
Memory Coherence in Shared Virtual Memory Systems 1

Kai Li and Paul Hudak

D e p a r t m e n t o f C o m p u t e r S c i e n c e

Ya le U n i v e r s i t y
N e w H a v e n , C T 06520

A b s t r a c t

This paper studies the memory coherence problem in de-
signing and implementing a shared virtual memory on loosely-
coupled multiprocessors. Two classes of algorithms for solv-
ing the problem are presented. A prototype shared virtual
memory on an Apollo ring has been implemented based
on these algorithms. Both theoretical and practical results
show that the memory coherence problem can indeed be
solved efficiently on a loosely-coupled multiprocessor.

1 I n t r o d u c t i o n

The benefits of a virtual memory go without saying, and
almost every high-performance sequential computer in ex-
istence today incorporates one. Virtual memories are so
useful that it is hard to believe that parallel architectures
would not also benefit from them. Indeed, one can easily
imagine how virtual memory would be incorporated into a
shared-memory parallel machine, since the memory hierar-
chy need not be much different from that of a sequential
machine. On the other hand, on a "loosely-coupled multi-
processor" in which the physical memory is distributed, the
implementation is not as obvious, and to our knowledge no
such implementation exists.

The shared virtual memory described in this paper pro-
vides a virtual address space which is shared among all
processors in a loosely-coupled multiprocessor system, as
shown graphically in Figure 1. The shared memory itself
exists only virtually. Application programs can use it in
the same way as a tradit ional virtual memory, except, of
course, that processes can run on different processors in
parallel.

The shared virtual memory that we will describe not
only "pages" da ta between physical memories and disks,
as in a conventional virtual memory system, but it also
"pages" da ta between the physical memories of the individ-
ual processors. Thus data can naturally migrate between
processors on demand. Furthermore, just as a conventional
v irtual memory also pages processes, so does the shared vir-
tual memory. Thus our approach provides a very natural
and efficient form of process migration between processors
in a distributed system, normally a very difficult feature
to implement well (and in effect subsuming the notion of
remote procedure call).

l CPU 1

Memory 1

I "
\ x

\
N

" I
\

\

\
\

CPU 2

Memory 2

I , \ / r

\ /

Shared t Virtual
Memory /

CPU N /

Memory N

/ /

/
/

/
/

Figure 1: Shared virtual memory mapping.

The main difficulty in building a shared virtual memory
is solving the memory coherence problem. This problem is
similar to that which arises with conventional caches (see
[14] for a survey), but in part icular with multicache schemes
for shared memory multiprocessors [16,1,7,18,6,19,13]. In
this paper we concentrate on the memory coherence prob-
lem for a shared virtual memory. A number of algorithms
axe presented, analyzed, and compared. Several of the al-
gorithms have been implemented on a local area network
of Apollo workstations. We present experimental results on
non-trivial parallel programs that demonstrate the viabil-
ity of shared virtual memory even on very loosely-coupled
systems such as the Apollo network. Our success suggests a

1This research was supported in part by NSF Grants MCS-8302018
and DCR-8106181.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© 1986 A C M 0 - 8 9 7 9 1 - 1 9 8 - 9 / 8 6 / 0 8 0 0 - 0 2 2 9 75¢ 2 2 9

radically different viewpoint of such architectures, in which
one can exploit the total processing power and memory ca-
pabilities of such systems in a far more unified way than
the traditional "message-passing" approach.

2 D e s i g n C h o i c e s for M e m o r y Co-
h e r e n c e

Our design goals require that the shared virtual memory
be coherent. A memory is coherent if the value returned
by a read operation is always the same as the value written
by the most recent write operation to the same address.
Coherence can be maintained if a shared virtual memory
satisfies the following single constraint:

• A processor is allowed to update a piece of data only
while no other processor is updating or reading it.

This allows many processors to read a piece of data as long
as no other processor is updating it, and is a form of the
well-known readers/writers problem.

There are two design choices that greatly influence the
implementation of a shared virtual memory: the granular-
ity of the memory units, and the strategy for maintaining
coherence.

2.1 Granularity

The size of the "memory units" that are to be coherently
maintained is an important consideration in a shared vir-
tual memory. We discuss in this section several criteria for
choosing this granularity.

In a typical loosely-coupled multiprocessor system, send-
ing large packets of data (say one thousand bytes) is not
much more expensive than sending small ones (say less than
ten bytes) [15]. This is usually due to the typical software
protocols and overhead of the virtual memory layer of the
operating system. This fact makes relatively large memory
units seem feasible.

On the other hand, the larger the memory unit, the
greater the chance for contention. Memory contention oc-
curs when two processors attempt to write to the same
location (as in a shared memory system) as well as when
two processors attempt to write to different locations in
the same memory unit. Although clever memory alloca-
tion strategies might minimize contention by arranging con-
current memory accesses to locations in different memory
units, such a strategy would lead to the inefficient use of
memory space and introduce an inconvenience to the pro-
grammer. Thus the possibility of contention pushes one
toward relatively small memory units.

A suitable compromise in granularity is the typical page
used in a conventional virtual memory implementation. The
page sizes of today's computers vary, typically from 256
bytes to 2k bytes. Choosing this size of a memory unit has
several advantages. First, experience has shown that such
sizes are suitable with respect to contention, and by our
previous argument they should not impose undue commu-

nications overhead as long as a page can fit into a packet.
In addition, such a choice allows us to use existing page-
fault schemes (i.e., hardware mechanisms) that allow single
instructions to trigger page-faults and trap to appropriate
fault handlers. This can be done by setting the access rights
to the pages in such a way that memory accesses that could
violate memory coherence cause a page fault, and thus the
memory coherence problem can be solved in a modular way
in the page fault handlers.

