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n the nexi decdde, computer prices 
will drop 50 low that IO,  20, or  per- 

system developed at the Free University 
and the Centre for Mathematics and Com- T 1 haps IO0 powerful microprocessors 

per user will be feasible. All this comput- 
ing power will have to be organized in a 
simple, efficient, and fault-tolerant system 
that is easy to use. The basic problem with 
current networks of PCs and workstations 
is that they are not transparent; that is, 
users are aware of the other machines. The 
user logs into one machine and uses that 
machine only, until doing a remote login to 
another machine. Few if any programs take 
advantage of multiple CPUs, even when all 
are idle. 

We envision a system for the 1990s that 
will appear to users as a single, 1970s 
centralized time-sharing system. Users 
will not know which processors their jobs 
are using (or even how many), where their 
files are stored (or how many replicated 
copies are maintained to provide high 
availability), or how processes and ma- 
chines are communicating. All resources 
will be managed completely and automati- 
cally by a distributed operating system. 

Few such systems have been designed, 

The Amoeba 
distributed operating 

system appears to 
users as a centralized 
system, but it has the 
speed, fault tolerance, 
security safeguards, 

and flexibility 
required for the 1990s. 

and even fewer have been implemented. 
Fewer still are actually used by anyone yet. 
An early distributed system was the Cam- 
bridge system.' Later systems were Lo- 
cus,* Mach,' the V - K e r n ~ l , ~  and Chorus.s 

Here we describe Amoeba, a distributed 

puter Science in Amsterdam. Amoeba 
combines high availability, parallelism, 
and scalability with simplicity and high 
performance. 

Although distributed systems are neces- 
sarily more complicated than centralized 
systems and tend to be much slower, we 
have worked hard to achieve extremely 
high performance: Amoeba is already one 
of the fastest distributed systems (on its 
class of hardware) reported so far, and 
future versions will be even faster. With 
the current implementation, a remote pro- 
cedure call can be performed in 1.4 ms on 
Sun-3/50 class machines. The file server 
can deliver data continuously at 677 
Kbytes per second. 

The Amoeba software is based on ob- 
jects. An object is a piece of data on which 
well-defined operations can be performed 
by authorized users, independent of the 
user's and object's locations. Objects are 
managed by server processes and named 
using capabilities chosen randomly from a 
sparse name space. 
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A process is a segmented address space 
shared by one or more threads of control. 
Processes can be created, managed, and 
debugged remotely. Operations on objects 
are implemented using remote procedure 
calls. 

Amoeba has a unique, fast file system 
split into two parts: The bullet service 
stores immutable files contiguously on the 
disk; the directory service gives capabili- 
ties symbolic names and handles replica- 
tion and atomicity, eliminating the need 
for a separate transaction management 
system. 

To bridge the gap with existing systems, 
Amoeba has a Unix emulation facility 
consisting of a library of Unix system call 
routines that make calls to the various 
Amoeba server processes. 

Most classical distributed systems lit- 
erature describes work on parts of or as- 
pects of distributed systems: distributed 
file servers, distributed name servers, dis- 
tributed transaction systems, and so on. 
Here we discuss the whole system, cover- 
ing most of the traditional operating sys- 
tem design issues, including communica- 
tion, protection, the file system, and pro- 
cess management. We explain not only 
what we did but also why we did it. 

Service 
Port 

Overview of Amoeba 

Object Rights Check 
number field field 

The Amoeba project6 has been under 
way for nearly 10 years and has seen 
numerous system redesigns and reimple- 
mentations as design flaws became glar- 
ingly apparent. This article describes the 
Amoeba 4.0 system, released in 1990. 

Hardware architecture. As Figure 1 
shows, the Amoeba hardware consists of 
four components: workstations, pool pro- 
cessors, specialized servers, and gateways. 
The workstations execute only processes 
that require intense user interaction - for 
example, window managers, command 
interpreters, editors, and CAD/CAM gra- 
phical front ends. Most applications, how- 
ever, do not interact much with the user 
and are run elsewhere. 

