on different pageterAfocessor 0 updates x, it may take a
long time before processor 1 finds out about the update ancegsmr 0 doesn’t wait until processor
1 acknowledges that it has received the update. In the meangrocessor 1 can get ownership of
the page that contains y, update y, and then read its outit#-dopy of the page that contains x. The
update of y might not arrive at processor O before it has readat-of-date copy of the page that
contains y. Processor 0 will read O for x and processor 1 wiib0y, and both will enter the critical
section.

Name:

6.824 FALL 2007, Quiz 1 Page 11 of 12

VI Cachingin YFS

When running YFS with the caching lock server and extenteseffab 6), an alert 6.824 student observes
the following communication pattern often. When two clgeate sharing the same file “f”, YFS transfers
the extent for file “f” between the two clients through theemittserver. That is, when client 1 has modified
“f” and client 2 wants the file, client 1 writes the extent or tlelease of the lock for file “f” to the extent
server. When client 2 receives the lock for file “f” from theckoserver, it reads the extent for file “f” from
the extent server. The extent for file f is transferred twieerdhe network, and when “f” is large, the student
observes long delays before client 2 receives the extefit"for

10. [15 points]: Describe a small, simple set of changes to the YFS protosad in lab 6 so that
YFS transfers the extent for “f” only once over the networle.(i directly from client 1 to 2). Your
modified protocol should pass all the tests for lab 6 and waodeulossy conditions (i.e., the network
may lose packets). Make sure to specify the RPCs in your neodgdtotocol, their arguments, and
their results.

There were several possible correct solutions to this @blOne very simple one is to st@a@nters

to extents at the extent server, rather than the extentssblees. Thus, ondor el ease()/fl ush(),
the YFS server wilbut () its own hostname:port on the extent server, instead of ttemeitself, and
keep the extent locally cached. Thewget () call from another client fetches the hostname:port,
and then uses a new RPC (sggt _cached _ext ent) to retrieve the extent directly from the client.
Though this adds an extra round trip time, it doesn’t invatvedifying the lock protocol. This assumes
clients never fail.

— put(extentidt id, int segno, std::string &client)
— get cached_extent(extentidt id, int &Junmy)

Note that the sequence number is necessary in the put to avhiglicated delayed packet in a lossy
network overwriting the put from a newer extent owner. Thelextent-locking convention ensures
that aget () always see the most recent writer's hostname:port.

Another workable solution involves modifying the lock poatl to send extents directly to the new
lock owner as part of thdor el ease()/ fl ush() method. In this solution, the lock server adds
the hostname:port of the new lock holder in trevoke() RPC to the current lock holder. The cur-
rent lock holder must then remember this address, and p&s$ itush() when the lock is released.
Then it sends a new RPC (spyt _cached_ext ent ()) to the new lock holder’'s YFS server, which
must add the extent to its cache. After that RPC is complatecurrent lock holder can release the
lock back to the lock server, which can grant it to the new lockler. Once the new owner receives
the lock, it is guaranteed to have the current version of tierd in its cache. Note that there should
be a sequence number attached to the new RPC to avoid problgmdelayed puts.

Name:

6.824 FALL 2007, Quiz 1 Page 12 of 12

VIl 6.824

11. [5 points]: Describe the most memorable error you have made so far infdhe @bs. (Provide
enough detail so that we can understand your answer.)

We would like to hear your opinions about 6.824, so pleasevanghe following two questions. (Any
relevant answer will receive full credit!)

12. [3 points]: What is the best aspect of 6.824?

13. [2 points]: What is the worst aspect of 6.8247?

End of Quiz |

Name:

