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Abstract for over 20,000 different software packages. Many of
these packages are bundled with various operating sys-
SUNDR is a network file system designed to store datm distributions, often without a meaningful audit. By
securely on untrusted servers. SUNDR lets clients dgympromising sourceforge, an attacker can therefore in-
tect any attempts at unauthorized file modification hyoduce subtle vulnerabilities in software that may even-
malicious server operators or users. SUNDR's protoaoklly run on thousands or even millions of machines.
achieves a property callddrk consistencywhich guar-  Sych concerns are no mere academic exercise. For ex-
antees that clients can detect any integrity or consisterfple, the Debian GNU/Linux development cluster was
failures as long as they see each other’s file modificatiogsmpromised in 2003 [2]. An unauthorized attacker used
An implementation is described that performs comparg-sniffed password and a kernel vulnerability to gain su-
bly with NFS (sometimes better and sometimes wors@kruser access to Debian’s primary CVS and Web servers.
while offering significantly stronger security. After detecting the break-in, administrators were forced
to freeze development for several days, as they employed
. manual and ad-hoc sanity checks to assess the extent of
1 Introduction the damage. Similar attacks have also succeeded against

SUNDR i K il hat add | Apache [1], Gnome [32], and other popular projects.
U IS a network file system that addresses a ONgpather than hope for invulnerable servers, we have de-

standing tension_ between_ data integrity and acceSSib."(%Ioped SUNDR, a network file system that reduces the
Protecting data is often viewed as the problem of buil eed to trust storage servers in the first place. SUNDR

ing a better fence _around Sto”_ige s_ervers—llmmng t ptographically protects all file system contents so that
number of people with access, disabling unnecessary S@fients can detect any unauthorized attempts to change

Warte t.r;ﬁt mlgthbe r?n;]otely_rehgplonable, ?]nr? St?y'n%cqu'es. In contrast to previous Byzantine-fault-tolerarg fil
rent with security patches. This approach has o drajqq g [6, 27] that distribute trust but assume a thresh-

backs._ F|r_st, experience shows that peOple frequently 8 fraction of honest servers, SUNDR vests the authority
not build high enough fences (or sometimes entrust fenE rite files entirely in users’ public keys. Even a mali-

to administrators who are not completely trustworthy, fous user who gains complete administrative control of a

Second a_nd more |mp_ortan_t, high fences are mconvem%NDR server cannot convince clients to accept altered
they restrict the ways in which people can access, upd%tg

htents of files he lacks permission to write.
and manage data. . . .
. o . . Because of its security properties, SUNDR also creates
This tension is particularly evident for free software . : .
ew options for managing data. By using SUNDR, orga-

source code repositories. Free software projects often § .
... Nizations can outsource storage management without fear

involve geographically dispersed developers Comm'tt'%?server operators tampering with data, SUNDR also en-
source changes from all around the Internet, making l[t) : : )
ables new options for data backup and recovery: after a

impractical to fend off attackers with firewalls. Hostin%. i
o . isaster, a SUNDR server can recover file system data
code repositories also requires a palette of tools such,as

CVS [4] and SSH [35], many of which have had remote&om untrust.ed cllent§ file ca}ches. Sln,ce clients always

: ryptographically verify the file system’s state, they are
exploitable bugs. oo

Worse yet, many projects rely on third-party hoslpdlfferent to whether data was recovered from untrusted

' clients or resided on the untrusted server all along.

ing services that centralize responsibility for largée _ . ) i , g
numbers of otherwise independent code repositories. S Paper details the SUNDR file system's design and

sourceforge.net, for example, hosts CVS repositorieémplememat'on' We first describe SUNDR S secur!ty pro-
tocol and then present a prototype implementation that

*now at MIT CS & Al Lab gives performance generally comparable to the popular




NFS file system under both an example software develop- _Client

ment workload and microbenchmarks. Our results show gpplication P Server <
that applications like CVS can benefit from SUNDR'’S consistency server
strong security guarantees while paying a digestible pgeyScall
formance penalty. cache layer QO block store
fehc_%ﬁ & Y1717
. modi
2 Settin i ﬁ % ﬁ ﬁ ﬁ
9 security layer L )

SUNDR provides a file system interface to remote stor-
age, like NFS [29] and other network file systems. To se-
cure a source code repository, for instance, members of a

project can mount a remote SUNDR file system on d'.reﬁéte an entity possessing the private half of a signature

tory /sundr and use/sundr/cvsroot as a CVS reposr@ay mapped to some user ID in theundr . users file.

tory. All checkouts and commits then take place throu X : .
: . epending on context, this can either be the person who
SUNDR, ensuring users will detect any attempts by the . : .
) . . . owns the private key, or a client using the key to act on
hosting site to tamper with repository contents.

. , . . behalf of the user. However, SUNDR assumes a user is
'F|g.ure 1 shows SUI\.IDR s basic archl.tecture. Whep aware of the last operation he or she has performed. In the
plications access the file system, the client software-int

. . . fhplementation, the client remembers the last operation it
nally translates their system calls into a seriefetdhand b P

modify operations. where fetch means retrieving a f.lehas performed on behalf of each user. To move between
ify operations, w leving a i géents, a user needs both his or her private key and the last
f

Figure 1: Basic SUNDR architecture.

contents or.val|dat|n.g a cached Ioca[ copy, and modi eration performed on his or her behalf (concisely spec-
means making new file system state visible to other us

Fetch and modify, in turn, are implemented in terms %* 'd by a version number). Alternatively, one person can
SUNDR protocol RPCs to the server. Section 3 explai mploy multiple user IDs (possibly with the same public

the protocol, while Section 5 describes the server desi ng) for different clients, assigning all file permissioos t

ersonal group.
To set up a SUNDR server, one runs the server softwar group

on a networked machine with dedicated SUNDR disks UNDR's arch|'te.cture. draws an important dlstm.c'qon
o etween the administration of servers and the administra-
or partitions. The server can then host one or more i

. cebn of file systems. To administer a server, one does not

systems. To create a file system, one generates a pub- : p

lic/private superusesignature key pair and gives the pubr-].eed any prlvate superuser keysn fact, for best secu-
rkt{/, key pairs should be generated on separate, trusted ma-

lic key to the server, while keeping the private key secret.’. . .
. . . ) chines, and private keys should never reside on the server,
The private key provides exclusive write access to the root . ™.
even in memory. Important keys, such as the superuser

directory of the file system. It also directly or indirectl;key should be stored off line when not in use (for exam-

allows access to any file below the root. However, th‘la'e on a flo disk, encrypted with a passphrase)
privileges are confined to that one file system. Thus, wh%n PPy ' yp passp '

a SUNDR server hosts multiple file systems with different

superusers, no single person has write access to all files.
Each user of a SUNDR file system also has a signafl]??e The SUNDR pI’OtOCO|

key. When establishing an account, users exchange puglﬁ?N

. DR’s protocol lets clients detect unauthorized at-

keys with the superuser. The superuser manages accounts o .
: o : empts to modify files, even by attackers in control of the

with two superuser-owned file in the root directory of the
. ! . ) . server. When the server behaves correctly, a fetch reflects
file system: .sundr.users lists users’ public keys and ; e

. : . xactly the authorized modifications that happened before
numeric IDs, while. sundr . group designates groups an

5 . ) ) .
their membership. To mount a file system, one must sp'et(:- We call this propertyetch-modify consistency