Amoeba’s processor pool provides most 
of the computing power. Typically it con- 
sists of many single-board computers, each 
with several megabytes of private memory 
and a network interface. The Free Univer- 
sity, for example, has 48 such machines. A 
pile of diskless, terminalless workstations 
can also be used as a processor pool. 

When a user has an application to run - 
for example, building a program consist- 

Processor pool m 
Workstations 

d d d  7 Gateway 

-I Wide area 
network 

Local area 
network 

Specialized servers 
(file, database, etc.) 

Figure 1. Four components of the Amoeba architecture. 
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Figure 2. The structure of a capability. The service port identifies the service 
that manages the object. The object number specifies the object (for example, 
which file). The rights field determines which operations are permitted. The 
check field provides cryptographic protection to keep users from tampering with 
the other fields. 

ing of dozens of source files -a number of 
processors can be allocated to run many 
compilations in parallel. When the user is 
finished, the processors are returned to the 
pool for other work. Although the pool 
processors are all multiprogrammed, the 
best performance is obtained by giving 
each process its own processor, until the 
supply runs out. 

The processor pool allows us to build a 
system in which the number of processors 
exceeds the number of users by an order of 
magnitude or more, something quite im- 
possible in the personal workstation model 
of the 1980s. The software has been de- 
signed to treat the number of processors 
dynamically, so processors can be added 
as the user population grows. When a few 
processors crash, some jobs may have to be 
restarted and the computing capacity is 
temporarily lowered, but otherwise the 
system continues normally, providing a 
degree of fault tolerance. 

Specialized servers, the third system 
component, are machines for running 
dedicated processes with unusual resource 
demands. For example, it is best to run file 
servers on machines that have disks. 

Finally, there are gateways to other 
Amoeba systems that can be accessed only 
over wide area networks. For a project 
sponsored by the European Community 
we built a distributed Amoeba system that 
spanned several countries. The gateway 
protects local machines from the idiosyn- 
crasies of protocols that must be used over 
the wide area links. 

Why did we choose this architecture 
instead of the traditional workstation 
model? As it becomes possible to give each 
user 10 to 100 processors, centralizing the 
computing power will allow incremental 
growth, fault tolerance, and the ability for 
a large job to obtain a large amount of 
computing power temporarily. Current 
systems have file servers, so why not let 
them have computer servers as well? 

Amoeba software architecture. 
Amoeba is an object-based system using 
clients and servers. Client processes use 
remote procedure calls to send requests to 
server processes for carrying out opera- 
tions on objects. Each object is both iden- 
tified and protected by a capability, as 
Figure 2 shows. Capabilities have the set 
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Amoeba Interface Language 
Interfaces for object manipulation are specified in a nota- 

tion called the Amoeba Interface Language.’ AIL resembles 
the notation for procedure headers in C, but it has some ex- 
tra syntax for automatic generation of client and server 
stubs. The Amoeba class for standard manipulations on 
filelike objects, for instance, could be specified as follows: 

class basic-io [1000..1199] ( 

const BIO-SIZE = 30000; 

bio-read(’, 
in unsigned offset, 
in out unsigned bytes, 
out char buffer[bytes:bytes]); 

bio-write(*, 
in unsigned offset, 
in out unsigned bytes, 
in char buffer[bytes:BIO-SIZE]); 

1; 

The names of the operations, bio-read and bio-write, 
must be globally unique. They conventionally start with an 
abbreviation of the name of their class. The first parameter, 
indicated by an asterisk, is always a capability of the object 
to which the operation refers. The other parameters are la- 
beled “in,” “out,” or ”in out” to indicate whether they are in- 
put or output parameters to the operation, or both. Specify- 
ing this allows the stub compiler to generate code to trans- 
port parameters in only one direction. 