Part of the justification for using page size granularity,
of course, is that memory references in sequential programs
generally have a high degree of locality [3,4]. Although
memory references in parallel programs may behave differ-
ently from those in sequential ones, a single process remains
a sequential program, and should exhibit a high degree of
locality. Contention among parallel processes for the same
piece of data depends on the algorithm, of course, but a
common goal in designing parallel algorithms is to mini-
mize such contention for optimal performance.

2.2 Memory Coherence Strategies

It is helpful first to consider the spectrum of strategies
one may choose from to solve the memory coherence prob-
lem. These strategies may be classified by the way in which
one deals with page synchronization and page ownership, as
shown in Table 1.

Page synchronization

There are two basic approaches t o page synchronization:
invalidation and writeback. In the invalidation approach,
if a processor has a write fault, the fault handler will copy
the true page containing the memory location, invalidate all
other copies of the page, change the access of the page to
write, and return to the faulting instruction. After return-
ing, the processor "owns" that page and can proceed with
the write operation and other read or write operations until
the page ownership is relinquished to some other processor.

In the writeback approach, if a processor has a write
fault, the fault handler will write to all copies of the page,
and then return to the faulting instruction. In a sense this
approach seems ideal in that it supports the broadest no-
tion of sharing (indeed it simulates a centralized shared
memory!), but note that every write to a shared page will
generate a fault on the writing processor and update all
copies. Clearly doing these updates will be very expensive,
and algorithms using writeback do not seem appropriate for
loosely coupled multiproeessors. Thus we do not consider
them further in this paper, as indicated in Table 1.

Page ownership

The ownership of a page can be handled .either statically or
dynamically. In the static approach, a page is always owned
by the same processor. This means that other processors
are never given full write access to the page; rather they
must negotiate with the owning processor, and must gener-
ate a write fault every time they need to update the page.

230

Page
synchronization

method

Page ownership strategy

Dynamic

Static Distributed manager Centralized
manager

Fixed Dynamic

not okay good good Invalidation appropriate

not not not not
Writeback appropriate appropriate appropriate appropriate

Table 1: Spectrum of solutions to the memory coherence problem.

As with the writeback approach, this also is an expensive
solution for existing loosely-coupled multiprocessors, and
furthermore is rather constraining to desired modes of par-
allel computation. Thus in this paper we only consider
dynamic ownership strategies, as indicated in Table 1.

The strategies for maintaining dynamic page ownership
can be subdivided into two classes: centralized and dis-
tributed. We refer to the process that controls page own-
ership as the manager, and thus we can have centralized
or distributed managers. Distributed managers can be fur-
ther classified as either fixed or dynamic, referring to the
distribution of ownership data (to be described later).

The resulting combinations of strategies are shown in
Table 1, where we have marked as inappropriate all combi-
nations involving writeback synchronization or static page
ownership. In this paper we only consider the remaining
choices.

As mentioned earlier, the page size granularity allows
us to use hardware page protection mechanisms to cause a
fault when an invalid memory reference occurs, and thus
resolve memory coherence problems in page-fault handlers.
Therefore, our algorithms for solving the memory coher-
ence problem are manifested as fault handlers, their servers
(i.e., the processes that handle remote requests from fault-
ing processors), and the page tables on which they operate.
In the next few sections we investigate several such algo-
rithms.

3 C e n t r a l i z e d M a n a g e r A l g o r i t h m s

3.1 A Monitor-like Centralized Manager
Algorithm

Our centralized manager is similar to a monitor [8], consist-
ing of a data structure and some procedures that provide
mutually exclusive access to the data structure. The cen-
tralized manager resides on a single processor, and main-
tains a table called info which has one entry for each page,
each entry having three fields:

1. The owner field contains the single processor that
owns that page; namely, the most recent processor
to have write access to it.

2. The copy_set field lists all processors that have copies
of the page. This allows an invalidation operation to
be performed without using broadcast.

3. The lock field is used for synchronizing requests to the
page, as will be described shortly.

Each processor also has a page table called ptable which has
two fields: access and lock. This table keeps information
about the accessibility of pages on the local processor.

In this algorithm, a page does not have a fixed owner,
but there is only one manager that knows who the owner is.
The owner of a page sends a copy to processors requesting
a read copy. As long as a read copy exists, the page is not
writable without an invalidation operation, which causes
invalidation messages to be sent to all processors contain-
ing read copies. Since this is a monitor-style algorithm, it
is easy to see that the successful writer to a page always
has the truth of the page. When a processor finishes a
read or write request, a confirmation message is sent to the
manager to indicate completion of the request.

Both info table and ptable have page-based locks. They
are used to synchronize the local page faults (i.e., fault
handler operations) and remote fault requests (i.e., server
operations). When there is more than one process on a
processor waiting for the same page, the locking mechanism
prevents the processor from sending more than one request.
Also, if a remote request for a page arrives and the processor
is accessing the page table entry, the locking mechanism will
queue the request until the entry is released.

