
Megastore: Providing Scalable, Highly Available
Storage for Interactive Services

Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin, James Larson,
JeanMichel Léon, Yawei Li, Alexander Lloyd, Vadim Yushprakh

Google, Inc.
{jasonbaker,chrisbond,jcorbett,jfurman,akhorlin,jimlarson,jm,yaweili,alloyd,vadimy}@google.com

ABSTRACT
Megastore is a storage system developed to meet the re-
quirements of today’s interactive online services. Megas-
tore blends the scalability of a NoSQL datastore with the
convenience of a traditional RDBMS in a novel way, and
provides both strong consistency guarantees and high avail-
ability. We provide fully serializable ACID semantics within
fine-grained partitions of data. This partitioning allows us
to synchronously replicate each write across a wide area net-
work with reasonable latency and support seamless failover
between datacenters. This paper describes Megastore’s se-
mantics and replication algorithm. It also describes our ex-
perience supporting a wide range of Google production ser-
vices built with Megastore.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed databases; H.2.4
[Database Management]: Systems—concurrency, distrib-
uted databases

General Terms
Algorithms, Design, Performance, Reliability

Keywords
Large databases, Distributed transactions, Bigtable, Paxos

1. INTRODUCTION
Interactive online services are forcing the storage commu-

nity to meet new demands as desktop applications migrate
to the cloud. Services like email, collaborative documents,
and social networking have been growing exponentially and
are testing the limits of existing infrastructure. Meeting
these services’ storage demands is challenging due to a num-
ber of conflicting requirements.
First, the Internet brings a huge audience of potential

users, so the applications must be highly scalable. A service

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro
vided that you attribute the original work to the author(s) and CIDR 2011.
5th Biennial Conference on Innovative Data Systems Research (CIDR ’11)
January 912, 2011, Asilomar, California, USA.

can be built rapidly using MySQL [10] as its datastore, but
scaling the service to millions of users requires a complete
redesign of its storage infrastructure. Second, services must
compete for users. This requires rapid development of fea-
tures and fast time-to-market. Third, the service must be
responsive; hence, the storage system must have low latency.
Fourth, the service should provide the user with a consistent
view of the data—the result of an update should be visible
immediately and durably. Seeing edits to a cloud-hosted
spreadsheet vanish, however briefly, is a poor user experi-
ence. Finally, users have come to expect Internet services to
be up 24/7, so the service must be highly available. The ser-
vice must be resilient to many kinds of faults ranging from
the failure of individual disks, machines, or routers all the
way up to large-scale outages affecting entire datacenters.

These requirements are in conflict. Relational databases
provide a rich set of features for easily building applications,
but they are difficult to scale to hundreds of millions of
users. NoSQL datastores such as Google’s Bigtable [15],
Apache Hadoop’s HBase [1], or Facebook’s Cassandra [6]
are highly scalable, but their limited API and loose consis-
tency models complicate application development. Repli-
cating data across distant datacenters while providing low
latency is challenging, as is guaranteeing a consistent view
of replicated data, especially during faults.

Megastore is a storage system developed to meet the stor-
age requirements of today’s interactive online services. It
is novel in that it blends the scalability of a NoSQL data-
store with the convenience of a traditional RDBMS. It uses
synchronous replication to achieve high availability and a
consistent view of the data. In brief, it provides fully serial-
izable ACID semantics over distant replicas with low enough
latencies to support interactive applications.

We accomplish this by taking a middle ground in the
RDBMS vs. NoSQL design space: we partition the data-
store and replicate each partition separately, providing full
ACID semantics within partitions, but only limited con-
sistency guarantees across them. We provide traditional
database features, such as secondary indexes, but only those
features that can scale within user-tolerable latency limits,
and only with the semantics that our partitioning scheme
can support. We contend that the data for most Internet
services can be suitably partitioned (e.g., by user) to make
this approach viable, and that a small, but not spartan, set
of features can substantially ease the burden of developing
cloud applications.

Contrary to conventional wisdom [24, 28], we were able to
use Paxos [27] to build a highly available system that pro-

223

vides reasonable latencies for interactive applications while
synchronously replicating writes across geographically dis-
tributed datacenters. While many systems use Paxos solely
for locking, master election, or replication of metadata and
configurations, we believe that Megastore is the largest sys-
tem deployed that uses Paxos to replicate primary user data
across datacenters on every write.
Megastore has been widely deployed within Google for

several years [20]. It handles more than three billion write
and 20 billion read transactions daily and stores nearly a
petabyte of primary data across many global datacenters.
The key contributions of this paper are:

1. the design of a data model and storage system that
allows rapid development of interactive applications
where high availability and scalability are built-in from
the start;

2. an implementation of the Paxos replication and con-
sensus algorithm optimized for low-latency operation
across geographically distributed datacenters to pro-
vide high availability for the system;

3. a report on our experience with a large-scale deploy-
ment of Megastore at Google.

The paper is organized as follows. Section 2 describes how
Megastore provides availability and scalability using parti-
tioning and also justifies the sufficiency of our design for
many interactive Internet applications. Section 3 provides
an overview of Megastore’s data model and features. Sec-
tion 4 explains the replication algorithms in detail and gives
some measurements on how they perform in practice. Sec-
tion 5 summarizes our experience developing the system.
We review related work in Section 6. Section 7 concludes.

2. TOWARD AVAILABILITY AND SCALE
In contrast to our need for a storage platform that is

global, reliable, and arbitrarily large in scale, our hardware
building blocks are geographically confined, failure-prone,
and suffer limited capacity. We must bind these compo-
nents into a unified ensemble offering greater throughput
and reliability.
To do so, we have taken a two-pronged approach:

• for availability, we implemented a synchronous, fault-
tolerant log replicator optimized for long distance-links;

• for scale, we partitioned data into a vast space of small
databases, each with its own replicated log stored in a
per-replica NoSQL datastore.

2.1 Replication
Replicating data across hosts within a single datacenter

improves availability by overcoming host-specific failures,
but with diminishing returns. We still must confront the
networks that connect them to the outside world and the
infrastructure that powers, cools, and houses them. Eco-
nomically constructed sites risk some level of facility-wide
outages [25] and are vulnerable to regional disasters. For
cloud storage to meet availability demands, service providers
must replicate data over a wide geographic area.

2.1.1 Strategies
We evaluated common strategies for wide-area replication:

Asynchronous Master/Slave A master node replicates
write-ahead log entries to at least one slave. Log ap-
pends are acknowledged at the master in parallel with

transmission to slaves. The master can support fast
ACID transactions but risks downtime or data loss
during failover to a slave. A consensus protocol is re-
quired to mediate mastership.

Synchronous Master/Slave A master waits for changes
to be mirrored to slaves before acknowledging them,
allowing failover without data loss. Master and slave
failures need timely detection by an external system.

Optimistic Replication Any member of a homogeneous
replica group can accept mutations [23], which are
asynchronously propagated through the group. Avail-
ability and latency are excellent. However, the global
mutation ordering is not known at commit time, so
transactions are impossible.