. ; . . If th rver is dishonest, clients enfor lightl
ify the superuser’s public key as a command-line argu- e server is dishonest, clients enforce a slightly
ment to the pllent, and must furthermore give the client ac-1rpe server does actually have its own public key, but onlyres p
cess to a private key. (SUNDR could equally well managent network attackers from “framing” honest servers; theesekey is
keys and groups with more flexible certificate schemeiglevant to SUNDR's security against compromised servers.
2Formally, happens beforean be any irreflexive partial order that

the system only requires some way for users to validate el
préserves the temporal order of non-concurrent operatassn(Lin-

each other’s key? and group membership.) ] earizability [11]), orders any two operations by the samentiand or-
Throughout this paper, we use the teuserto desig- ders a modification with respect to any other operation onaheedile.




weaker property callefibrk consistencylintuitively, under validates each user’s most recent signature. The client
fork consistency, a dishonest server could cause a fetchallso checks that its own user’s previous operation is in
a userA to miss a modify byB. However, either user will the downloaded history (unless this is the user’s very first
detect the attack upon seeing a subsequent operatioropgration on the file system).
the other. Thus, to perpetuate the deception, the serveThe client then traverses the operation history to con-
must fork the two user’s views of the file system. Putruct a local copy of the file system. For each modify en-
equivalently, if A’s client accepts some modification by:ountered, the client additionally checks that the openati
B, then at least untiB performed that modification, bothwas actually permitted, using the user and group files to
users had identical, fetch-modify-consistent views of thalidate the signing user against the file’s owner or group.
file system. If all checks succeed, the client appends a new operation
We have formally specified fork consistency [16], ando the list, signs the new history, sends it to the server, and
assuming digital signatures and a collision-resistant hagleases the lock. If the operation is a modification, the
function, proven SUNDR’s protocol achieves it [17]appended record contains new contents for one or more
Therefore, a violation of fork consistency means the ufiles or directories.

derlying cryptography was broken, the implementation Now consider, informally, what a malicious server
deviated from the protocol, or there is a flaw in our magan do. To convince a client of a file modification, the
ping from high-level Unix system calls to low-level fetchserver must send it a signed history. Assuming the server
and modify operations. does not know users’ keys and cannot forge signatures,

In order to discuss the implications of fork consisteneyhy modifications clients accept must actually have been
and to describe SUNDR, we start with a simple straw-mafyned by an authorized user. The server can still trick
file system that achieves fork consistency at the cost@fers into signing inappropriate histories, however, by
great inefficiency (Section 3.1). We then propose an ioncealing other users’ previous operations. For instance
proved system with more reasonable bandwidth requitginsider what would happen in the last operation of the
ments called “Serialized SUNDR” (Section 3.3). We fiabove history if the server failed to show usggthe most
nally relax serialization requirements, to arrive at “coftecent modification to fil¢f,. UsersA and B would sign
current SUNDR,” the system we have built (Section 3.4je following histories:

3.1 A straw-man file system fi‘ggff i\) ”;‘;‘é(rf?g feh(;z({?ﬁ mﬁggf L
— user A: sig sig sig sig

In the roughest approximation of SUNDR, the straw-man

file system, we avoid any concurrent operations and allow

the system to consume unreasonable amounts of band- fetch(fz) | mod(fs) | fetch(fs) | feteh(fz)

width and computation. The server maintains a singlg,ger g: userA | userB | userA | userB

untrusted global lock on the file system. To fetch or mod- Sl9 Sig Sl9 Sig

ify a file, a user first acquires the lock, then performs the Neither history is a prefix of the other. Since clients
desired operation, then releases the lock. So long as #figays check for their own user’s previous operation in
server is honest, the operations are totally ordered aAd history, from this point ond will sign only extensions
each operation completes before the next begins. of the first history and3 will sign only extensions of the
The straw-man file server stores a complete, orderg@stond. Thus, while before the attack the users enjoyed
list of every fetch or modify operation ever performedetch-modify consistency, after the attack the users have
Each operation also contains a digital signature from theen forked.
user who performed it. The signature covers not just thegyppose further that the server acts in collusion with
operation but alséhe complete history of all operationsygjicious users or otherwise comes to possess the signa-
that precede it For example, after five operations, thg,re keys of compromised users. If we restrict the analysis
history might appear as follows: to consider only histories signed by honest (i.e., uncom-
romised) users, we see that a similar forking propert
fetch(fz) | mod(fs) | fetch(fs) | mod(f2) | fetch(fz) Fkjlolds. O)nce two honest users sign incompa?ibrl)e Eistoy—
userA | userB | userA | userA | userB ries, they cannot see each others’ subsequent operations
S!9 519 S!9 S'9 Si9 without detecting the problem. Of course, since the server
To fetch or modify a file, a client acquires the globatan extend and sign compromised users’ histories, it can
lock, downloads the entire history of the file system, amthange any files compromised users can write. The re-




maining files, however, can be modified only in honesetwork file system. This subsection explains SUNDR’s
users’ histories and thus continue to be fork consistentsolution to the first problem; we describe a simplified file
system that still serializes operations with a global lock,
but is in other respects similar to SUNDR. Subsection 3.4
explains how SUNDR lets clients execute non-conflicting
Fork consistency is the strongest notion of integrity possiperations concurrently.
ble without on-line trusted parties. Suppose u$&omes  Instead of signing operation histories, as in the straw-
on line, modifies a file, and goes off line. Latér,comes man file system, SUNDR effectively takes the approach
on line and reads the file. B doesn’t know whethedl of signing file system snapshots. Roughly speaking, users
has accessed the file system, it cannot detect an attackigm messages that tie together the complete state of all
which the server simply discard§s changes. Fork con-files with two mechanisms. First, all files writable by a
sistency implies this is the only type of undetectable &ttagarticular user or group are efficiently aggregated into a
by the server on file integrity or consistency. Moreover, gingle hash value called tiaandleusinghash tree$18].
A and B ever communicate or see each other’s future figecond, each i-handle is tied to the latest version of every
system operations, they can detect the attack. other i-handle usingersion vector$23].

Given fork consistency, one can leverage any trusted
parties that are on line to gain stronger consistency, e¥€8 1  pata structures
fetch-modify consistency. For instance, as described late
in Section 5, the SUNDR server consists of two prddefore delving into the protocol’s details, we begin by de-
grams, a block store for handling data, and a consisterseyibing SUNDR’s storage interface and data structures.
server with a very small amount of state. Moving the cohike several recent file systems [9, 20], SUNDR names
sistency server to a trusted machine trivially guaranteddson-disk data structures by cryptographic handles. The
fetch-modify consistency. The problem is that trusted milock store indexes most persistent data structures by thei
chines may have worse connectivity or availability tha20-byte SHA-1hashes, making the server a kind of large,
untrusted ones. high-performance hash table. It is believed to be compu-

To bound the window of inconsistency without placintptionally infeasible to find any two different data blocks
a trusted machine on the critical path, one can use a “timigh the same SHA-1 hash. Thus, when a client requests
stamp box” with permission to write a single file. Théhe block with a particular hash, it can check the integrity
box could simply update that file through SUNDR evergf the response by hashing it. An incidental benefit of
5 seconds. All users who see the box’s updates know tH@gh-based storage is that blocks common to multiple files
could only have been partitioned from each other in tieed be stored only once.
past 5 seconds. Such boxes could be replicated for ByzanSUNDR also stores messages signed by users. These
tine fault tolerance, each replica updating a single file. are indexed by a hash of the public key and an index num-

Alternatively, direct client-client communication carber (so as to distinguish multiple messages signed by the
be leveraged to increase consistency. Users can wsigne key).
login and logout records with current network addressesFigure 2 shows the persistent data structures SUNDR
to files so as to find each other and continuously estores and indexes by hash, as well as the algorithm
change information on their latest operations. If a mafier computing i-handles. Every file is identified by a
cious server cannot disrupt network communication bérincipal, i-number) pair, where principal is the user or
tween clients, it will be unable to fork the file system stagroup allowed to write the file, and i-number is a per-
once on-line clients know of each other. Those who dedtincipal inode number. Directory entries map file names
malicious network partitions serious enough to warra@nto (principal,i-number) pairs. A per-principal data
service delays in the face of client failures can consengiructure called the-table maps each i-number in use
tively pause file access during communication outagesto the corresponding inode. User i-tables map each i-

number to a hash of the corresponding inode, which we
3.3 Serialized SUNDR call _the file’si—_hash Group i-tables add a level _of indi-
rection, mapping a group i-number onto a user i-number.