The number of elements in an array parameter can be 
specified by [n:m], where n is the actual number of elements 

in the array and m is the maximum number. In an out array 
parameter such as buffer in bio-read, the maximum size is 
provided by the caller. In bio-read, it is the value of the in pa- 
rameter bytes. The actual size of an out array parameter is 
given by the callee and must be less than the maximum. In 
bio-read it is the value of the out parameter bytes - the ac- 
tual number of bytes read. On an in array parameter, the 
maximum size is set by the interface designer and must be a 
constant, while the actual size is given by the caller. In 
bio-write, it is the in value of bytes. 

This AIL specification tells the stub compiler that the opera- 
tion codes for basic-io must be allocated in the range 1000 to 
1 199. A clash of operation codes for two different classes 
matters only if these classes are both inherited by another, 
bringing them together in one interface. Currently, each group 
of people designing interfaces has a different range from 
which to allocate operation codes. Later we hope to allocate 
operation codes automatically. 

The AIL stub compiler can generate client and server stub 
routines for a number of programming languages and ma- 
chine architectures. For each parameter type, marshalling 
code is compiled into the stubs that convert data types of the 
language to AIL data types and internal representations. Cur- 
rently, AIL handles only fairly simple data types (Boolean, in- 
teger, floating point, character, string) and records or arrays 
of them. However, it can easily be extended with more data 
types when the need arises. 

Reference 
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of operations that the holder may carry out 
on the object coded into them, and they 
contain enough redundancy and crypto- 
graphic protection to make guessing an 
object’s capability infeasible. Keeping 
capabilities secret by embedding them in a 
huge address space i s  the key to protection 
in Amoeba. Because of the cryptographic 
protection, capabilities can be managed 
outside the kernel, by user processes them- 
selves. 

Objects are implemented by the server 
processes that manage them. Capabilities 
have the identity of  the object’s server 
encoded into them (the service port) so 
that, given a capability, the system can 
easily find a server process that manages 
the corresponding object. The remote pro- 
cedure call system guarantees that requests 
and replies are delivered only once, and 
only to authorized processes. 

Although at the system level objects are 
identified by their (binary) capabilities, at 

the level where most people program and 
work, objects are named using a symbolic 
hierarchical naming scheme. The direc- 
tory service maintains a mapping of  ASCII 
path names onto capabilities and has 
mechanisms for performing atomic opera- 
tions on arbitrary collections of  name-to- 
capability mappings. 

Amoeba has already gone through sev- 
eral generations of  f i l e  systems. Currently, 
one f i l e  server i s  used almost to the exclu- 
sion of all others. The bullet service (which 
got i t s  name from being faster than a speed- 
ing bullet) i s  a simple file server that stores 
immutable files as contiguous byte strings 
both on disk and in i t s  cache. 

The Amoeba kernel manages memory 
segments, supports processes containing 
multiple threads, and handles interprocess 
communication. The process management 
facilities allow remote process creation, 
debugging, checkpointing, and migration, 
all using a few simple mechanisms ex- 

plained in a later section. 
A l l  other services (such as the directory 

service) are provided by user-level pro- 
cesses, in contrast to, say, Unix, which has 
a large monolithic kernel for these ser- 
vices. By  putting as much as possible in  
user space, we have achieved a flexible 
system without sacrificing performance. 

In the Amoeba design, concessions to 
existing operating systems and software 
were carefully avoided. But a Unix emula- 
tion service was developed to run existing 
software on Amoeba. 