We avoided strategies which could lose data on failures,
which are common in large-scale systems. We also discarded
strategies that do not permit ACID transactions. Despite
the operational advantages of eventually consistent systems,
it is currently too difficult to give up the read-modify-write
idiom in rapid application development.

We also discarded options with a heavyweight master.
Failover requires a series of high-latency stages often caus-
ing a user-visible outage, and there is still a huge amount
of complexity. Why build a fault-tolerant system to arbi-
trate mastership and failover workflows if we could avoid
distinguished masters altogether?

2.1.2 Enter Paxos
We decided to use Paxos, a proven, optimal, fault-tolerant

consensus algorithm with no requirement for a distinguished
master [14, 27]. We replicate a write-ahead log over a group
of symmetric peers. Any node can initiate reads and writes.
Each log append blocks on acknowledgments from a ma-
jority of replicas, and replicas in the minority catch up as
they are able—the algorithm’s inherent fault tolerance elim-
inates the need for a distinguished “failed” state. A novel
extension to Paxos, detailed in Section 4.4.1, allows local
reads at any up-to-date replica. Another extension permits
single-roundtrip writes.

Even with fault tolerance from Paxos, there are limita-
tions to using a single log. With replicas spread over a
wide area, communication latencies limit overall through-
put. Moreover, progress is impeded when no replica is cur-
rent or a majority fail to acknowledge writes. In a traditional
SQL database hosting thousands or millions of users, us-
ing a synchronously replicated log would risk interruptions
of widespread impact [11]. So to improve availability and
throughput we use multiple replicated logs, each governing
its own partition of the data set.

2.2 Partitioning and Locality
To scale our replication scheme and maximize performance

of the underlying datastore, we give applications fine-grained
control over their data’s partitioning and locality.

2.2.1 Entity Groups
To scale throughput and localize outages, we partition our

data into a collection of entity groups [24], each indepen-
dently and synchronously replicated over a wide area. The
underlying data is stored in a scalable NoSQL datastore in
each datacenter (see Figure 1).

Entities within an entity group are mutated with single-
phase ACID transactions (for which the commit record is

224

Figure 1: Scalable Replication

Figure 2: Operations Across Entity Groups

replicated via Paxos). Operations across entity groups could
rely on expensive two-phase commits, but typically leverage
Megastore’s efficient asynchronous messaging. A transac-
tion in a sending entity group places one or more messages
in a queue; transactions in receiving entity groups atomically
consume those messages and apply ensuing mutations.
Note that we use asynchronous messaging between logi-

cally distant entity groups, not physically distant replicas.
All network traffic between datacenters is from replicated
operations, which are synchronous and consistent.
Indexes local to an entity group obey ACID semantics;

those across entity groups have looser consistency. See Fig-
ure 2 for the various operations on and between entity groups.

2.2.2 Selecting Entity Group Boundaries
The entity group defines the a priori grouping of data

for fast operations. Boundaries that are too fine-grained
force excessive cross-group operations, but placing too much
unrelated data in a single group serializes unrelated writes,
which degrades throughput.
The following examples show ways applications can work

within these constraints:

Email Each email account forms a natural entity group.
Operations within an account are transactional and
consistent: a user who sends or labels a message is
guaranteed to observe the change despite possible fail-
over to another replica. External mail routers handle
communication between accounts.

Blogs A blogging application would be modeled with mul-
tiple classes of entity groups. Each user has a profile,
which is naturally its own entity group. However, blogs

are collaborative and have no single permanent owner.
We create a second class of entity groups to hold the
posts and metadata for each blog. A third class keys
off the unique name claimed by each blog. The appli-
cation relies on asynchronous messaging when a sin-
gle user operation affects both blogs and profiles. For
a lower-traffic operation like creating a new blog and
claiming its unique name, two-phase commit is more
convenient and performs adequately.

Maps Geographic data has no natural granularity of any
consistent or convenient size. A mapping application
can create entity groups by dividing the globe into non-
overlapping patches. For mutations that span patches,
the application uses two-phase commit to make them
atomic. Patches must be large enough that two-phase
transactions are uncommon, but small enough that
each patch requires only a small write throughput.
Unlike the previous examples, the number of entity
groups does not grow with increased usage, so enough
patches must be created initially for sufficient aggre-
gate throughput at later scale.

Nearly all applications built on Megastore have found nat-
ural ways to draw entity group boundaries.

2.2.3 Physical Layout
We use Google’s Bigtable [15] for scalable fault-tolerant

storage within a single datacenter, allowing us to support
arbitrary read and write throughput by spreading operations
across multiple rows.

We minimize latency and maximize throughput by let-
ting applications control the placement of data: through the
selection of Bigtable instances and specification of locality
within an instance.

To minimize latency, applications try to keep data near
users and replicas near each other. They assign each entity
group to the region or continent from which it is accessed
most. Within that region they assign a triplet or quintuplet
of replicas to datacenters with isolated failure domains.

For low latency, cache efficiency, and throughput, the data
for an entity group are held in contiguous ranges of Bigtable
rows. Our schema language lets applications control the
placement of hierarchical data, storing data that is accessed
together in nearby rows or denormalized into the same row.

3. A TOUR OF MEGASTORE
Megastore maps this architecture onto a feature set care-

fully chosen to encourage rapid development of scalable ap-
plications. This section motivates the tradeoffs and de-
scribes the developer-facing features that result.

3.1 API Design Philosophy
ACID transactions simplify reasoning about correctness,

but it is equally important to be able to reason about perfor-
mance. Megastore emphasizes cost-transparent APIs with
runtime costs that match application developers’ intuitions.

Normalized relational schemas rely on joins at query time
to service user operations. This is not the right model for
Megastore applications for several reasons:

• High-volume interactive workloads benefit more from
predictable performance than from an expressive query
language.

225

• Reads dominate writes in our target applications, so it
pays to move work from read time to write time.

• Storing and querying hierarchical data is straightfor-
ward in key-value stores like Bigtable.

With this in mind, we designed a data model and schema
language to offer fine-grained control over physical locality.
Hierarchical layouts and declarative denormalization help
eliminate the need for most joins. Queries specify scans or
lookups against particular tables and indexes.
Joins, when required, are implemented in application code.

We provide an implementation of the merge phase of the
merge join algorithm, in which the user provides multiple
queries that return primary keys for the same table in the
same order; we then return the intersection of keys for all
the provided queries.
We also have applications that implement outer joins with

parallel queries. This typically involves an index lookup fol-
lowed by parallel index lookups using the results of the ini-
tial lookup. We have found that when the secondary index
lookups are done in parallel and the number of results from
the first lookup is reasonably small, this provides an effective
stand-in for SQL-style joins.
While schema changes require corresponding modifications

to the query implementation code, this system guarantees
that features are built with a clear understanding of their
performance implications. For example, when users (who
may not have a background in databases) find themselves
writing something that resembles a nested-loop join algo-
rithm, they quickly realize that it’s better to add an index
and follow the index-based join approach above.