The algorithm is characterized by fault handlers and
their servers:

R e a d faul t handler:

lock(ptable[p].lock):
IF I am manager THEN BEGIN

lock(info[p].lock);
info[p].copy_set := info[p].copy_set U {manager_node};
receive page p from info[p].owner:
unlock(info I p].lock):
END:

ELSE BEGIN
ask manager for read access to p;
send confirmation to manager;
END:

23'1

ptable[p].access := read:
unlock(ptable[p].lock):

R e a d s e r v e r :

lock(ptable[p].lock);
IF I am owner THEN BEGIN

ptable[p].access := read;
send copy of p:
END:

unlock(ptable[p].lock):

IF I am manager THEN BEGIN
lock(info[p].lock);

info[p].copy_set := info[p].copy_set U {request_node};
ask info[p].owner to send copy of p to request_node:
receive confirmation from request_node;
unlock(info[p].lock):
END;

W r i t e f a u l t h a n d l e r :
lock{ ptable[p].lock];
IF I am manager THEN BEGIN

lock(info[p].lock };
invalidate(p, info[p].copy_set);
info[p].copy_set := { } ;
unlock{ info] p].lock);
END:

ELSE BEGIN
ask manager for write access to p;
send confirmation to manager;
END:

ptable[p].access := write;
unlock(ptable[p].lock);

Wri te s e r v e r :

lock(ptable[p].lock):
IF I am owner THEN BEGIN

send copy of p;
ptable[p].access := nil;
END:

unlock(ptable[p].lock):

IF I am manager THEN BEGIN
lock(info[p].lock):
invalidate(p, info[p].copy.set);
info[p].copy_set := { } :
ask info I p].owner to send p to request_node:
receive confirmation from request_node:
unlock(info[p].lock);
END;

The confirmation message indicates the complet ion of
a request to the manager , so tha t the manager can give the
page to someone else. Together wi th the locking mecha-
nism in the da ta s t ructure , the manager synchronizes the

mul t ip le requests f rom different processors.

Since the central ized manager plays the role of helping
other processors locate where a page is, we can consider the
number of messages for locating a page as one measure of
its complexity:

T h e o r e m 3.1 The worst case number of messages to lo-
cate a page in the centralized manager algorithm is two.

Although this a lgor i thm uses only two messages in locat-
ing a page, it requires a confirmation message whenever a

fault appears on a non-manager processor. El iminat ing the
confirmation operat ion is the mot ivat ion for the following
improvement to this algorithm.

3.2 An Improved Central ized Manager Al-
gor i thm

The pr imary difference between the improved central ized
manager a lgor i thm and the previous one is tha t the syn-
chronizat ion of page ownership has been moved to the indi-
v idual owners, thus el iminat ing the confirmation opera t ion
to the manager . The locking mechanism on each processor
now deals not only with mult iple local requests, bu t also
wi th remote requests. The manager still answers the ques-
t ion of where a page owner is, bu t it no longer synchronizes
requests.

To accommodate these changes, the da ta s t ruc ture of
the manager must change. Specifically, the manager no

longer mainta ins the copy_set information, and a page-based
lock is no longer needed. The information about the owner-
ship of each page is still kept in a table called owner, but an
entry in the ptable on each processor now has three fields:
access, lock, and copy_set. The copy_set field in an entry is
valid if and only if the processor tha t holds the page table
is the owner of the page.

The fault handlers and servers for this a lgor i thm are as
follows:

R e a d f a u l t h a n d l e r :
lock(ptable[p].lock);
IF I am manager THEN

receive page p from owner~ p];
ELSE

ask manager for read access to p;
ptable[p].access := read;
unlock{ ptable[p].lock };

R e a d server :
lock(ptable] p l.lock):
IF I am owner THEN BEGIN

ptable[p].copy_set := ptable[p].copy set U {request_node} ;
ptable[p].access := read:
send p:
END

ELSE IF I am manager THEN BEGIN
lock(managerJock);
forward request to owner] p];
unlock{ managerJock);
END:

unlock(ptable[p].lock):

Wri te fau l t hand le r :
lock(ptable[p].lock);
IF I am manager THEN

receive page p from owner[p]:
ELSE

ask manager for write access to p;
invalidate(p. ptable[p].cow_set);
ptable[p].access := write;
ptable[p].copy_set := { } ;
unlock(ptable ! p].lock };

232

Write server:
lock{ ptable[p].lock):
IF I am owner THEN BEGIN

send p and ptable[p].copy_set;
ptable[p].access := nil:
END

ELSE IF I am manager THEN BEGIN
lock(managerJock };
forward request to owner] p]:
owner] p] := request_node;
unlock(manager_lock);
END:

unlock(ptable[p]. lock);

Although the synchronization responsibility of the orig-
inal manager has moved to individual processors, the func-
tionality of the synchronization remains the same. For ex-
ample, consider a scenario in which two processors P1 and

P2 are trying to write into the same page owned by a third
processor P3. If the request from P1 arrives at the manager
first, the request will be forwarded to P3. Before the paging
is complete, suppose the manager receives a request from
P2, then forwards it to P1. Since P1 has not received own-
ership of the page yet, the request from P2 will be queued
until P1 finishes paging. Therefore, both P1 and P2 will
receive access to the page in turn.

The overall performance of the shared virtual memory
has been improved by decentralizing the synchronization,
but for large N there still might be a bottleneck at the
manager processor, since it must respond to every page
fault.