Communication 
Amoeba’s conceptual model i s  that o f  a 

client thread (thread of  control or light- 
Yeight process) performing operations on 
objects. For example, a common operation 
on a file object is reading data from it. 
Operations are implemented by making 
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Transport interface 
The transport interface for the server consists of the calls 

get-request and send-reply, as described in the section on 
communication. They are generally part of a loop that ac- 
cepts messages, does the work, and sends back replies, as 
in this C fragment: 

I' Code for allocating a request buffer *I 
do I 

get-request( 
&port, 
&reqheader, 
&reqbuffer, 
reqbuflen); 

I' Code for unmarshalling 
the request parameters 

'I 
I' Call the implementation routine ' I  
I' Code for marshalling the 

* reply parameters 
*I 
send-reply ( 

&repheader, 
&repbuffer, 
repbuflen); 

] while (I); 

Get-request blocks until a request comes in. Putreply 
blocks until the header and buffer parameters can be 
reused. A client sends a request and waits for a reply by 
calling 

do-operation(reqheader, reqbuffer, reqbuflen, 
repheader, repbuffer, repbuflen); 

All of this code is generated automatically by the AIL com- 
piler from the object and operation descriptions given to it. 

remote procedure calls.' A client sends a 
request message to the service that man- 
ages the object. A server thread accepts the 
message, carries out the request, and sends 
the client a reply. To increase performance 
and fault tolerance, multiple server pro- 
cesses often jointly manage a collection of 
similar objects to provide a service. 

Remote procedure calls. The kernel 
provides three basic system calls to user 
processes: do-operation, get-request, and 
send-reply. The first is used by clients to 
get work done. It consists of sending a 
message to a server and then blocking until 
a reply comes back. The second is used by 
servers to announce their willingness to 
accept messages addressed to a specific 
port. Servers use the third call to send 
replies back. All communication in 
Amoeba takes this form: First a client 
sends a request to a server; then the server 
accepts the request, does the work, and 
sends back the reply. 

No doubt systems programmers would 
be content with only these three system 
calls, but for most applications program- 
mers they are far too primitive. Therefore 
a more user-oriented interface has been 
built on top of the mechanism, to allow 
users to think directly in terms of objects 
and operations on these objects. 

Corresponding to each type of object is 
a class. Classes can be composed hierar- 
chically; that is, a class can contain opera- 
tions from one or more underlying classes. 

This multiple-inheritance mechanism al- 
lows many services to inherit the same 
interfaces for simple object manipulations, 
such as for changing the protection proper- 
ties on an object or deleting it. The mecha- 
nism also allows all servers manipulating 
objects with filelike properties to inherit 
the same interface for low-level file I/O 
(read, write, append - see sidebar on 
Amoeba Interface Language). The mecha- 
nism resembles the filelike properties of 
Unix pipe and device I/O: The Unix read 
and write system calls can be used on files, 
terminals, pipes, tapes, and other 1/0 de- 
vices. But for more detailed manipulation, 
specialized calls are available (ioctl, 
popen, and so forth). 

Remote procedure call transport. The 
Amoeba Interface Language compiler 
generates code to marshal or unmarshal the 
parameters of remote procedure calls into 
and out of message buffers and then call 
the Amoeba transport mechanism for de- 
livery of request and reply messages (see 
sidebar on the transport interface). Mes- 
sages consist of a header and a buffer. The 
header has a fixed format and contains 
addressing information (including the 
capability of the object that the remote 
procedure call refers to), an operation code 
that selects the function to be called on the 
object, and some space for additional para- 
meters. The buffer can contain data. A file 
read or write call, for instance, uses the 
message header for the operation code plus 

the length and offset parameters, and the 
buffer for the file data. With this setup, 
marshalling the file data (a character array) 
takes zero time because the data can be 
transmitted directly from and to the argu- 
ments specified by the program. 

Locating objects. Before a request for 
an operation on an object can be delivered 
to a server thread that manages the object, 
such a thread must be located. All capabili- 
ties contain a service port field, which 
identifies the service that manages the 
object referred to by the capability. When 
a server thread makes a get-request call, it 
provides its service port to the kernel, 
which records it in an internal table. When 
a client thread calls do-operation, the 
kernel's job is to find a server thread with 
an outstanding get-request that matches 
the port in the capability provided by the 
client. 