The straw-man file system is impractical for two reason@:he indirection allows the same user to perform multiple
First, it must record and ship around complete file sysuccessive writes to a group-owned file without updating
tem operation histories, requiring enormous amountstbe group’s i-handle.) Inodes themselves contain SHA-1
bandwidth and storage. Second, the serialization of opleashes of file data blocks and indirect blocks.
ations through a global lock is impractical for a multi-user Each i-table is stored as a B+-tree, where internal nodes

3.2 Implications of fork consistency



userusy’s inode i,

i-handle useruy’s i-table (t,,)
H*(tw,) _(maps i#-i-hash) (maps offset-data)

................. P
group g¢'s i-table (¢,) 3 — H(is) |OK— H(do)

(maps it <user,i#)/. 8K— H(dl)

groupg’s / |“ 7. w, | e ey

i-handle 3 — (ug,4) 6 — H(i inode i :
........................ .__.(2.6;)”\ €% __ .. directory block

' (ty) 4 —>(u1,2) : . [ _ (mapsname: (u/g, i#))

"locore.S" —» <’U/27 5>

"main.c" — <g7 4>

Figure 2: User and group i-handles. Ahandleis the root of a hash tree containing a user or grotgble. (H
denotes SHA-1, whiléf* denotes recursive application of SHA-1 to compute the rbatlash tree.) Ayroup i-table
maps group inode numbers to user inode numbernsseX i-tablemaps a user’s inode numbers to i-hashesi-Aash
is the hash of an inode, which in turn contains hashes of file ldlacks.

contain the SHA-1 hashes of their children, thus forming uy'S Version uy’s i-table (t,,)
a hash tree. The hash of the B+-tree root is the i-handle. structure (y.,) —"
Since the block store allows blocks to be requested by (™, ) 2—>H(12)
SHA-1 hash, given a user’s i-handle, a client can fetch | —=— PP 3 — H(is)
and verify any block of any file in the user’s i-table by re- H .@y.z.) ------------- RRRRREEE
cursively requesting the appropriate intermediary blocks g H*(t,) :
The next question, of course, is how to obtain and verify | N — 9 .
a user’s latest i-handle. version vector: g's i-table (t,)
(7w 2 — (uy, )
g-o ...) | e
332 Protocol Gsssignatig |37 (u24)
i-handles are stored in digitally-signed messages known :

asversion structuresshown in Figure 3. Each version
structure is 5|gned by a E)a_rtlcular user. Thg_strupture m"—Llséure 3: A version structure containing a group i-handle.
always contain the user’s i-handle. In addition, it can op-

tionally contain one or more i-handles of groups to which

the user belongs. Finally, the version structure contains . . o . . .

a version vector consisting of a version number for evel€ Client simply copies/'s previous i-handle inta;, as
user and group in the system. nothmg has changgd. For a modify, the client computes
When user: performs a file system operatiauis client and mc_ludes new "ha!"d.'es for and for any groups

acquires the global lock and downloads the latest versi\gﬂose i-tables it is modifying.

structure for each user and group. We call this set of Ver_The client then sets's version vector to reflect the ver-

sion structures theersion structure listor VSL. (Much Sion number of each VSL entry. For any version structure

of the VSL's transfer can be elided if only a few users aréf€ z, and any principal (user or group) let z[p| denote

groups have changed version structures since the useBg/ersion number in’s version vector (06 if = contains

last operation.) The client then computes a new versiBf entry forp). For each principap, if y, is p's entry in

structurez by potentially updating i-handles and by sethe VSL (i.e., the version structure containipg latest

ting the version numbers into reflect the current state ofi-handle), set[p] — y,[p].

the file system. Finally, the client bumps version numbers to reflect the
More specifically, to set the i-handles inon a fetch, i-handles inz. It setsz[u] « z[u] + 1, sincez always



1 (A ;hA (A-1) gsig group g's  group g’s i-table (,)

) (B AL i-handle (maps i#- (user,i#)
A\ B ihp (A-1B-1): w7
LLAL RLE | HT() 2 = (uy,7)
3. (A tha:(A-2 B-1) :sig changelog] =~ [~
/ A 4= (u,2)
a.(A i, (A3B1) sig) : 57 (us4)

Lo e Figure 5: i-table for groug, showing the change log’
5. B hpi(A-2B-2): v
( h ) _3|g) is a recent i-table; applying the log tf yieldst,,.

Figure 4: Signed version structures with a forking attack.
when re-validating a cached file that has not changed since

the hash tree root was last computed.
containsu’s i-handle, and for any groupwhose i-handle

z contains, sets[g] < z[g] + 1.

The client then checks the VSL for consistency. Give:':’f4 Concurrent SUNDR
two version structures: and y, we definex < y iff While the version structures in SUNDR detect inconsis-
Vp x[p] < y[p]. To check consistency, the client verifiegency, serialized SUNDR is too conservative in what it
that the VSL containg’s previous version structure, andprohibits. Each client must wait for the previous client’s
that the set of all VSL entries combined withis totally version vector before computing and signing its own, so
ordered by<. Ifitis, the user signs the new version strucas to reflect the appropriate version numbers. Instead, we
ture and sends it to the server witttcammiT RPC. The would like most operations to proceed concurrently. The
server adds the new structure to the VSL and retires trely time one client should have to wait for another is
old entries for updated i-handles, at which point the cliewhen it reads a file the other is in the process of wrifing.
releases the file system lock.

Figure 4 revisits the forking attack from the end of Se@.4.1  Update certificates

tion 3.1, showing how version vectors evolve in SUNDR,

With each version structure signed, a user reflects tANDR’S solution to concurrent updates is for users to
highest version number seen from every other user, d1§-declare a fetch or modify operation before receiving
also increments his own version number to reflect tH&e VSL from the server. They do so with signed mes-

most recent i-handle. A violation of consistency caus&@des calledipdate certificateslf y, is u's current VSL
users to sigrincompatibleversion structures—i.e., two€htry, an update certificate fois next operation contains:

structuresr andy such thatr £ y andy £ «. Inthis ¢ ,'s next version numbexy, [u] + 1, unlessu is
example, the server performs a forking attack after step 3. pipelining multiple updat@s

User A updates his i-handle froma, to 4/, in 4, butin 5, ,
B is not aware of the change. The result is that the two® & hash ot's VSL entry (H (y.)), and
version structures signed in 4 and 5 are incompatible. e a (possibly empty) list of modifications to perform.