4 Distributed Manager Algorithms

In the centralized manager algorithms described in the pre-
vious section, there is only one manager for the whole shared
virtual memory. Clearly such a centralized manager can be
a potential bottleneck. In this section we consider distribut-
ing the managerial task among the individual processors.

4 . 1 A F i x e d D i s t r i b u t e d M a n a g e r A l g o -

r i t h m

In a fixed distributed manager scheme, every processor is
given a predetermined subset of the pages to manage. The

primary difficulty in such a scheme is choosing an appropri-
ate mapping from pages to processors. The most straight-
forward approach is to distribute pages evenly in a fixed
manner to all processors. For example, suppose there are M
pages in the shared virtual memory, and that I = {1 , . . . , M}
An appropriate mapping function H could then be defined
by:

H(p) = p rood N (1)

where p E I and N is the number of processors. A more
general definition is:

H(p) = (P-) m o d N (2)

where s is the number of pages per segment. Thus defined,
this function distributes manager work by segments. An-
other approach would be to use a suitable hashing function. 2

With this approach there is one manager per proces-
sor, each responsible for the pages specified by the static
mapping function H. When a fault occurs on page p, the
faulting processor asks processor H(p) where the true page
owner is, and then proceeds as in the centralized manager
algorithm.

Our experiments have shown that the fixed distributed
manager algorithm is substantially superior to the central-
ized manager algorithms when a parallel program exhibits

a high rate of page faults. However, it is difficult to find
a good static distribution function that fits all applications
well. Indeed, for any given function it is always possible
to find a pathological case that produces performance no
better than the centralized scheme. So we would like to
investigate the possibility of distributing the work of man-
agers dynamically.

4 . 2 A B r o a d c a s t D i s t r i b u t e d M a n a g e r A l -

g o r i t h m

An obvious way of eliminating the centralized manager is
by using a broadcast mechanism. With this strategy, each
processor manages precisely those pages that it owns, and
faulting processors send broadcasts into the network to find
the true owner of a page. Thus the owner table is eliminated
completely, and the information of ownership is stored in
each processor's ptable, which in addition to access, copy_set
and lock fields, also has an owner field.

More precisely, when a read fault occurs, the faulting
processor P sends a broadcast read request, and the true
owner of the page responds by adding P to the page's
copy_set field and sending a copy of the page to P. Sim-
ilarly, when a write fault occurs, the faulting processor
sends a broadcast write request, and the true owner of the
page gives up ownership and sends back the page and its
copy_set. When the requesting processor receives the page
and the copy_set, it will invalidate all copies.

Although the work on all processors is fairly balanced
in this algorithm, when a processor broadcasts a message
all other processors must respond to the request (if only by
ignoring it). This makes the communications subsystem a
potential bottleneck.

4 . 3 A D y n a m i c D i s t r i b u t e d M a n a g e r A l -

g o r i t h m

The heart of a dynamic distributed manager algorithm is
to a t tempt to keep track of the ownership of all pages in
each processor's local ptable. To do this, the owner field is
replaced wi th another field, prob_owner, whose value can

2It is also conceivable to provide a default mapping function that
clients may override by supplying their own mapping. In this way, the
map could be tailored to the data structure in the application and the
expected behavior of concurrent memory references.

233

be ei ther nil or the "probable" owner of the page. The
information tha t it contains is not necessarily correct at all
t imes, bu t if incorrect it will at least provide the beginning
of a sequence of processors through which the t rue owner
can be found. Initially, the prob_owner field of every entry
on all processors is set to some default processor tha t can
be considered as the initial owner of all pages. It is the job
of the page fault handlers and their servers to main ta in this
field as the p rogram runs.

In this a lgor i thm a page does not have a fixed owner
or manager . When a processor has a page fault, it sends a
request to the processor indicated by the prob_owner field
for tha t page. If tha t processor is the t rue owner, it will
proceed as in the centralized manager algori thm. If it is
not, it will forward the request to the processor indicated

by its prob_owner field. As with the centralized algori thm, a
read fault results in making a copy of the page, and a wri te
fault results in making a copy, invalidating other copies,
and changing the ownership of the page. The prob_owner
field is upda ted whenever:

• a processor receives an invalidation request,

• a processor relinquishes ownership of the page, or

• a processor forwards a page fault request.

In the first two cases, the prob_owner field is changed to
the new owner of the page. In the last case, the prob_owner
is changed to the original requesting processor, which will
become the t rue owner in the near future.

The a lgor i thm is as follows:

R e a d f a u l t h a n d l e r :
lock(ptable] p].lock):
ask ptable[p l.prob_owner for read access to p:
ptable] p]&rob_owner := reply_node;
ptable[p l.access := read:
unlock(ptable[p l.lock);

R e a d s e r v e r :
IF I am owner THEN BEGIN

lock(ptable[p].lock);
ptable[p l.copy_set := ptable[p].copy_set U {request_node);

ptable] p l.access := read:
send p and ptable[p].copy_set;
ptable[p].copy_set := {}:
ptable[p].prob_owner := request_node;
unlock(ptable] p].lock }:
END

ELSE BEGIN
forward request to ptable[p]&rob_owner;
ptable I p].prob_owner := request_node;
END:

W r i t e f a u l t h a n d l e r :
lock(ptable] p].lock):
ask ptable] p].prob_owner for write access to page p:
invalidate(p. ptable] p t.copy_set };
ptable[P l.prob_Owner :_~ self;
ptable[p [.access :~ write:
ptable[p, ~copy_set :_-- { } ;
unlock(ptabl~e~ I~ ~.l=ck);,