3.2 Data Model
Megastore defines a data model that lies between the ab-

stract tuples of an RDBMS and the concrete row-column
storage of NoSQL. As in an RDBMS, the data model is de-
clared in a schema and is strongly typed. Each schema has
a set of tables, each containing a set of entities, which in
turn contain a set of properties. Properties are named and
typed values. The types can be strings, various flavors of
numbers, or Google’s Protocol Buffers [9]. They can be re-
quired, optional, or repeated (allowing a list of values in a
single property). All entities in a table have the same set
of allowable properties. A sequence of properties is used
to form the primary key of the entity, and the primary keys
must be unique within the table. Figure 3 shows an example
schema for a simple photo storage application.
Megastore tables are either entity group root tables or

child tables. Each child table must declare a single distin-
guished foreign key referencing a root table, illustrated by
the ENTITY GROUP KEY annotation in Figure 3. Thus each
child entity references a particular entity in its root table
(called the root entity). An entity group consists of a root
entity along with all entities in child tables that reference it.
A Megastore instance can have several root tables, resulting
in different classes of entity groups.
In the example schema of Figure 3, each user’s photo col-

lection is a separate entity group. The root entity is the
User, and the Photos are child entities. Note the Photo.tag
field is repeated, allowing multiple tags per Photo without
the need for a sub-table.

3.2.1 PreJoining with Keys
While traditional relational modeling recommends that

CREATE SCHEMA PhotoApp;

CREATE TABLE User {
required int64 user_id;

required string name;

} PRIMARY KEY(user_id), ENTITY GROUP ROOT;

CREATE TABLE Photo {
required int64 user_id;

required int32 photo_id;

required int64 time;

required string full_url;

optional string thumbnail_url;

repeated string tag;

} PRIMARY KEY(user_id, photo_id),

IN TABLE User,

ENTITY GROUP KEY(user_id) REFERENCES User;

CREATE LOCAL INDEX PhotosByTime

ON Photo(user_id, time);

CREATE GLOBAL INDEX PhotosByTag

ON Photo(tag) STORING (thumbnail_url);

Figure 3: Sample Schema for Photo Sharing Service

all primary keys take surrogate values, Megastore keys are
chosen to cluster entities that will be read together. Each
entity is mapped into a single Bigtable row; the primary key
values are concatenated to form the Bigtable row key, and
each remaining property occupies its own Bigtable column.

Note how the Photo and User tables in Figure 3 share
a common user id key prefix. The IN TABLE User direc-
tive instructs Megastore to colocate these two tables into
the same Bigtable, and the key ordering ensures that Photo
entities are stored adjacent to the corresponding User. This
mechanism can be applied recursively to speed queries along
arbitrary join depths. Thus, users can force hierarchical lay-
out by manipulating the key order.

Schemas declare keys to be sorted ascending or descend-
ing, or to avert sorting altogether: the SCATTER attribute in-
structs Megastore to prepend a two-byte hash to each key.
Encoding monotonically increasing keys this way prevents
hotspots in large data sets that span Bigtable servers.

3.2.2 Indexes
Secondary indexes can be declared on any list of entity

properties, as well as fields within protocol buffers. We dis-
tinguish between two high-level classes of indexes: local and
global (see Figure 2). A local index is treated as separate
indexes for each entity group. It is used to find data within
an entity group. In Figure 3, PhotosByTime is an example
of a local index. The index entries are stored in the entity
group and are updated atomically and consistently with the
primary entity data.

A global index spans entity groups. It is used to find
entities without knowing in advance the entity groups that
contain them. The PhotosByTag index in Figure 3 is global
and enables discovery of photos marked with a given tag,
regardless of owner. Global index scans can read data owned
by many entity groups but are not guaranteed to reflect all
recent updates.

226

Megastore offers additional indexing features:

3.2.2.1 Storing Clause.
Accessing entity data through indexes is normally a two-

step process: first the index is read to find matching pri-
mary keys, then these keys are used to fetch entities. We
provide a way to denormalize portions of entity data directly
into index entries. By adding the STORING clause to an in-
dex, applications can store additional properties from the
primary table for faster access at read time. For example,
the PhotosByTag index stores the photo thumbnail URL for
faster retrieval without the need for an additional lookup.

3.2.2.2 Repeated Indexes.
Megastore provides the ability to index repeated proper-

ties and protocol buffer sub-fields. Repeated indexes are a
efficient alternative to child tables. PhotosByTag is a re-
peated index: each unique entry in the tag property causes
one index entry to be created on behalf of the Photo.

3.2.2.3 Inline Indexes.
Inline indexes provide a way to denormalize data from

source entities into a related target entity: index entries from
the source entities appear as a virtual repeated column in
the target entry. An inline index can be created on any table
that has a foreign key referencing another table by using the
first primary key of the target entity as the first components
of the index, and physically locating the data in the same
Bigtable as the target.
Inline indexes are useful for extracting slices of informa-

tion from child entities and storing the data in the parent for
fast access. Coupled with repeated indexes, they can also
be used to implement many-to-many relationships more ef-
ficiently than by maintaining a many-to-many link table.
The PhotosByTime index could have been implemented

as an inline index into the parent User table. This would
make the data accessible as a normal index or as a virtual
repeated property on User, with a time-ordered entry for
each contained Photo.

3.2.3 Mapping to Bigtable
The Bigtable column name is a concatenation of the Mega-

store table name and the property name, allowing entities
from different Megastore tables to be mapped into the same
Bigtable row without collision. Figure 4 shows how data
from the example photo application might look in Bigtable.
Within the Bigtable row for a root entity, we store the

transaction and replication metadata for the entity group,
including the transaction log. Storing all metadata in a
single Bigtable row allows us to update it atomically through
a single Bigtable transaction.
Each index entry is represented as a single Bigtable row;

the row key of the cell is constructed using the indexed
property values concatenated with the primary key of the
indexed entity. For example, the PhotosByTime index row
keys would be the tuple (user id , time, primary key) for each
photo. Indexing repeated fields produces one index entry
per repeated element. For example, the primary key for
a photo with three tags would appear in the PhotosByTag

index thrice.

3.3 Transactions and Concurrency Control
Each Megastore entity group functions as a mini-database

Row User. Photo. Photo. Photo.
key name time tag url
101 John
101,500 12:30:01 Dinner, Paris ...
101,502 12:15:22 Betty, Paris ...
102 Mary

Figure 4: Sample Data Layout in Bigtable

that provides serializable ACID semantics. A transaction
writes its mutations into the entity group’s write-ahead log,
then the mutations are applied to the data.

Bigtable provides the ability to store multiple values in the
same row/column pair with different timestamps. We use
this feature to implement multiversion concurrency control
(MVCC): when mutations within a transaction are applied,
the values are written at the timestamp of their transaction.
Readers use the timestamp of the last fully applied trans-
action to avoid seeing partial updates. Readers and writers
don’t block each other, and reads are isolated from writes
for the duration of a transaction.