Just as in t_he strawiman flle_system, once two us%r ch modification (odelta) can be one of four types:
have signed incompatible version structures, they wi

never again sign compatible ones, and thus cannot eves Set file(user, i#) to i-hashh.
see each o.thers.operatlons without detecting the attack Set group file(group, i#) to (user, i#).
(as proven in earlier work [16]).

One optimization worth mentioning is that SUNDR
amortizes the cost of recomputing hash trees over severaone might wish to avoid waiting for other clients even in thergv
operations. As shown in Figure 5, an i-handle contaipfsuch a read-after-write conflict. However, this turns toube impos-
not just a hash tree root, but also a small log of chan e with untrusted servers. If a single signed messageitmumlcglly

. witch between two file states, the server could concealtibage ini-
that have _been made to the i-table. The Change log furth@iy, then apply it long after forking the file system, whesess should
more avoids the need for other users to fetch i-table bloakdonger see each others’ updates.

e Set/delete entrmamein directory(user/groupi#).




e Pre-allocate a range of group i-numbers (pointingodifying, the client simply signs a new version structure
them to unallocated user i-numbers). and sends it to the server for inclusion in the VSL.

The client sends the update certificate to the server in an

UPDATE RPC. The server replies with both the VSL and a

list of all pending operations not yet reflected in the VSI3.4.2 Update conflicts
which we call thepending version lisbr PVL.

Note that both fetch and modify operations require If a client is fetching a file and the PVL contains a modifi-
DATE RPCs, though fetches contain no deltas. (The R@tion to that file, this signifies a read-after-write conflic
name refers to updating the VSL, not file contents.) Morks this case, the client still commits its version structure
over, when executing complex system calls suchieas as before but then waits for fetched files to be commit-
name a singleuPDATE RPC may contain deltas affectinged to the VSL before returning to the application. (A
multiple files and directories, possibly in differenti-tad. FETCHPENDINGRPC lets clients request a particular ver-

An honest server totally orders operations accordinggmn structure from the server as soon as it arrives.)

the arrival order ofuPDATE RPCs. If operatiorD; is A trickier situation occurs when the PVL contains a

reflected in the VSL or PVL returned fa,’s UPDATE  mqgification to a group i-handle that the client also wishes

RPC, then we say), happened befor®,. Conversely, o modify, signifying a write-after-write conflict. How

if O is reflected in0,’s VSL or PVL, thenO. happened should a clientu, modifying a groupg's i-table, t,, re-

beforeO;. If neither happened before the other, then thgmputeg's i-handle, h,, when other operations in the

server has mounted a forking attack. PVL also affectt,? Since any operation in the PVL hap-
When signing an update certificate, a client cannot pigsned before/'s new version structure, call i, the han-

dict the version vector of its next version structure, gfe hy in = must reflect all operations afy in the PVL.

the vector may depend on concurrent operations by ot the other hand, if the server has behaved incorrectly,

clients. The server, however, knowseciselywhat op- one or more of the forthcoming version structures corre-

erations the forthcoming version structure must refleghonding to these PVL entries may be incompatible with

For each update certificate, the server therefore calaulate|n this case, it is critical that not somehow “launder”

the forthcoming version structure, except for the i-handigperations that should have alerted people to the server's

This unsigned version structure is paired with its updaigspehavior.

certificate in the PVL, so that the PVL is actually a list of

(update certificate, unsigned version structyrairs Recall that clients already check the PVL for read-after-

The alaorithm for computing a new version Structurwrite conflicts. When a client sees a conflicting mod-
9 buting ffication in the PVL, it will wait for the corresponding

# begins as in serialized SUNDR: for each principal VSL entry even ifu has already incorporated the change

setz[p] — yp[pl, wherey, is p's entry in the VSL. Then, in hy. However, the problem remains that a malicious

z's version vector must be incremented to reflect pending . . .
. . . . “seérver might prematurely drop entries from the PVL, in
updates in the PVL, including’s own. For user version

o i . - which case a client could incorrectly fetch modifications
numbers, this is simple; for each update certificate signe .
lected byt, but never properly committed.

by useru, setz[u] < z[u] + 1. For groups, the situation is' g . -
complicated by the fact that operations may commit out of The solution is foru to incorporate any modifications
order when slow and fast clients update the same i-tafté?y In the PVL not yet reflected ip,, and also to record
For any PVL entry updating groups i-table, we wish to the current contents of the PVL in a new field of the ver-
incrementz[g] if and only if the PVL entry happened af-sion structure. In this way, qther clients can detect mg;sin_
ter y, (since we already initialized|[g] with y,[g]). We PVL ent_nes when they notice those_ entries referenced in
determine whether or not to increment the version nuf4S Version structure. Rather than include the full PVL,
ber by comparing, to the PVL entry’s unsigned versionVhich might be largey simply records, for each PVL en-
vector, call ité. If £ £ y,, setz[g] — z[g] + 1. The result try, the user performmg the operation, that user’s version
is the same version vector one would obtain in serializ84mber for the operation, and a hash of the expected ver-
SUNDR by waiting for all previous version structures. Sion structure with i-handles omitted.

Upon receiving the VSL and PVL, a client ensures that Whenw applies changes from the PVL, it can often do
the VSL, the unsigned version structures in the PVL, asd by simply appending the changes to the change log of
its new version structure are totally ordered. It also ckecKs i-handle, which is far more efficient than rehashing the
for conflicts. If none of the operations in the PVL changetable and often savasfrom fetching uncached portions
files the client is currently fetching or group i-tables it isf the i-table.



- useru; Server userus B
u1's update certificate uo's update certificate
ug . version3 ! H(Yusy)

Ajq:set{uz, 10) — hy
Ag: add entry(“Y” — (ug,10))
to directory(g, 4)

As: set(g,4) — (uz,11)

ug's signature

wi . version7 H(Yuy)

 Avset(ui,T) —hx
Ag: add entry(“X” — (u1,7))
to directory(g, 4)
Agz: set{g,4) — (u1,8)

u1’s signature

g's i-table atT} uy's inode 8 g's i-table atT» us's inode 11
. (/sundr/tmp) e (/sundr/tmp)
4 @1_ , é)-/r metadata [ zu; ,_1 I>‘/r metadata
R T Y
LT =] By v [ e
Figure 6: Concurrent updates teundr/tmp/ by different users.

3.4.3 Example u1's update w;’s unsigned wus’s version
. . certificate version structure
Figure 6 shows an example of two useksandus in the —
group g modifying the same directoryu; creates filex R S structure [ Y2,

while u, createsy, both in/sundr/tmp/. The directory | . Version7 (Lu) H*(ty,)

is group-writable, while the files are not. (For the exam; H(yul) o

ple, we assume no other pending updates.) A, Ao, Ag | [ Lo

Assume /sundr/tmp/ iS mapped to groupy’s i- u1’S signature
number4. Useru, first calculates the i-hash of filk, LA RTTE g5 ...)
call it A x, then allocates his own i-number forcall it 7. N N ARl S N
u; then alquates.another i—rjumbér,to hold the contents 'S 's'i'ghétu'r'
of the modified directory. Finallyy; sends the server an ({23 SIgNAUTg
update certificate declaring three deltas, namely the mlay_)- i .
ping of file (u1,7) to i-hashhy, the addition of entry |gure 7:_ A pending update by user, reflected in user
(“X” — (u1,7)) to the directory, and the re-mapping of2'S Version structure.
g’s i-number4 to (uy, 8).