W r i t e s e r v e r :
IF I am owner THEN BEGIN

lock(ptable[p].lock }:
ptable[p].access := nil:
send p and ptable[p].copy.set:
ptable[p }&rob_owner := request_node:
unlock(ptable[p].lock):
END

ELSE BEGIN
forward request to ptable[p].prob_owner:
ptable[p].prob_owner := requesting_node;
END:

Inva l ida te s e r v e r :
ptable[p].access := nil:
ptable[p].prob_owner := request_node:

The two critical questions about the prob_owners are
whether forwarding requests eventual ly arrive at the t rue
owner and how many forwarding requests are needed. In or-
der to answer these questions it is convenient to view all the
prob_owners of a page p as a directed graph Gp = (V, Ep)
where V is the set of processor numbers 1 N , IEpl = N ,
and an edge (i , j) E Ep if and only if the prob_owner for
page p on processor i is j . By induct ion on the number of
page faults, we can prove the following lemma:

L e m m a 4.1 Except for a distinguished node that points to
itself, every prob_owner graph is acyclie.

The uniqueness of page ownership is expressed by:

L e m m a 4.2 There is exactly one node i such that (i, i) E
Ep.

Proof: (Outline) Initially each page p only has one owner.
The only possible place where an edge (i, i) can be gen-
era ted is on line 4 in the wri te fault handler. In order to
execute tha t line, the request on line 3 must have been com-
pleted. When replying to a request, the wri te server 's prob-
able owner is changed to the request ing processor. This is
done using a lock. Finally, since the receiving queue auto-
matical ly serializes the arr iving messages, an owner cannot
reply to more than one request ing node. []

T h e o r e m 4.1 A page fault on any processor eventually
reaches the true owner of the page.

Proof,." (Ot~tline) By lemmas 4.1 and 4.2, the prob_owner
graph, of a page is acyclic except for the edge f rom the owner
i to itself. Fur thermore , if processor j forwards a page fault
request to processor k, then processor j has more recent
knowledge about the ownership than processor k. Thus,
for any node j E V, there is a pa th to i. []

Theorem 4.1 guarantees the correctness of a prob_owner
graph whenever no fault is in progress. Since the fault han-
dlers and their servers use locking mechanisms to guarantee
atom]city in their operat ions, it is easy to see the correct-
ness of the algori thm.

The worst case number of forwarding messages is given
by the following theorem:

234

T h e o r e m 4.2 If there are N processors in a shared virtual
memory, then it will take at most N - 1 messages to locate
a page.

Proof: By lemmas 4.1 and 4.2, the worst case occurs when
the prob_owner graph is a linear chain:

Ep = {(Vl, v2) , (v2, v3) , . . . , (VN_i , VN), (VN, VN)}

in which case a fault on processor vl will generate N - 1
forwarding messages in finding the t rue owner VN. []

Note tha t once this worse-case s i tuat ion occurs, all pro-
cessors know the t rue owner. Also note tha t if there is
another fault on vl at the same time, then t h e forwarding
message from Vl will be blocked due to the locking of the
fault handler on vl, soon after which vi receives ownership.
In this case it take only i - 1 messages to locate the page.

At the other extreme, we can state the following best-
case performance (which is be t ter than any of the previous
alorithms):

T h e o r e m 4.3 There exists a prob_owner graph and page
fault sequence such that the total number of messages for
locating N different owners of the same page is N.

Proof: Such a s i tuat ion exists when the a prob_owner
graph is the same chain tha t caused the worst-case per-
formance in Theorem 4.2. []

It is interesting tha t the worst-case single-fault s i tuat ion
is coincident wi th the best-case N-fault .s i tuat ion, since in
parallel systems the performance when contention is ,high is:
very important . The immedia te question tha t now arises is
what is the worst-case performance for K faults' to the same
page. To answer this, note tha t the general problem is eas-
ily reduced to the set union-find problem. An upper bound
on N unions and M finds for this problem has been shown
to be O(N + M l o g N) for M < N and O(MIOgl+M/N N)
for M > N. [11,17,5]. Since both read page faults and
write page faults compress their traversing paths, it is easy
to see tha t the abstract ion of the a lgor i thm can be reduced
to the set union problem with find operat ions alone. The
following theorem restates the upper bound with respect to
our problem:

T h e o r e m 4.4 For an N-processor shared virtual memory,
using the dynamic distributed manager algorithm, the worst-
ease number of messages for locating K owners of a single

page is O(N + K l o g N) for K < N and O(KlOgl+K/NN)
f o r K > N.

C o r o l l a r y 4.1 Using the dynamic distributed manager al-
gorithm, if p processors are using a page, an upper bound on
the total number of messages for locating K owners of the
page is O(p + K l o g p) for K < p and O(Klogl+g/pp) for
K _> p, if all contending processors are in the p processor
set.

This is an impor tant corollary, since it says tha t the algo-
r i t hm does not degrade as more processors are added to the
system, but ra ther degrades (logarithmically) only as more
processors contend for the same page.