Megastore provides current, snapshot, and inconsistent
reads. Current and snapshot reads are always done within
the scope of a single entity group. When starting a current
read, the transaction system first ensures that all previously
committed writes are applied; then the application reads at
the timestamp of the latest committed transaction. For a
snapshot read, the system picks up the timestamp of the last
known fully applied transaction and reads from there, even
if some committed transactions have not yet been applied.
Megastore also provides inconsistent reads, which ignore the
state of the log and read the latest values directly. This is
useful for operations that have more aggressive latency re-
quirements and can tolerate stale or partially applied data.

A write transaction always begins with a current read
to determine the next available log position. The commit
operation gathers mutations into a log entry, assigns it a
timestamp higher than any previous one, and appends it
to the log using Paxos. The protocol uses optimistic con-
currency: though multiple writers might be attempting to
write to the same log position, only one will win. The rest
will notice the victorious write, abort, and retry their op-
erations. Advisory locking is available to reduce the effects
of contention. Batching writes through session affinity to a
particular front-end server can avoid contention altogether.

The complete transaction lifecycle is as follows:

1. Read: Obtain the timestamp and log position of the
last committed transaction.

2. Application logic: Read from Bigtable and gather
writes into a log entry.

3. Commit: Use Paxos to achieve consensus for append-
ing that entry to the log.

4. Apply: Write mutations to the entities and indexes
in Bigtable.

5. Clean up: Delete data that is no longer required.

The write operation can return to the client at any point
after Commit, though it makes a best-effort attempt to wait
for the nearest replica to apply.

3.3.1 Queues
Queues provide transactional messaging between entity

groups. They can be used for cross-group operations, to

227

batch multiple updates into a single transaction, or to de-
fer work. A transaction on an entity group can atomically
send or receive multiple messages in addition to updating
its entities. Each message has a single sending and receiving
entity group; if they differ, delivery is asynchronous. (See
Figure 2.)
Queues offer a way to perform operations that affect many

entity groups. For example, consider a calendar application
in which each calendar has a distinct entity group, and we
want to send an invitation to a group of calendars. A sin-
gle transaction can atomically send invitation queue mes-
sages to many distinct calendars. Each calendar receiving
the message will process the invitation in its own transaction
which updates the invitee’s state and deletes the message.
There is a long history of message queues in full-featured

RDBMSs. Our support is notable for its scale: declaring a
queue automatically creates an inbox on each entity group,
giving us millions of endpoints.

3.3.2 TwoPhase Commit
Megastore supports two-phase commit for atomic updates

across entity groups. Since these transactions have much
higher latency and increase the risk of contention, we gener-
ally discourage applications from using the feature in favor
of queues. Nevertheless, they can be useful in simplifying
application code for unique secondary key enforcement.

3.4 Other Features
We have built a tight integration with Bigtable’s full-text

index in which updates and searches participate in Megas-
tore’s transactions and multiversion concurrency. A full-text
index declared in a Megastore schema can index a table’s
text or other application-generated attributes.
Synchronous replication is sufficient defense against the

most common corruptions and accidents, but backups can be
invaluable in cases of programmer or operator error. Megas-
tore’s integrated backup system supports periodic full snap-
shots as well as incremental backup of transaction logs. The
restore process can bring back an entity group’s state to
any point in time, optionally omitting selected log entries
(as after accidental deletes). The backup system complies
with legal and common sense principles for expiring deleted
data.
Applications have the option of encrypting data at rest,

including the transaction logs. Encryption uses a distinct
key per entity group. We avoid granting the same operators
access to both the encryption keys and the encrypted data.

4. REPLICATION
This section details the heart of our synchronous replica-

tion scheme: a low-latency implementation of Paxos. We
discuss operational details and present some measurements
of our production service.

4.1 Overview
Megastore’s replication system provides a single, consis-

tent view of the data stored in its underlying replicas. Reads
and writes can be initiated from any replica, and ACID se-
mantics are preserved regardless of what replica a client
starts from. Replication is done per entity group by syn-
chronously replicating the group’s transaction log to a quo-
rum of replicas. Writes typically require one round of inter-

datacenter communication, and healthy-case reads run lo-
cally. Current reads have the following guarantees:

• A read always observes the last-acknowledged write.
• After a write has been observed, all future reads ob-

serve that write. (A write might be observed before it
is acknowledged.)

4.2 Brief Summary of Paxos
The Paxos algorithm is a way to reach consensus among

a group of replicas on a single value. It tolerates delayed
or reordered messages and replicas that fail by stopping.
A majority of replicas must be active and reachable for the
algorithm to make progress—that is, it allows up to F faults
with 2F + 1 replicas. Once a value is chosen by a majority,
all future attempts to read or write the value will reach the
same outcome.

The ability to determine the outcome of a single value by
itself is not of much use to a database. Databases typically
use Paxos to replicate a transaction log, where a separate
instance of Paxos is used for each position in the log. New
values are written to the log at the position following the
last chosen position.

The original Paxos algorithm [27] is ill-suited for high-
latency network links because it demands multiple rounds
of communication. Writes require at least two inter-replica
roundtrips before consensus is achieved: a round of prepares,
which reserves the right for a subsequent round of accepts.
Reads require at least one round of prepares to determine the
last chosen value. Real world systems built on Paxos reduce
the number of roundtrips required to make it a practical
algorithm. We will first review how master-based systems
use Paxos, and then explain how we make Paxos efficient.

4.3 MasterBased Approaches
To minimize latency, many systems use a dedicated mas-

ter to which all reads and writes are directed. The master
participates in all writes, so its state is always up-to-date.
It can serve reads of the current consensus state without
any network communication. Writes are reduced to a single
round of communication by piggybacking a prepare for the
next write on each accept [14]. The master can batch writes
together to improve throughput.

Reliance on a master limits flexibility for reading and writ-
ing. Transaction processing must be done near the master
replica to avoid accumulating latency from sequential reads.
Any potential master replica must have adequate resources
for the system’s full workload; slave replicas waste resources
until the moment they become master. Master failover can
require a complicated state machine, and a series of timers
must elapse before service is restored. It is difficult to avoid
user-visible outages.

4.4 Megastore’s Approach
In this section we discuss the optimizations and innova-

tions that make Paxos practical for our system.

4.4.1 Fast Reads
We set an early requirement that current reads should

usually execute on any replica without inter-replica RPCs.
Since writes usually succeed on all replicas, it was realistic
to allow local reads everywhere. These local reads give us
better utilization, low latencies in all regions, fine-grained
read failover, and a simpler programming experience.

228

We designed a service called the Coordinator, with servers
in each replica’s datacenter. A coordinator server tracks a
set of entity groups for which its replica has observed all
Paxos writes. For entity groups in that set, the replica has
sufficient state to serve local reads.
It is the responsibility of the write algorithm to keep

coordinator state conservative. If a write fails on a rep-
lica’s Bigtable, it cannot be considered committed until the
group’s key has been evicted from that replica’s coordinator.
Since coordinators are simple, they respond more reliably

and quickly than Bigtable. Handling of rare failure cases or
network partitions is described in Section 4.7.