uo Similarly sends the server an update certificate far
the creation of fil& in /sundr/tmp/. If the server orders
u1's update befores’s, it will respond tou, with the VSL
and a PVL containing only,'s update, while it will send SUNDR only detects attacks; it does not resolve them.
uy a PVL reflecting both updates,, will therefore apply Following a server compromise, two users might find
u1’s modification to the directory before computing théhemselves caching divergent copies of the same direc-
i-handle forg, incorporatingu,’s directory entry forx. tory tree. Resolving such differences has been studied
us would also ordinarily incorporate;’s re-mapping of in the context of optimistic file system replication [13,
the directory(g,4) — (u;,7), except thats’s own re- 22], though invariably some conflicts require application-
mapping of the same directory supersedgs. specific reconciliation. With CVS, users might employ

An important subtlety of the protocol, shown in FigCVS'’s own merging facilities to resolve forks.
ure 7, is thatuo's version structure contains a hashugfs SUNDR'’s protocol leaves considerable opportunities
forthcoming version structure (without i-handles). Thifor compression and optimization. In particular, though
ensures that if the server surreptitiously drop's update version structure signatures must cover a version vector
certificate from the PVL before; commits, whoever seeswith all users and groups, there is no need to transmit en-
the incorrect PVL must be forked from both andus. tire vectors in RPCs. By ordering entries from most- to
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least-recently updated, the tail containing idle printspamodifies, or if all fetched data hit in the cache, this is the
can be omitted on all but a client’s firstPDATE RPC. only synchronous round trip required; themmIT can be
Moreover, by signing a hash of the version vector arsént in the background (except fsyng. This behavior is
hashing from oldest to newest, clients could also pre-hasmilar to systems such as NFS3, which makes@ness

idle principals’ version numbers to speed version vectBIPC on each open and writes data back to the server on
signatures. Finally, the contents of most unsigned versieach close. We note that callback- or lease-based file sys-
structures in the PVL is implicit based on the order of tems can actually achieve zero round trips when the server
PVL and could be omitted (since the server computes uras committed to notifying clients of cache invalidations.
signed version structures deterministically based on the

order in which it receivesPDATE RPCs). None of these . . .
optimizations is currently implemented. 5 File system implementation

SUNDR'’s semantics differ from those of traditional h lient is impl d level Usi
Unix. Clients supply file modification and inode chang e SUNDR client is implemented at user level, using a

times when modifying files, allowing values that might b odified version of thafs devicg driver fro'n’1 the ARLA
ile system [33] on top of a slightly modified FreeBSD

prohibited in Unix. There is no time of last access. D|- : Lo TS
rectories have no “sticky bit” A group-writable file in ernel. Server functionality is divided between two pro-

SUNDR is not owned by a user (as in Unix) but rath&rams, a consistency server, which handles update cer-

is owned by the group; such a file's “owner” field ingilificates and version structures, and a block store, which

cates the last user who wrote to it. In contrast to Unegtually stores data, update certificates, and version-stru

disk quotas, which charge the owner of a group—writabtl\éres on disk. Eor experiments in this paper, the bloc_:k
erver and consistency server ran on the same machine,

file for writes by other users, if SUNDR'’s block store e

forced quotas, they would charge each user for precisg mumcatmg over Umx_—domaln socl_<ets. They can alsp
the blocks written by that user. configured to run on different machines and communi-

— ate over an authenticated TCP connection.
One cannot change the owner of a file in SUND&.

However, SUNDR can copy arbitrarily large files at the _ _
cost of a few pointer manipulations, due to its hash-basedl.  File system client

storage mechanism. Thus, SUNDR implem nby The xfs device driver used by SUNDR is designed for

creating a copy of the file owned by the new user or gml\f\%ole-file caching. When a file is openeds makes an
and updating the directory entry to point to the new copy; i

. . ) e . call to the SUNDR client asking for the file’s data. The
Doing so requires write permission on the directory an(#)

. . . client returns the identity of a local file that has a cached
changes the semantics of hard links (sinhewnonly af- :
: . copy of the data. All reads and writes are performed on
fects a single link).

] o the cached copy, without further involvement of SUNDR.
Yet another difference from Unix is that the owner of hen the file is closed (or flushed witgynd, if it has

directory can delete any entries in the directory, inclgdityeen modifiedxfs makes another upcall asking the client
non-empty subdirectories to which he or she does not hgy§yrite the data back to the server. Several other types of
write permission. Since Unix already allows users 10 rpc4)is allowxfs to look up names in directories, request
name such directories away, additionally allowing delefg, attributes, create/delete files, and change metadata.
permission does not appreciably affect security. In a sim-5¢ distributed xfs's interface posed two problems for
ilar vein, users can create multiple hard links to directey NpR. Firstxfs caches information like local file bind-
ries, which could confuse some Unix software, or cou|fys 1o satisfy some requests without upcalls. In SUNDR,
be useful in some situations. Other types of malformedme of these requests require interaction with the consis-
directory structure are interpreted as equivalent to Sonﬂé’ﬁcy server for the security properties to hold. We there-
thing legal (e.g., only the first of two duplicate directoryq e ‘modifiedxfs to invalidate its cache tokens immedi-
entries counts). ately after getting or writing back cached data, so as to

SUNDR does not yet offer read protection or confidegnsure that the user-level client gets control whenever the
tiality. Confidentiality can be achieved through enCI’ythﬁotocm requires anPDATE RPC. We similarly changed
storage, a widely studied problem [5, 10, 12, 34]. xfs to defeat the kernel's name cache.

In terms of network latency, SUNDR is comparable Second, some system calls that should require only a
with other polling network file systems. SUNDR waitsingle interaction with the SUNDR consistency server re-
for anuPDATE RPC to complete before returning from asult in multiple kernel vnode operations arf$ upcalls.
application file system call. If the system call caused onlior example, the system calétat ("a/b/c", &sb)”



results in threexfs GETNODE upcalls (for the directory an honest server to fail. For crash recovery, the consis-

lookups) and oneETATTR. The whole system call shouldtency server must store VSL and PVL to persistent stor-

require only oneJPDATE RPC. Yet if the user-level clientagebeforeresponding to client RPCs. The current consis-

does not know that the four upcalls are on behalf of thency server stores these to the block server. Because the

same system call, it must check the freshness of itsViSLs and PVLs are small relative to the size of the file

handles four separate times with fouPDATE RPCs. system, it would also be feasible to use non-volatile RAM
To eliminate unnecessary RPCs, we modified tiiNVRAM).