4.4 A D y n a m i c Dis tr ibuted Manager With
F e w e r Broadcasts

In the previous algori thm, at init ialization or after a broad-
cast, all processors know the t rue owner of a page. The
following theorem gives an upper bound for this case:

T h e o r e m 4.5 After a broadcast request or a broadcast in-
validation, an upper bound on the total number of messages
for locating the owner of a page for K page faults on differ-
ent processors is 2K - 1.

Proof: This can be shown by the t ransi t ion of a prob_owner
graph after a broadcast . The first fault uses 1 message to
locate a page and after tha t every fault uses 2 messages.
[]

This theorem suggests the possibility of further improv-
ing the a lgor i thm by enforcing a broadcast message (an-
nouncing the t rue owner of a page) after every K page
faults to a page. In this case, a counter is needed in each
entry of the page table, and is maintained by its owner.
(Interestingly, when K = 0 this a lgor i thm is functionally
equivalent to the broadcast dis tr ibuted manager algori thm,
and when K = N - 1 it is equivalent to the unmodified dy-
namic dis tr ibuted manager algorithm.) The a lgor i thm is as
follows:

R e a d fault handler:
lock(ptable[p].lock):
ask ptable[p].prob_owner for read access to p:
ptable[p]&rob_owner := reply_node;
ptable[p].access := read;
unlock(ptable[p].lock);

R e a d server:
IF I am owner THEN BEGIN

lock(ptable[p].lock);
ptable[p].copy_set := ptable[p].copy_set U {request_node}:

ptable[p].access := read;
ptable[p].counter := ptable[p].counter + 1;
send p and ptable[p].copy_set;
ptable[p].copy_set := (};
ptable[p].prob_owner := request_node;
unlock(ptable[p]Jock);
END

ELSE BEGIN
forward request to ptable[p].prob_owner;
otable[p].prob_owner := request_node:
END;

W r i t e f au l t hand le r :
lock(ptable[p].lock);
ask ptable[p].prob_owner for write access to p;
invalidate(p):
ptable[P].prob_Owner := self;
ptable[p].access :---- write;
ptable[p].copy_set := {};
unlock(ptable[p].lock);

Write server:
IF I am owner THEN BEGIN

lock(ptable[p].lock);
ptable[p].access := nil:

235

send p, ptable[p].copy_set. and ptable] p].counter;
ptable[p]&rob_owner := request_node;
unlock(ptable[p].lock }:
END

ELSE BEGIN
forward request to ptable[p].prob_owner;
ptable[p].prob_owner :_~ request_node;
END:

Invalidate(p):
IF (ptable[p].counter > L)

OR (size(ptable[p].copy_set > L) THEN
broadcast invalidation;

ELSE
invalidate according to ptable[p].copy_set;

Invalidate s e r v e r :

ptable[p].access := nil:
ptable[p]&rob_owner := request_node;

Note the counter L used in the invalidation procedure;
whether a broadcast invalidation message is sent depends
on whether the number of copies of a page reaches L. The
value L can be adjusted experimentally to improve system
performance.

On the average, without considering the cost of the
broadcast message, this algorithm takes a little less than
2 messages to locate a page after a broadcast request or
broadcast invalidation.

4.5 A Refinement : Dis t r ibut ion of copy_sets

Note that in the previous algorithm, the copy_set of a page
is used only for the invalidation operation induced by a
write fault. The location of the set is unimportant as long
as the algorithm can invalidate the read copies of a page
correctly. Further note that the copy_set field of processor
i contains j if processor j copied the page from processor
i, and thus the copy_set fields for a page are subsets of the
original copy_set.

These facts suggest a refinement to the previous algo-
rithms in which the copy_set data associated with a page
is stored as a tree of processors rooted at the owner. In
fact, the tree is bidirectional, with the edges directed from
the root formed by the copy_set fields, and the edges di-
rected from the leaves formed by prob_owner fields. The

tree is used during faults as follows: A read fault collapses
the path up the tree through the prob_owner fields to the
owner. A write fault invalidates all copies in the tree by
inducing a wave of invalidation operations starting at the
owner, propagating to the processors in its copy_set, which
in turn send invalidation requests to the processors in their
copy_seas, and so on.

The following algorithm is a modified version of the orig-
inal dynamic distributed manager algorithm:

R e a d f a u l t h a n d l e r :
lock(ptable[p].lock);
ask ptable[p J.prob_owner for read access to p:
ptable[p].prob_owner := reply.node:

ptable[p].access := read;
unlock(ptable[p].lock):

Read server:
IF ptable[p].access ~ nil THEN BEGIN

lock(ptable[p].lock);
ptable] p].copy_set := ptable[p].copy_set U {request_node};

ptable[p].access := read;
send p:
unlock(ptable[p].lock);
END

ELSE BEGIN
forward request to ptable[p l.prob.owner:
ptable[p].prob_owner := request_node;
END:

Write fault handler:
lock(ptable] p].lock);
ask ptable[p]&rob_owner for write access to p;
invalidate(p. ptable[p].copy_set);
ptable I P].prob_Owner := self:
ptable I p].access := write;
ptable[p].copy_set := {} ;
unlock(ptable[p].lock };

Write s e r v e r :

IF I am owner THEN BEGIN
lock(ptable[p].lock);
ptable[p].access := nil;
send p and ptable I p].copy_set:
ptabte[p]&rob_owner := request_node;
unlock(ptable I p].lock):
END

ELSE BEGIN
forward request to ptable I p].prob_owner;
ptableI p l.prob-owner := request_node;
END;

Invalidate s e r v e r :

IF ptable[p].access ~ nil THEN BEGIN
invalidate(p. ptable[p].copy.set);
ptable[p I.access := nil;
ptable[p].prob_owner := requesLnode:
ptable] p].copy_set := {};
END:

By distributing copy_sets in this manner, we improve
system performance in two important ways. First of Ml,
the propagation of invalidation messages is usually faster

because of its "divide and ~,nquer" effect. If the copy_set
tree is perfectly balanced, the invalidation process will take
time proportional to log i for i read copies. This faster
invalidation response shortens the time for a write fault.