4.4.2 Fast Writes
To achieve fast single-roundtrip writes, Megastore adapts

the pre-preparing optimization used by master-based ap-
proaches. In a master-based system, each successful write
includes an implied prepare message granting the master the
right to issue accept messages for the next log position. If
the write succeeds, the prepares are honored, and the next
write skips directly to the accept phase. Megastore does not
use dedicated masters, but instead uses leaders.
We run an independent instance of the Paxos algorithm

for each log position. The leader for each log position is a
distinguished replica chosen alongside the preceding log po-
sition’s consensus value. The leader arbitrates which value
may use proposal number zero. The first writer to submit a
value to the leader wins the right to ask all replicas to accept
that value as proposal number zero. All other writers must
fall back on two-phase Paxos.
Since a writer must communicate with the leader before

submitting the value to other replicas, we minimize writer-
leader latency. We designed our policy for selecting the next
write’s leader around the observation that most applications
submit writes from the same region repeatedly. This leads
to a simple but effective heuristic: use the closest replica.

4.4.3 Replica Types
So far all replicas have been full replicas, meaning they

contain all the entity and index data and are able to ser-
vice current reads. We also support the notion of a witness
replica. Witnesses vote in Paxos rounds and store the write-
ahead log, but do not apply the log and do not store entity
data or indexes, so they have lower storage costs. They
are effectively tie breakers and are used when there are not
enough full replicas to form a quorum. Because they do not
have a coordinator, they do not force an additional roundtrip
when they fail to acknowledge a write.
Read-only replicas are the inverse of witnesses: they are

non-voting replicas that contain full snapshots of the data.
Reads at these replicas reflect a consistent view of some
point in the recent past. For reads that can tolerate this
staleness, read-only replicas help disseminate data over a
wide geographic area without impacting write latency.

4.5 Architecture
Figure 5 shows the key components of Megastore for an

instance with two full replicas and one witness replica.
Megastore is deployed through a client library and aux-

iliary servers. Applications link to the client library, which
implements Paxos and other algorithms: selecting a replica
for read, catching up a lagging replica, and so on.
Each application server has a designated local replica. The

Figure 5: Megastore Architecture Example

client library makes Paxos operations on that replica durable
by submitting transactions directly to the local Bigtable.
To minimize wide-area roundtrips, the library submits re-
mote Paxos operations to stateless intermediary replication
servers communicating with their local Bigtables.

Client, network, or Bigtable failures may leave a write
abandoned in an indeterminate state. Replication servers
periodically scan for incomplete writes and propose no-op
values via Paxos to bring them to completion.

4.6 Data Structures and Algorithms
This section details data structures and algorithms re-

quired to make the leap from consensus on a single value to
a functioning replicated log.

4.6.1 Replicated Logs
Each replica stores mutations and metadata for the log

entries known to the group. To ensure that a replica can par-
ticipate in a write quorum even as it recovers from previous
outages, we permit replicas to accept out-of-order proposals.
We store log entries as independent cells in Bigtable.

We refer to a log replica as having “holes” when it contains
an incomplete prefix of the log. Figure 6 demonstrates this
scenario with some representative log replicas for a single
Megastore entity group. Log positions 0-99 have been fully
scavenged and position 100 is partially scavenged, because
each replica has been informed that the other replicas will
never request a copy. Log position 101 was accepted by all
replicas. Log position 102 found a bare quorum in A and
C. Position 103 is noteworthy for having been accepted by
A and C, leaving B with a hole at 103. A conflicting write
attempt has occurred at position 104 on replica A and B
preventing consensus.

4.6.2 Reads
In preparation for a current read (as well as before a

write), at least one replica must be brought up to date: all
mutations previously committed to the log must be copied
to and applied on that replica. We call this process catchup.

Omitting some deadline management, the algorithm for a
current read (shown in Figure 7) is as follows:

1. Query Local: Query the local replica’s coordinator
to determine if the entity group is up-to-date locally.

2. Find Position: Determine the highest possibly-com-
mitted log position, and select a replica that has ap-

229

Figure 6: Write Ahead Log

plied through that log position.

(a) (Local read) If step 1 indicates that the local rep-
lica is up-to-date, read the highest accepted log
position and timestamp from the local replica.

(b) (Majority read) If the local replica is not up-to-
date (or if step 1 or step 2a times out), read from
a majority of replicas to find the maximum log
position that any replica has seen, and pick a rep-
lica to read from. We select the most responsive
or up-to-date replica, not always the local replica.

3. Catchup: As soon as a replica is selected, catch it up
to the maximum known log position as follows:

(a) For each log position in which the selected rep-
lica does not know the consensus value, read the
value from another replica. For any log positions
without a known-committed value available, in-
voke Paxos to propose a no-op write. Paxos will
drive a majority of replicas to converge on a single
value—either the no-op or a previously proposed
write.

(b) Sequentially apply the consensus value of all un-
applied log positions to advance the replica’s state
to the distributed consensus state.

In the event of failure, retry on another replica.

4. Validate: If the local replica was selected and was not
previously up-to-date, send the coordinator a validate
message asserting that the (entity group, replica) pair
reflects all committed writes. Do not wait for a reply—
if the request fails, the next read will retry.

5. Query Data: Read the selected replica using the
timestamp of the selected log position. If the selected
replica becomes unavailable, pick an alternate replica,
perform catchup, and read from it instead. The results
of a single large query may be assembled transparently
from multiple replicas.

Note that in practice 1 and 2a are executed in parallel.

4.6.3 Writes
Having completed the read algorithm, Megastore observes

the next unused log position, the timestamp of the last write,
and the next leader replica. At commit time all pending
changes to the state are packaged and proposed, with a
timestamp and next leader nominee, as the consensus value
for the next log position. If this value wins the distributed

Get Logs

Coordinator AClient

Check Coordinator

Replica CReplica BReplica A

Find Pos

Catchup

Apply Logs

Query Data

Validate

Optional Majority Read

Figure 7: Timeline for reads with local replica A

consensus, it is applied to the state at all full replicas; oth-
erwise the entire transaction is aborted and must be retried
from the beginning of the read phase.

As described above, coordinators keep track of the entity
groups that are up-to-date in their replica. If a write is not
accepted on a replica, we must remove the entity group’s
key from that replica’s coordinator. This process is called
invalidation. Before a write is considered committed and
ready to apply, all full replicas must have accepted or had
their coordinator invalidated for that entity group.

The write algorithm (shown in Figure 8) is as follows:

1. Accept Leader: Ask the leader to accept the value
as proposal number zero. If successful, skip to step 3.

2. Prepare: Run the Paxos Prepare phase at all replicas
with a higher proposal number than any seen so far at
this log position. Replace the value being written with
the highest-numbered proposal discovered, if any.

3. Accept: Ask remaining replicas to accept the value.
If this fails on a majority of replicas, return to step 2
after a randomized backoff.

4. Invalidate: Invalidate the coordinator at all full repli-
cas that did not accept the value. Fault handling at
this step is described in Section 4.7 below.

5. Apply: Apply the value’s mutations at as many repli-
cas as possible. If the chosen value differs from that
originally proposed, return a conflict error.