FreeBSD kernel to count the number of system call invo-

cations that might require an interaction with the consis- ) ]

tency server. We increment the counter at the start of evéy Block store implementation

system call that takes a pathname as an argument (e.g., )
stat, open, readlink, chdir). The SUNDR client A block storage daemon callestor handles all disk

memory-maps this counter and records the last valus®rage in SUNDR. Clients interact directly witistor
has seen. Ikfs makes an upcall that does not change tfi@ Store blocks and retrieve them by SHA-1 hash value.

state of the file system, and the counter has not changBg€ consistency server usestor to store signed update
then the client can use its cached copies of all i-handle§nd version structures. Because a SUNDR server does

not have signature keys, it lacks permission to repair the
) o file system after a crash. For this reasdstor must
5.2 Signature optimization synchronously store all data to disk before returning to

The cost of digital signatures on the critical path Ighents, posing a performance challendustor therefore

SUNDR is significant. Our implementation therefore us gawly optimizes synchronous write performance.

the ESIGN signature scherfiewhich is over an order bstors basic idea is to write incoming data blocks to

of magnitude faster than more popular schemes suchfd§mporary log, then to move these blocks to Venti-like

RSA. All experiments reported in this paper use 2,048—@[Orage in batchgs. Ve_nti [24] is an archival block store
at appends variable-sized blocks to a large, append-only

public keys, which, with known techniques, would requi : L .

a much larger work factor to break than 1,024-bit RSA.I E log disk wh|lfe I?tjs’eéggdt'hié)l?crstby SHA-1 Ihash
To move verification out of the critical path, the consig! ON€ or more 1as ISKSIOrS temporary 109

tency server also processes and replies tormATE RPC relaxes the archival semantics of Venti, allowing short-

before verifying the signature on its update certificate. l'IYed blocks to be deleted within a small window of their

verifies the signature after replying, but before accepti Beanon. bstor maintains an archival flavor, though, by

any other RPCs from other users. If the signature fafl $Eor:|ng penodllc flle”sys;ertn stnapsrr:_ots. low lat
to verify, the server removes the update certificate from € temporary log allowsstorto achieve low fatency
the PVL and and drops the TCP connection to the forgi gfsynchronous writes, which under Venti require an in-

client. (Such behavior is acceptable because only a fa lookup to ensure the block is not a duplicate. More-

client would send invalid signatures.) This optimizatioﬂ efr, bstqlrsectotr_-allgns all blOCka 'r? tht]e temtporary llacl)g’k
allows the consistency server’s verification of one sign ‘mporartly wasting an average of halt a sector per bloc

ture to overlap with the client’s computation of the next>° &S to avoid multiple writes _to the same sector, which
. o . would each cost at least one disk rotation. The temporary
Clients similarly overlap computation and network Ia\- improves write throughput even under sustained load
tency. Roughly half the cost of an ESIGN signature is ag?—g P gnp '

tributable to computations that do not depend on the m Scause transferring blocks to the permanent log in large

sageconent. Thus, whie waiing for he reply . o ior oo 0 s sk accesss
DATE RPC, the client precomputes its next signature. P 9 Y y

blocks. In particular, it caches all blocks in the temporary
log so as to avoid reading from the temporary log disk.
5.3 Consistency server Thoughbstor does not currently use special hardware, in

Section 7 we describe how SUNDR's performance would

The consistengy SEerver orders operations for S,UNE?,r%prove if bstorhad a small amount of NVRAM to store
clients and maintains the VSL and PVL as described date certificates

Section 3. In addition, it polices client operations and re-

jects invalid RPCs, so that a malicious user cannot cause
6.1 Interface

4Specifically, we use the version of ESIGN shown secure inahe r ] )
dom oracle model by [21], with parameter= 8. bstorexposes the following RPCs to SUNDR clients:
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sToRE(header block) sible with commodity components, we are not convinced

RETRIEVE (hash that memory will keep up with hard disks in the future.
VvSTORE (header pubkeyn, blocK) We instead use Venti's strategy of striping a disk-
VRETRIEVE (pubkeyn, [tim€]) resident hash table over multiple high-speed SCSI
DECREF(hash disks. bstor hashes 20-byte SHA-1 hashes down to
SNAPSHOT() (index-disk-idindex-disk-offsetpairs. The disk offsets

) ) point to sector-sized on-disk data structures caiedk-
The sTORE RPC writes a block and its header to stae—tS which contain 15index-entries sorted by SHA-1

ble storage ifbstor does not already have a copy of thfagh index-entriesn turn map SHA-1 hashes to offsets
block. ~ The header has information encapsulating t§ the permanent data log. Whenever an index-entry is

bIOQkYS owner a_nd creatpn time, as well _as fields US§iitten to or read from diskhstor also stores it in an in-
ful in concert with encoding or compression. TRe- memory LRU cache

TRIEVE RPC retrieves a block from the store given its bstor accesses the index system as Venti does when
tShHA-lthaslh. ll)tlalsko retumns the first headeiored with answeringrReTRIEVE RPCs that miss the block cache.
(?I'Ear cutar ocd. RPC lik When bstor moves data from the temporary to the per-
d € VSTORE;” fVRETR'zV; K ssgre :jiSITOkRE manent log, it must access the index system sometimes
grlj REgRb'EVE’ Utb?r igne q OCKS. I ',grc]je oc b‘iarﬁ/vice per block (once to check a block is not a duplicate,
Indexed by the public key and a small index NUMDEN, 5,4 5nce to write a new index entry after the block is com-
VRETRIEVE, by default, fetche; the.most. recent versighliye the permanent log). In both caslestorsorts these
of a &gned_ block. When supplied with a timestamp as 8I8k accesses so that the index disks service a batch of
optional _th|rd argumentvF.{ETR'.EVE returns the neWes'[requests with one disk arm sweep. Despite these opti-
block written before the given time. mizations bstorwrites blocks to the permanent log in the

DECREF (short for “decrem.ent referlence count’) inbrderthey arrived; randomly reordering blocks would hin-
forms the store that a block with a particular SHA-1 hagjy,, sequential read performance over large files
might be discarded. SUNDR clients useCREFto dis-

card temporary files and short-lived metadatastors
deletion semantics are conservative. When a block is figs3 Data management
stored,bstor establishes a short window (one minute by
default) during which it can be deleted. If a clistores To recover from a crash or an unclean shutdown, the sys-
then DECRERs a block within this windowpstor marks tem first recreates an index consistent with the permanent
the block as garbage and does not permanently stordol, starting from its last known checkpoint. Index re-
If two clients store the same block during the derefereng@Vvery is necessary because the server updates the index
window, the block is marked as permanent. lazily after storing blocks to the permanent Idigtorthen

An administrator should issuesnAPSHOTRPC peri- Processes the temporary log, storing all fresh blocks to the
odically to create a coherent file system image that clief@'manent log, updating the index appropriately.
can later revert to in the case of accidental data disrupVenti’s authors argue that archival storage is practical
tion. Upon receiving this RPMstor simply immunizes because IDE disk capacity is growing faster than users
all newly-stored blocks from futureecreFs and flags generate data. For users who do not fit this paradigm,
them to be stored in the permanent lagnaPsHoTand howeverbstor could alternatively be modified to support
VRETRIEVE's timeargument are designed to allow browsnark-and-sweep garbage collection. The general idea is
ing of previous file system state, though this functionalitp copy all reachable blocks to a new log disk, then recycle
is not yet implemented in the client. the old disk. With two diskshstor could still respond to

RPCs during garbage collection.

6.2 Index

bstor's index system locates blocks on the permanent lof, Performance

keyed by their SHA-1 hashes. An ideal index is a sim-

ple in-memory hash table mapping 20-byte SHA-1 blockhe primary goal in testing SUNDR was to ensure that
hashes to 8-byte log disk offsets. If we assume that tite security benefits do not come at too high a price rela-
average block stored on the system is 8 KB, then the tive to existing file systems. In this section, we compare
dex must have roughly/128 the capacity of the log disk. SUNDR’s overall performance to NFS. We also perform
Although at present such a ratio of disk to memory is posticrobenchmarks to help explain our application-level re-
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sults, and to support our claims that our block server out- | Operation | MB/s |

performs a Venti-like architecture in our setting. sTORE(burst) 18.4
STORE(sustained) 11.9

. VENTI_STORE 5.1

7.1 Experlmental setup RETRIEVE (random + cold index cache) 1.2
We carried out our experiments on a cluster of 3 GHz RETR'EVE(Sequem!al * cold m_dex cache) = 9.1
RETRIEVE (Sequential + warm index cache) 25.5

Pentium IV machines running FreeBSD 4.9. All ma-
chines were connected with fast Ethernet with ping tim&ggure 8: bstor throughput measurements with the block
of 110 us. For block server microbenchmarks, we agache disabled.

ditionally connected the block server and client with gi-

gabit Ethernet. The machine runnibgtor has 3 GB of
RAM and an array of disks: four Seagate Cheetah 18
SCSil drives that spin at 15,000 RPM were used for the
dex; two Western Digital Caviar 180 GB 7200 RPM EID%U
drives were used for the permanent and temporary Iogso.