Secondly, and perhaps more importantly, a read fault
now only needs to find a single processor (not necessarily
the owner) that holds a copy of the page. To make this
work, recall that a lock at the owner of each page synchro-
nizes concurrent write faults to the page. A similar lock is
now needed on processors having read copies of the page,
to synchronize sending copies of the page in the presence
of other read or write faults. The details may be found in
the algorithm.

236

Overall this refinement can be applied to any of the fore-
going distributed manager algorithms, but it is particularly
useful on a multiprocessor lacking a broadcast facility.

5 Experimental Results

We have implemented a prototype shared virtual memory
by modifying the AEGIS operating system on a ring net-
work of Apollo workstations [12,10]. The system can be
used to run parallel programs on any number of processors.
The improved centralized manager algorithm, the dynamic
distributed manager algorithm, and the fixed distributed
manager algorithm have been implemented for experimen-
tal purposes. In this section we present the results of run-
ning three parallel programs.

The first program implements a parallel Jacobi algo-
rithm for solving three dimensional PDE's. More specifi-
cally, we solve the equation A x = b where A is a n 3 by n 3
sparse matrix (in our experiments n = 50 and n = 40). A
number of processes are created to partition the problem
by the number of rows of the matrix. Since A is sparse, it is
not represented explicitly as a matrix, but rather implicitly
as index/value pairs. The vectors x and b are stored in the
shared virtual memory, and the processes access them freely
without regard to their location. Such a program is much
simpler than what results from the usual message-passing
style, because the programmer does not have to perform
data movements explicitly at each iteration.

The second program is parallel sorting; more specifi-
cally, a block odd-even based merge-split algorithm [2]. The
data blocks are stored in a large array in the shared virtual
memory, and the recursively spawned processes access it
freely. Again because the data movement is implicit, the
program is very straightforward.

The third program is parallel matrix multiplication, C =
A B . All of the matrices are stored in the shared virtual
memory. A number of processes are created to partition
the problem by the number of columns of matrix B. Ini-
tially, matrices A and B are stored on one processor, and
are paged to other processors "by demand" as the processes
on those processors reference them.

Figures 2 and 3 show the number of forwarding requests
for locating true pages during one iteration of the PDE

program using the dynamic distributed manager and the
improved centralized manager. The dynamic distributed
manager obviously outperforms the centralized one. This
is because the prob_owner fields usually give correct hints,
and within a short period of time the number of processors
sharing a page is small; whereas in the centralized manager
case, every page fault on a non-manager processor needs a
forwarding request to locate the owner of the page.

Figure 4 shows the speedup curve for the 3-D PDE pro-
gram. Note that the program experiences better than linear
speedup! This is because the data structure for the problem
is greater than the size of physical memory on a single pro-
cessor, so when the program is run on one processor there

3OOO

1~o

4 0 0 0

forward requests

, i ~'I-~---T----T- , I , I , I
2 3 4 5 8 7

N u m b e r o f p r o c e s s o r s

Figure 2: Dynamic distributed manager algorithm

3COO

looo

~ 4
~O

forward
requests~~ .*-"

3 4 6 O 7

N u m b e r of p r o c e s s o r s

Figure 3: Centralized manager algorithm

Sj pfh~

0 , I , I , I ~ I ,
0 S 4 8 8

Number of processors
Figure 4: Speedups of a 3-D PDE where n = 50

237

is a large amount of paging between the physical memory
and disk. The shared virtual memory, on the other hand,
distributes the data structure into individual physical mem-
ories, whose cumulative size is large enough to inhibit disk
paging. It is clear from this example alone that the shared

virtual memory can indeed exploit the combined physical
memories of a multiprocessor system.

Figure 5 shows ,another speedup curve for the 3-D PDE
program, but now n = 40, in which case the data structure
of the problem is not larger than the physical memory on
a processor. The curve is very similar to that generated
by similar experiments on CM*, an architecture that could
be viewed as a hardware implementation of shared virtual
memory [9]. Indeed, it is as good as the best curve in
the published experiments on CM* for the same program,
while the efforts and costs of the two approaches are not
comparable at all.

Parallel sorting on a loosely-coupled multiprocessor is
generally very difficult, and is included here so as not to
paint too bright a picture. The speedup curve of the paral-
lel merge-split sort of 200k elements shown in Figure 6 is not
very good. In theory, even with no communication costs,
this algorithm does not yield linear speedup. To make mat-
ters worse, our curve is obtained by trying to use the best
strategy for any given number of processors. For example,
there is no merge-split sorting at all when running the pro-
gram on one processor, there are 4 blocks when running the
program on two processors, etc.

Figure 7 shows the speedup curve of the matrix multi-
plication program for C = AB where both A and B are
128 by 128 square matrices. The speedup curve is close to
linear since the program exhibits a high degree of localized
computation.