Step 1 implements the “fast writes” of Section 4.4.2. Writ-
ers using single-phase Paxos skip Prepare messages by send-
ing an Accept command at proposal number zero. The next
leader replica selected at log position n arbitrates the value
used for proposal zero at n + 1. Since multiple proposers
may submit values with proposal number zero, serializing
at this replica ensures only one value corresponds with that
proposal number for a particular log position.

In a traditional database system, the commit point (when
the change is durable) is the same as the visibility point
(when reads can see a change and when a writer can be no-
tified of success). In our write algorithm, the commit point is
after step 3 when the write has won the Paxos round, but the
visibility point is after step 4. Only after all full replicas have
accepted or had their coordinators invalidated can the write
be acknowledged and the changes applied. Acknowledging
before step 4 could violate our consistency guarantees: a cur-
rent read at a replica whose invalidation was skipped might

230

Replica AClient

Accept Leader

Replica CReplica B

Optional Invalidate Message

Accept

X

Coordinator C

Apply

Optional Prepare Messages

Figure 8: Timeline for writes

fail to observe the acknowledged write.

4.7 Coordinator Availability
Coordinator processes run in each datacenter and keep

state only about their local replica. In the write algorithm
above, each full replica must either accept or have its coordi-
nator invalidated, so it might appear that any single replica
failure (Bigtable and coordinator) will cause unavailability.
In practice this is not a common problem. The coordina-

tor is a simple process with no external dependencies and no
persistent storage, so it tends to be much more stable than
a Bigtable server. Nevertheless, network and host failures
can still make the coordinator unavailable.

4.7.1 Failure Detection
To address network partitions, coordinators use an out-of-

band protocol to identify when other coordinators are up,
healthy, and generally reachable.
We use Google’s Chubby lock service [13]: coordinators

obtain specific Chubby locks in remote datacenters at start-
up. To process requests, a coordinator must hold a majority
of its locks. If it ever loses a majority of its locks from a crash
or network partition, it will revert its state to a conservative
default, considering all entity groups in its purview to be
out-of-date. Subsequent reads at the replica must query the
log position from a majority of replicas until the locks are
regained and its coordinator entries are revalidated.
Writers are insulated from coordinator failure by testing

whether a coordinator has lost its locks: in that scenario, a
writer knows that the coordinator will consider itself invali-
dated upon regaining them.
This algorithm risks a brief (tens of seconds) write out-

age when a datacenter containing live coordinators suddenly
becomes unavailable—all writers must wait for the coor-
dinator’s Chubby locks to expire before writes can com-
plete (much like waiting for a master failover to trigger).
Unlike after a master failover, reads and writes can pro-
ceed smoothly while the coordinator’s state is reconstructed.
This brief and rare outage risk is more than justified by the
steady state of fast local reads it allows.
The coordinator liveness protocol is vulnerable to asym-

metric network partitions. If a coordinator can maintain the
leases on its Chubby locks, but has otherwise lost contact
with proposers, then affected entity groups will experience a
write outage. In this scenario an operator performs a man-
ual step to disable the partially isolated coordinator. We

have faced this condition only a handful of times.

4.7.2 Validation Races
In addition to availability issues, protocols for reading and

writing to the coordinator must contend with a variety of
race conditions. Invalidate messages are always safe, but val-
idate messages must be handled with care. Races between
validates for earlier writes and invalidates for later writes
are protected in the coordinator by always sending the log
position associated with the action. Higher numbered in-
validates always trump lower numbered validates. There
are also races associated with a crash between an invalidate
by a writer at position n and a validate at some position
m < n. We detect crashes using a unique epoch number
for each incarnation of the coordinator: validates are only
allowed to modify the coordinator state if the epoch remains
unchanged since the most recent read of the coordinator.

In summary, using coordinators to allow fast local reads
from any datacenter is not free in terms of the impact to
availability. But in practice most of the problems with run-
ning the coordinator are mitigated by the following factors:

• Coordinators are much simpler processes than Bigtable
servers, have many fewer dependencies, and are thus
naturally more available.

• Coordinators’ simple, homogeneous workload makes
them cheap and predictable to provision.

• Coordinators’ light network traffic allows using a high
network QoS with reliable connectivity.

• Operators can centrally disable coordinators for main-
tenance or unhealthy periods. This is automatic for
certain monitoring signals.

• A quorum of Chubby locks detects most network par-
titions and node unavailability.

4.8 Write Throughput
Our implementation of Paxos has interesting tradeoffs in

system behavior. Application servers in multiple datacen-
ters may initiate writes to the same entity group and log
position simultaneously. All but one of them will fail and
need to retry their transactions. The increased latency im-
posed by synchronous replication increases the likelihood of
conflicts for a given per-entity-group commit rate.

Limiting that rate to a few writes per second per entity
group yields insignificant conflict rates. For apps whose en-
tities are manipulated by a small number of users at a time,
this limitation is generally not a concern. Most of our target
customers scale write throughput by sharding entity groups
more finely or by ensuring replicas are placed in the same
region, decreasing both latency and conflict rate.

Applications with some server “stickiness” are well posi-
tioned to batch user operations into fewer Megastore trans-
actions. Bulk processing of Megastore queue messages is a
common batching technique, reducing the conflict rate and
increasing aggregate throughput.

For groups that must regularly exceed a few writes per
second, applications can use the fine-grained advisory locks
dispensed by coordinator servers. Sequencing transactions
back-to-back avoids the delays associated with retries and
the reversion to two-phase Paxos when a conflict is detected.

4.9 Operational Issues
When a particular full replica becomes unreliable or loses

connectivity, Megastore’s performance can degrade. We have

231

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

>99.999 >99.99 >99.9 >99 <99

%
 o

f P
ro

du
ct

io
n

A
pp

lic
at

io
ns

Operation Success Rate %

Read/Query
Write

Figure 9: Distribution of Availability

a number of ways to respond to these failures, including:
routing users away from the problematic replica, disabling
its coordinators, or disabling it entirely. In practice we rely
on a combination of techniques, each with its own tradeoffs.
The first and most important response to an outage is to

disable Megastore clients at the affected replica by rerout-
ing traffic to application servers near other replicas. These
clients typically experience the same outage impacting the
storage stack below them, and might be unreachable from
the outside world.
Rerouting traffic alone is insufficient if unhealthy coor-

dinator servers might continue to hold their Chubby locks.
The next response is to disable the replica’s coordinators,
ensuring that the problem has a minimal impact on write
latency. (Section 4.7 described this process in more detail.)
Once writers are absolved of invalidating the replica’s coor-
dinators, an unhealthy replica’s impact on write latency is
limited. Only the initial “accept leader” step in the write
algorithm depends on the replica, and we maintain a tight
deadline before falling back on two-phase Paxos and nomi-
nating a healthier leader for the next write.
A more draconian and rarely used action is to disable the

replica entirely: neither clients nor replication servers will
attempt to communicate with it. While sequestering the
replica can seem appealing, the primary impact is a hit to
availability: one less replica is eligible to help writers form
a quorum. The valid use case is when attempted operations
might cause harm—e.g. when the underlying Bigtable is
severely overloaded.