'Bst checks for a block’s existence in the index and stores

e block to the permanent log only if it is not found.

hat is, eactlvENTI_STOREentails an access to the index

isks. Our results show thaENTI_STORE can achieve

nly 27% of sTOREs burst throughput, and 43% of its
sustained throughput.

7.2 Microbenchmarks Figure 8 also presents read measurementbdtor. If
791 bstor a client read; blocks in the same order they are written
o (i.e, “sequential” reads), thelstor need not seek across
Our goals in evaluatingstor are to quantify its raw per- the permanent log disk. Throughput in this case is limited
formance and justify our design improvements relative &y the per-block cost of locating hashes on the index disks
Venti. In our experiments, we configurdzstors four and therefore increases to 25.5 MB/s with a warm index
SCSI disks each to use 4 GB of space for indexing. @gche. Randomly-issued reads fare poorly, even with a

one hopes to maintain good index performance (and M&rm index cache, becausstor must seek across the
overflow buckets), then the index should remain less the@manent log. In the context of SUNDR, slow random
half full. With our configuration (8 GB of usable indexRETRIEVES should not affect overall system performance
and 32-byte index entriesstor can accommodate up tof the client aggressively caches blocks and reads large
2 TB of permanent data. For flow control and fairnesfles sequentially.
bstorallowed clients to make up to 40 outstanding RPCs.Finally, the latency ofbostor RPCs is largely a func-
For the purposes of the microbenchmarks, we disabléen of seek times. STORE RPCs do not require seeks
bstors block cache but enabled an index cache of up &d therefore return in 1.6 ms/ENTI_STOREreturns in
100,000 entries. The circular temporary log was 720 MB7 ms (after one seek across the index disk at a cost of
and never filled up during our experiments. about 4.4 ms). SequentigETRIEVES that hit and miss
We measuredstors performance while storing andthe index cache return in 1.9 and 6.3 ms, respectively. A
fetching a batch of 20,000 unique 8 KB blocks. Figure $€k across the log disk takes about 6.1 ms; therefore ran-
shows the averaged results from 20 runs of a 20,000 bIétKN RETRIEVES that hit and miss the index cache return
experiment. In all cases, standard deviations were |#38.0 and 12.4 ms respectively.
than 5% of the average results. The first two results show
thatbstorcan absorb bursts of 8 KB blocks at almogt t_\/vi_c?_zl2 Cryptographic overhead
fast Ethernet rates, but that sustained throughput isdiit
by bstor's ability to shuffle blocks from the temporary tocSUNDR clients sign and verify version structures and up-
the permanent logs, which it can do at 11.9 MB/s. Thiate certificates using 2,048-bit ESIGN keys. Our im-
bottleneck insTORENQ blocks to the temporary log is curplementation (based on the GNU Multiprecision library
rently CPU, and future versions bktor might eliminate version 4.1.4) can complete signatures in approximately
some unnecessamgemcpy to achieve better throughput150 s and can verify them 100s. Precomputing a sig-
On the other handpstor can process the temporary lognature requires roughly 8@s, while finalizing a precom-
only as fast as it can read from its index disks, and theyated signature is around 765. We observed that these
is little room for improvement here unless disks beconmeasurements can vary on the Pentium IV by as much as a
faster or more index disks are used. factor of two, even in well-controlled micro-benchmarks.
To compare with a Venti-like system, we implementelBy comparison, an optimized version of the Rabin sig-
a Venti-like store mechanism. IMENTI_STORE bstor nature scheme with 1,280-bit keys, running on the same
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2 NFS2

[ NFS3

Il SUNDR

= SUNDR /NVRAM

hardware, can compute signatures in 3.1 ms and can ver-
ify them in 27 us.

=
o

7.3 End-to-end evaluation

me (S)

In end-to-end experiments, we compare SUNDR to both =
NFS2 and NFS3 servers running on the same hardware.g
To show NFS in the best possible light, the NFS exper- &
iments run on the fast SCSI disks SUNDR uses for in-
dexes, not the slower, larger EIDE log disks. We include
NFS2 results because NFS2’s write-through semantics are create read unlink
more like SUNDR’s. Both NFS2 and SUNDR write all
modified file data to disk before returning fromckose Figure 9: Single client LFS Small File Benchmark. 1000
system call, while NFS3 does not offer this guarantee. operations on files with 1 KB of random content.
Finally, we described in Section 5.3 that SUNDR
clients must wait for the consistency server to write small _ ) ) )
pieces of data (VSLs and PVLs) to stable storage. Tfigns per file creation. In practice, NFS requires about
consistency server’s storing of PVLs in particular is o ™S to service the three system calls in ¢heate stage.
the client’s critical path. We present result sets for con- IN theread phase of the benchmark, SUNDR performs
sistency servers running with and without flushes to sé¥€ round of the consistency protocol in thgensystem
ondary storage. We intend the mode with flushes disabf@l: The NFS3 client still accesses the server with an
to simulate a consistency server with NVRAM. ACCESSRPC, but the server is unlikely to need any data
All application results shown are the average of thr&t in its buffer cache at this point, and hence no seeking is

runs. Relative standard deviations are less than 8% unlg$!ired. NFS2 does not contact the server in this phase.
otherwise noted. In the unlink stage of the benchmark, clients issue a

singleunlink system call per file. Amunlink for SUNDR
731 LES small file benchmark triggers one round of the consistency protocol and an
asynchronous write to the block server to store updated

The LFS small file benchmark [28] tests SUNDR's perfor~table and directory blocks. SUNDR and SUNDR/
mance on simple file system operations. This benchm&¥RAM in particular can outperform NFS in this stage
creates 1,000 1 KB files, reads them back, then deletéghe experiment because NFS servers again require at
them. We have modified the benchmark slightly to wrieast one synchronous disk seek per titdinked.
random data to the 1 KB files; writing the same file 1,000 We also performed experiments with multiple clients
times would give SUNDR’s hash-based block store an yperforming the LFS small file benchmark concurrently in
fair advantage. different directories. Results for thweate phase are re-

Figure 9 details our results when only one client is aported in Figure 10 and the other phases of the benchmark
cessing the file system. In tleeeate phase of the bench-show similar trends. A somewhat surprising result is that
mark, a single file creation entails system callopen SUNDR actually scales better than NFS as client concur-
read andclose On SUNDR/NVRAM, theopencall in- rency increases in our limited tests. NFS is seek-bound
volves two serialized rounds of the consistency protocelen in the single client case, and the number of seeks
each of which costs about 2 ms; theite call is a no- the NFS servers require scale linearly with the number of
op, since file changes are buffered until close; and tbencurrent clients. For SUNDR, latencies induced by the
close call involves one round of the protocol and oneonsistency protocol limit individual client performance
synchronous write of file data to the block server, whidbut these latencies overlap when clients act concurrently.
the client can overlap. Thus, the entire sequence tal#3NDR’s disk accesses are also scalable because they are
about 6 ms. Without NVRAM, each round of the protocaequential, sector-aligned writestistors temporary log.
takes approximately 1-2 ms longer, because the consis-
tency server must wait fdystorto flush. _ 7.3.2  Group contention

Unlike SUNDR, an NFS server must wait for at least
one disk seek when creating a new file because it sylfire group protocol incurs additional overhead when fold-
chronously writes metadata. A seek costs at least 4 msimg other users’ changes into a group i-table or directory.
our fast SCSI drives, and thus NFS can do no better thake characterized the cost of this mechanism by measur-
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13.7%) =
c
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ing a workload with a high degree of contention fora 2
group-owned directory. We ran a micro-benchmark that §
simultaneously created 300 new files in the same, group- <
writable directory on two clients. Each concurrent create

required the client to re-map the group i-number in the
group i-table and apply changes to the user’s copy of the
directory.