In general, we feel that our results indicate that a shared
virtual memory is indeed practical, even on a very loosely-
coupled architecture such as the Apollo ring. More details
on both the algorithmic and experimental aspects of shared
virtual memory may be found in [10].

IO,,,4

/
/ s

j / s

0 , , I , I , I , I ,
8 4 6 8

Number of p r o c e s s o r s
Figure 5: Speedups of a 3-D PDE where n = 40

~ 4

t"
I t

t"
s "

/
I •

s , I
/

/
/ J

/
/

• /
/

/

/
I

/

, I , I i I ,
4 6

Number of p r o c e s s o r s
Figure 6: Speedup of merge-split sort

i f , f , I i I
2 4 8 6

Number of n o d e s
Figure 7: Speedup of matrix multiplication

6 C o n c l u s i o n s

We have discussed two classes of algorithms for solving the
memory coherence problem--centralized manager and dis-
tributed manager- -and both of them have many variations.

The centralized algorithm is straightforward and easy to
implement, but may have a communications bottleneck at
the central manager when there are many read and write
page faults. The fixed distributed manager algorithm al-
leviates the bottleneck, and on average a processor needs
about two messages to locate an owner.

The dynamic distributed manager algorithm and its
variations seem to have the most desirable overall features.
Theorem 4.5 states that by using fewer broadcasts, we can
reduce the worst case number of messages for locating a
page to a little less than two, which is the same as the
worst cast for a centralized manager. A further refinement
can be made by distributing copy_sets. Generally speaking,

238

dynamic distributed manager algorithms will outperform
other methods when the number of processors sharing the
same page for a short period of time is small, which is the
normMly the case. The good performance of the dynamic
distributed manager algorithms in both theory and prac-
tice seems to make them feasible for implementation on
a large-scale multiprocessor. In general, our experiments
with an unoptimized prototype indicate that implementing
a shared virtual memory is indeed useful and practical.

Acknowledgement

We wish to thank John Ellis for his invaluable suggestions
and helpful discussions at the early stage of the work. Also,
thanks to people at DECSRC, in particular, Andrew Birrel,
Mark Brown, Butler Lampson, Roy Levin, Mike Schroeder,
Larry Stewart, and Chuck Thacker for the helpful questions
and suggestions in Summer 1984. Finally, we wish to thank
Professor Alan Perlis for his continual help and inspiration.

References

[ll L.M. Censier and P. Feautrier. A new solution to co-
herence problems in multicache systems. IEEE Trans-
actions on Computers, C-27(12):1112-1118, December
1978.

[2] D.K. Hsaio D. Bitton, D.J. DeWitt and J. Menon. A
taxonomy of parallel sorting. ACM Computing Sur-
veys, 16(3):287-318, September 1984.

[3] Peter J. Denning. On modeling program behavior.
In Proceedings of Spring Joint Computer Conference,
pages 937-944, AFIPS Press, 1972.

[4] Peter J. Denning. Working sets past and present.
IEEE Transactions on Software Engineering, SE-
6(1):64-84, January 1980.

[5] Robert J. Fowler. Decentralized Object Finding Us-
ing Forwarding Addresses. PhD thesis, University of
Washington, 1986.

[6] Steven J. Frank. Tightly coupled multiprocessor sys-
tem speeds memory-access times. Electronics, :164-
169, January 1984.

[7] James R. Goodman. Using cache memory to re-
duce processor-memory traffic. In Proceedings of the
lOth Annual Symposium on Computer Architecture,
pages 124-131, June 1983.

[8] C.A.R. Hoare. Monitors: an operating system
structuring concept. Communications of the ACM,
17(10):549-557, October 1974.

[9] A. K. Jones and P. Schwarz. Experience using multi-
processor systems - - a status report. ACM Computing
Surveys, 12(2), June 1980.

[10] Kai Li. Shared Virtual Memory on Loosely-coupled
Multiprocessors. PhD thesis, Yale University, 1986. In
preparation.

[11] Micheal S. Paterson. unpublished manuscript, 1973.

[12] P.J. Leach, P.H. Levine, B.P. Douros, J.A. Hamilton,
D.L. Nelson and B.L. Stumpf. The architecture of an
integrated local network. IEEE Journal on Selected
Areas in Communications, 1983.

[13] R.H. Katz, S.J. Eggers, D.A. Wood, C.L. Perkins and
R.G. Sheldon. Implementing a cache consistency pro-
tocol. In Proceedings of the 1Pth Annual Symposium
on Computer Architecture, pages 276-283, June 1985.

[141 Alan J. Smith. Cache memories. ACM Computing
Surveys, 14(3):473-530, September 1982.

[15] Alfred Z. Spector. Multiprocessing Architectures for
Local Computer Networks. Ph.D. thesis STAN-CS-81-
874, Stanford University, August 1981.

[16] C.K. Tang. Cache system design in the tightly cou-
pled multiprocessor system. In Proceedings of AFIP
National Computing Conference, pages 749-753, 1976.

[17] Robert E. Tarjaxt and Jan Van Leeuwen. Worst-case
analysis of set union algorithms. Journal of the ACM,
31(2):245-281, April 1984.

[18] Chuck Thacker and et al. Private communications,
1984.

[19] D.W.L. Yen W.C. Yen and K. Fu. Data coherence
problem in a multicache system. IEEE Transactions
on Computers, C-34(1):56-65, January 1985.

239