4.10 Production Metrics
Megastore has been deployed within Google for several

years; more than 100 production applications use it as their
storage service. In this section, we report some measure-
ments of its scale, availability, and performance.
Figure 9 shows the distribution of availability, measured

on a per-application, per-operation basis. Most of our cus-
tomers see extremely high levels of availability (at least five
nines) despite a steady stream of machine failures, network
hiccups, datacenter outages, and other faults. The bottom
end of our sample includes some pre-production applications
that are still being tested and batch processing applications
with higher failure tolerances.
Average read latencies are tens of milliseconds, depending

on the amount of data, showing that most reads are local.

 0

 20

 40

 60

 80

 100

 10 100 1000

P
er

ce
nt

ag
e

of
 P

ro
du

ct
io

n
A

pp
lic

at
io

ns

Average Latency (ms)

Reads
Writes

Figure 10: Distribution of Average Latencies

Most users see average write latencies of 100–400 millisec-
onds, depending on the distance between datacenters, the
size of the data being written, and the number of full repli-
cas. Figure 10 shows the distribution of average latency for
read and commit operations.

5. EXPERIENCE
Development of the system was aided by a strong empha-

sis on testability. The code is instrumented with numerous
(but cheap) assertions and logging, and has thorough unit
test coverage. But the most effective bug-finding tool was
our network simulator: the pseudo-random test framework.
It is capable of exploring the space of all possible orderings
and delays of communications between simulated nodes or
threads, and deterministically reproducing the same behav-
ior given the same seed. Bugs were exposed by finding a
problematic sequence of events triggering an assertion fail-
ure (or incorrect result), often with enough log and trace
information to diagnose the problem, which was then added
to the suite of unit tests. While an exhaustive search of
the scheduling state space is impossible, the pseudo-random
simulation explores more than is practical by other means.
Through running thousands of simulated hours of operation
each night, the tests have found many surprising problems.

In real-world deployments we have observed the expected
performance: our replication protocol optimizations indeed
provide local reads most of the time, and writes with about
the overhead of a single WAN roundtrip. Most applica-
tions have found the latency tolerable. Some applications
are designed to hide write latency from users, and a few
must choose entity group boundaries carefully to maximize
their write throughput. This effort yields major operational
advantages: Megastore’s latency tail is significantly shorter
than that of the underlying layers, and most applications
can withstand planned and unplanned outages with little or
no manual intervention.

Most applications use the Megastore schema language to
model their data. Some have implemented their own entity-
attribute-value model within the Megastore schema language,
then used their own application logic to model their data
(most notably, Google App Engine [8]). Some use a hybrid
of the two approaches. Having the dynamic schema built on
top of the static schema, rather than the other way around,
allows most applications to enjoy the performance, usability,

232

and integrity benefits of the static schema, while still giving
the option of a dynamic schema to those who need it.
The term “high availability” usually signifies the ability

to mask faults to make a collection of systems more reli-
able than the individual systems. While fault tolerance is a
highly desired goal, it comes with it its own pitfalls: it often
hides persistent underlying problems. We have a saying in
the group: “Fault tolerance is fault masking”. Too often,
the resilience of our system coupled with insufficient vigi-
lance in tracking the underlying faults leads to unexpected
problems: small transient errors on top of persistent uncor-
rected problems cause significantly larger problems.
Another issue is flow control. An algorithm that tolerates

faulty participants can be heedless of slow ones. Ideally a
collection of disparate machines would make progress only as
fast as the least capable member. If slowness is interpreted
as a fault, and tolerated, the fastest majority of machines
will process requests at their own pace, reaching equilibrium
only when slowed down by the load of the laggers struggling
to catch up. We call this anomaly chain gang throttling,
evoking the image of a group of escaping convicts making
progress only as quickly as they can drag the stragglers.
A benefit of Megastore’s write-ahead log has been the ease

of integrating external systems. Any idempotent operation
can be made a step in applying a log entry.
Achieving good performance for more complex queries re-

quires attention to the physical data layout in Bigtable.
When queries are slow, developers need to examine Bigtable
traces to understand why their query performs below their
expectations. Megastore does not enforce specific policies
on block sizes, compression, table splitting, locality group,
nor other tuning controls provided by Bigtable. Instead, we
expose these controls, providing application developers with
the ability (and burden) of optimizing performance.

6. RELATED WORK
Recently, there has been increasing interest in NoSQL

data storage systems to meet the demand of large web ap-
plications. Representative work includes Bigtable [15], Cas-
sandra [6], and Yahoo PNUTS [16]. In these systems, scal-
ability is achieved by sacrificing one or more properties of
traditional RDBMS systems, e.g., transactions, schema sup-
port, query capability [12, 33]. These systems often reduce
the scope of transactions to the granularity of single key
access and thus place a significant hurdle to building appli-
cations [18, 32]. Some systems extend the scope of transac-
tions to multiple rows within a single table, for example the
Amazon SimpleDB [5] uses the concept of domain as the
transactional unit. Yet such efforts are still limited because
transactions cannot cross tables or scale arbitrarily. More-
over, most current scalable data storage systems lack the
rich data model of an RDBMS, which increases the burden
on developers. Combining the merits from both database
and scalable data stores, Megastore provides transactional
ACID guarantees within a entity group and provides a flexi-
ble data model with user-defined schema, database-style and
full-text indexes, and queues.
Data replication across geographically distributed data-

centers is an indispensable means of improving availability
in state-of-the-art storage systems. Most prevailing data
storage systems use asynchronous replication schemes with
a weaker consistency model. For example, Cassandra [6],
HBase [1], CouchDB [7], and Dynamo [19] use an eventual

consistency model and PNUTS uses “timeline” consistency
[16]. By comparison, synchronous replication guarantees
strong transactional semantics over wide-area networks and
improves the performance of current reads.

Synchronous replication for traditional RDBMS systems
presents a performance challenge and is difficult to scale
[21]. Some proposed workarounds allow for strong consis-
tency via asynchronous replication. One approach lets up-
dates complete before their effects are replicated, passing
the synchronization delay on to transactions that need to
read the updated state [26]. Another approach routes writes
to a single master while distributing read-only transactions
among a set of replicas [29]. The updates are asynchronously
propagated to the remaining replicas, and reads are either
delayed or sent to replicas that have already been synchro-
nized. A recent proposal for efficient synchronous replication
introduces an ordering preprocessor that schedules incoming
transactions deterministically, so that they can be indepen-
dently applied at multiple replicas with identical results [31].
The synchronization burden is shifted to the preprocessor,
which itself would have to be made scalable.

Until recently, few have used Paxos to achieve synchronous
replication. SCALARIS is one example that uses the Paxos
commit protocol [22] to implement replication for a distrib-
uted hash table [30]. Keyspace [2] also uses Paxos to imple-
ment replication on a generic key-value store. However the
scalability and performance of these systems is not publicly
known. Megastore is perhaps the first large-scale storage
systems to implement Paxos-based replication across data-
centers while satisfying the scalability and performance re-
quirements of scalable web applications in the cloud.