The clients took an average of 4.60 s and 4.26 s on Figure 12: Concurrenintar of emacs_20.7.tar
SUNDR/NVRAM and NFS3 respectively. For compari-
son, we also ran the benchmark concurrently in two sep- o
arate directories, which required an average of 2.94'€5S)- Concurrents upcalls are prevalentin this phase of
for SUNDR/NVRAM and 4.05 s for NFS3. The resultdhe experiment due to thestall command’s manipulation
suggests that while contention incurs a noticeable cd¥tfile attributes.

SUNDR’s performance even in this case is not too far outFi9ure 12 details the performance of inetar phase of
of line with NFS3. the Emacs build as client concurrency increases. We noted

similar trends for the other phases of the build process.

These experiments suggest that the scalability SUNDR

exhibited in the LFS small file benchmarks extends to real

Figure 11 shows SUNDR’s performance in untaring, cofile system workloads.

figuring, compiling, installing and cleaning an emacs 20.7

distribution. During the experiment, the SUNDR client 3 4 cvs on SUNDR

sent a total of 42,550 blocks to the block server, which

totaled 139.24 MB in size. Duplicate blocks, whiostor We tested CVS over SUNDR to evaluate SUNDR's per-

discards, account for 29.5% of all data sent. The cliglormance as a source code repository. Our experiment

successfullypecrered 10,747 blocks, for a total spacéollows a typical progression. First, clieat imports an

savings of 11.3%. In the end, 25,740 blocks which totaledbitrary source tree—in this tegtoff-1.17.2, which

82.21 MB went out to permanent storage. has 717 files totaling 6.79 MB. Second, clientsand B
SUNDR is faster than NFS2 and competitive witbheck out a copy to their local disks. Third, commits

NFS3 in most stages of the Emacs build process. We geoff-1.18, which affects 549 files (6.06 MB). Lastly,

lieve that SUNDR’s sluggish performance in timstall B updates its local copy. Figure 13 shows the results.

phase is an artifact of our implementation, which serial- SUNDR fares badly on the commit phase because CVS

izes concurrentfs upcalls for simplicity (and not correct-repeatedly opens, memory maps, unmaps, and closes each

Concurrent Clients

7.3.3 Real workloads
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Phase | SUNDR | SUNDR | NFS3 | SSH file block’s integrity without touching the entire file sys-

NVRAM tem. Duchamp [8], BFS [6], SFSRO [9] and TDB [14]
Import 13.0 100 49} 7.0 have all made use of hash trees for comparing data or
Checko_ut 135 1151 116/ 18.2 checking the integrity of part of a larger collection of data
Commit 38.9 32.8 15.7 | 115

SUNDR uses version vectors to detect consistency vio-
lations. Version vectors were used by Ficus [22] to detect
Figure 13: Run times for CVS experiments (in seconds)pdate conflicts between file system replicas, and have

also been used to secure partial orderings [26, 30]. Our
repository file several times in rapid succession. Estraw-man file system somewhat resembles timeline en-
ery open requires an iteration of the consistency protanglement [15], which reasons about the temporal order-
col in SUNDR, while FreeBSD’s NFS3 apparently elideing of system states using hash chains.
or asynchronously performscCESSRPCs after the first
of several closely-spaceagpencalls. CVS could feasibly )
cache memory-mapped files at this point in the expe® Conclusions
ment, since a single CVS client holds a lock on the di-
rectory. This small change would significantly improv8UNDR is a general-purpose, multi-user network file sys-
SUNDR'’s performance in the benchmark. tem that never presents applications with incorrect file
system state, even when the server has been compromised.
SUNDR'’s protocol provably guarantees fork consistency,
8 Related work which essentially ensures that the server either behaves
correctly or that its failure will be detected after commu-
A number of non-networked file systems have used cryfication among users. In any event, the consequences of
tographic storage to keep data secret [5, 34] and chegkundetected server compromise are limited to conceal-
integrity [31]. Several network file systems providéhg users’ operations from each other after some forking
varying degrees integrity checks but reduce integrity @int; the server cannot tamper with, inject, re-order, or
read sharing [25] or are vulnerable to consistency &uppress file writes in any other way.
tacks [10, 12, 19]. SUNDR is the first system to pro- Measurements of our implementation show perfor-
vide well-defined consistency semantics for an untrustgfhnce that is usually close to and sometimes better than
server. An unimplemented but previously published vefe popular NFS file system. Yet by reducing the amount
sion of the SUNDR protocol [16] had no groups and thyg trust placed in the server, SUNDR both increases peo-
did not address write-after-write conflicts. ple’s options for managing data and significantly im-

The Byzantine fault-tolerant file system, BFS [6], usgstoves the security of their files.
replication to ensure the integrity of a network file sys-
tem. As long as more thaty3 of a server’s replicas are
uncompromised, any data read from the file system wcknowledgments
have been written by a legitimate user. SUNDR, in con-
trast, does not require any replication or place any tri&tanks to Michael Freedman, Kevin Fu, Daniel Giffin,
in machines other than a user’s client. However, SUNDRans Kaashoek, Jinyang Li, Robert Morris, the anony-
provides weaker freshness guarantees than BFS, becauses reviewers, and our shepherd Jason Flinn.
of the possibility that a malicious SUNDR server can fork This material is based upon work supported by the
the file system state if users have no other evidenceNstional Science Foundation (NSF) under grant CCR-
each other’s on-line activity. 0093361. Maxwell Krohn is partially supported by an

Several projects have investigated storing file systeiSF Graduate Fellowship, David Ma&zes by an Alfred
on peer-to-peer storage systems comprised of potenti®@l\Sloan research fellowship, and Dennis Shasha by NSF
untrusted nodes. Farsite [3] spreads such a file systgrants 11S-9988636, MCB-0209754, and MCB-0115586.
across people’s unreliable desktop machines. CFS [7] is
a secure read-only file P2P system. Ivy [20], a read-wri
version of CFS, can be convinced to re-order operatiotnsseferenceS
clients have already seen. Pond [27] relies on a trustef] apache.org compromise report. http: //wiw . apache . org/
“inner core” of machines for security, distributing trust i info/20010519-hack.html, May 2001.

Update 19.1 159 | 133 115

a BFS-like way. ] ) _[2] Debian investigation report after server compromisastp://
SUNDR uses hash trees, introduced in [18], to verify @ www.debian.org/News/2003/20031202, December 2003.
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