Conventional database systems provide mature and so-
phisticated data management features, but have difficulties
in serving large-scale interactive services targeted by this pa-
per [33]. Open source database systems such as MySQL [10]
do not scale up to the levels we require [17], while expensive
commercial database systems like Oracle [4] significantly in-
crease the total cost of ownership in large deployments in
the cloud. Furthermore, neither of them offer fault-tolerant
synchronous replication mechanism [3, 11], which is a key
piece to build interactive services in the cloud.

7. CONCLUSION
In this paper we present Megastore, a scalable, highly

available datastore designed to meet the storage require-
ments of interactive Internet services. We use Paxos for
synchronous wide area replication, providing lightweight and
fast failover of individual operations. The latency penalty of
synchronous replication across widely distributed replicas is
more than offset by the convenience of a single system image
and the operational benefits of carrier-grade availability. We
use Bigtable as our scalable datastore while adding richer
primitives such as ACID transactions, indexes, and queues.
Partitioning the database into entity group sub-databases
provides familiar transactional features for most operations
while allowing scalability of storage and throughput.

Megastore has over 100 applications in production, facing
both internal and external users, and providing infrastruc-
ture for higher levels. The number and diversity of these
applications is evidence of Megastore’s ease of use, general-
ity, and power. We hope that Megastore demonstrates the
viability of a middle ground in feature set and replication
consistency for today’s scalable storage systems.

233

8. ACKNOWLEDGMENTS
Steve Newman, Jonas Karlsson, Philip Zeyliger, Alex Din-

gle, and Peter Stout all made substantial contributions to
Megastore. We also thank Tushar Chandra, Mike Burrows,
and the Bigtable team for technical advice, and Hector Gon-
zales, Jayant Madhavan, RuthWang, and Kavita Guliani for
assistance with the paper. Special thanks to Adi Ofer for
providing the spark to make this paper happen.

9. REFERENCES
[1] Apache HBase. http://hbase.apache.org/, 2008.

[2] Keyspace: A consistently replicated, highly-available
key-value store. http://scalien.com/whitepapers/.

[3] MySQL Cluster. http://dev.mysql.com/tech-
resources/articles/mysql clustering ch5.html, 2010.

[4] Oracle Database. http://www.oracle.com/us/-
products/database/index.html, 2007.

[5] Amazon SimpleDB.
http://aws.amazon.com/simpledb/, 2007.

[6] Apache Cassandra.
http://incubator.apache.org/cassandra/, 2008.

[7] Apache CouchDB. http://couchdb.apache.org/, 2008.

[8] Google App Engine.
http://code.google.com/appengine/, 2008.

[9] Google Protocol Buffers: Google’s data interchange
format. http://code.google.com/p/protobuf/, 2008.

[10] MySQL. http://www.mysql.com, 2009.

[11] Y. Amir, C. Danilov, M. Miskin-Amir, J. Stanton, and
C. Tutu. On the performance of wide-area
synchronous database replication. Technical Report
CNDS-2002-4, Johns Hopkins University, 2002.

[12] M. Armbrust, A. Fox, D. A. Patterson, N. Lanham,
B. Trushkowsky, J. Trutna, and H. Oh. Scads:
Scale-independent storage for social computing
applications. In CIDR, 2009.

[13] M. Burrows. The chubby lock service for
loosely-coupled distributed systems. In OSDI ’06:
Proceedings of the 7th symposium on Operating
systems design and implementation, pages 335–350,
Berkeley, CA, USA, 2006. USENIX Association.

[14] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos
made live: an engineering perspective. In PODC ’07:
Proceedings of the twenty-sixth annual ACM
symposium on Principles of distributed computing,
pages 398–407, New York, NY, USA, 2007. ACM.

[15] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. E. Gruber. Bigtable: A distributed storage system
for structured data. ACM Trans. Comput. Syst.,
26(2):1–26, 2008.

[16] B. F. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz,
D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted
data serving platform. Proc. VLDB Endow.,
1(2):1277–1288, 2008.

[17] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with ycsb. In SoCC ’10: Proceedings
of the 1st ACM symposium on Cloud computing, pages
143–154, New York, NY, USA, 2010. ACM.

[18] S. Das, D. Agrawal, and A. El Abbadi. G-store: a

scalable data store for transactional multi key access
in the cloud. In SoCC ’10: Proceedings of the 1st
ACM symposium on Cloud computing, pages 163–174,
New York, NY, USA, 2010. ACM.

[19] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: amazon’s highly available key-value store. In
SOSP ’07: Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principles, pages
205–220, New York, NY, USA, 2007. ACM.

[20] J. Furman, J. S. Karlsson, J.-M. Leon, A. Lloyd,
S. Newman, and P. Zeyliger. Megastore: A scalable
data system for user facing applications. In ACM
SIGMOD/PODS Conference, 2008.

[21] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The
dangers of replication and a solution. In Proceedings of
the 1996 ACM SIGMOD international conference on
Management of data, SIGMOD ’96, pages 173–182,
New York, NY, USA, 1996. ACM.

[22] J. Gray and L. Lamport. Consensus on transaction
commit. ACM Trans. Database Syst., 31(1):133–160,
2006.

[23] S. Gustavsson and S. F. Andler. Self-stabilization and
eventual consistency in replicated real-time databases.
In WOSS ’02: Proceedings of the first workshop on
Self-healing systems, pages 105–107, New York, NY,
USA, 2002. ACM.

[24] P. Helland. Life beyond distributed transactions: an
apostate’s opinion. In CIDR, pages 132–141, 2007.

[25] U. Hoelzle and L. A. Barroso. The Datacenter as a
Computer: An Introduction to the Design of
Warehouse-Scale Machines. Morgan and Claypool
Publishers, 2009.

[26] K. Krikellas, S. Elnikety, Z. Vagena, and O. Hodson.
Strongly consistent replication for a bargain. In Data
Engineering (ICDE), 2010 IEEE 26th International
Conference on, pages 52 –63, 2010.

[27] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, 1998.

[28] L. Lamport, D. Malkhi, and L. Zhou. Vertical paxos
and primary-backup replication. Technical Report
MSR-TR-2009-63, Microsoft Research, 2009.

[29] C. Plattner and G. Alonso. Ganymed: scalable
replication for transactional web applications. In
Proceedings of the 5th ACM/IFIP/USENIX
international conference on Middleware, Middleware
’04, pages 155–174, New York, NY, USA, 2004.
Springer-Verlag New York, Inc.

[30] F. Schintke, A. Reinefeld, S. e. Haridi, and T. Schutt.
Enhanced paxos commit for transactions on dhts. In
10th IEEE/ACM Int. Conf. on Cluster, Cloud and
Grid Computing, pages 448–454, 2010.

[31] A. Thomson and D. J. Abadi. The case for
determinism in database systems. In VLDB, 2010.

[32] S. Wu, D. Jiang, B. C. Ooi, and K. L. W. Towards
elastic transactional cloud storage with range query
support. In Int’l Conference on Very Large Data
Bases (VLDB), 2010.

[33] F. Yang, J. Shanmugasundaram, and R. Yerneni. A
scalable data platform for a large number of small
applications. In CIDR, 2009.

234