We call the process of finding the ad- 
dress of such a server thread locating. It 
works as follows: When a do-operation 
call comes into a kernel, a check is made to 
see if the port in question is already known. 
If not, the kernel broadcasts a special lo- 
cate packet onto the network asking if 
anyone has an outstanding get-request for 
the port in question. If one or more ker- 
nels have servers with outstanding 
get-requests, they respond by sending 
their network addresses. The kernel doing 
the broadcasting records the porthetwork 
address pair in a cache for future use. 
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Secure communication 

Client requests, addressed using an 
object's capability, are delivered to one of 
the servers with outstanding get-request 
calls on the capability's port. Ports con- 
sist of large, 48-bit numbers known only 
to the server processes that make up the 
service and to the server's clients. For a 
public service such as the file system, the 
port will be known to all users. The ports 
used by an ordinary user process will, in 
general, be kept secret. Knowledge of a 
port is taken by the system as prima facie 
evidence that the sender has a right to 
communicate with the service. Of course, 
the service is not required to carry out 
work for clients just because they know 
the port. For example, the file server will 
refuse to read or write files for clients 
lacking appropriate file capabilities. Thus 
Amoeba has two levels of protection: 
ports for protecting access to servers and 
capabilities for protecting access to indi- 
vidual objects. 

Although the port mechanism conven- 
iently handles partial authentication of 
clients ("if you know the port, you may at 
least talk to the service"), it does not au- 
thenticate servers. How do we ensure 
that malicious users do not make 
get-request calls on the file server's port 
and try to impersonate the file server to 
the rest of the system? 

One approach is to have all ports ma- 
nipulated by kernels that are presumed to 
be trustworthy and are supposed to know 
who may listen on which port. We have 
rejected this strategy because on some 
machines - for example, PCs - users 
might be able to tamper with the operat- 
ing system kernel. Also, we believe that 
by making the kernel as small as pos- 
sible, we can enhance system reliability 
as a whole. Therefore, we have chosen a 
different solution that can be imple- 
mented in either hardware or software. 

In the hardware solution we place a 
small interface box, a function box or F- 
box, between each processor module 
and the network. The most logical place 
is on the VLSl chip used to interface to 
the network. Alternatively, it can be put 
on a small printed circuit board inside the 
wall socket through which PCs attach to 
the network. Where the processors have 
user mode and kernel mode, and the op- 
erating systems can be trusted, it can be 
put into the operating system. This is the 
solution in the current Amoeba implemen- 
tation. 

In the software solution we build the F- 
box with cryptographic algorithms, giving 
the same functional effect as the hard- 
ware box. In both cases we assume that 
all messages entering and leaving every 
processor undergo a simple transforma- 

Intruder a 
I 

a Client ~ Server 

I 

Clients, servers, intruders, and F-boxes. 

tion that users cannot bypass. 
The transformation works like this. 

Each port is really a pair of ports, P and 
G, related by P = F(G), where F is a 
(publicly known) one-way function' per- 
formed by the F-box. The one-way func- 
tion has the property that given G it is a 
straightforward computation to find P, but 
that given P, finding G is not feasible. 

Using the one-way F-box, servers can 
be authenticated simply, as the figure il- 
lustrates. Each server chooses a get-port 
G and computes the corresponding put- 
port P. The get-port is kept secret; the 
put-port is distributed to potential clients 
or, in the case of public servers, is pub- 
lished. When the server is ready to ac- 
cept client requests, it does a 
get-request (G, ... ). The F-box then 
computes P = F(G) and waits for mes- 
sages containing P to arrive. When one 
arrives, it is given to the server process. 
To send a message to the server, the 
client merely does do-operation (P, ... ), 
which sends a message containing P in a 
header field to the server. The F-box on 
the sender's side does not perform any 
transformation on the P field of the outgo- 
ing message. 

intruder's point of view. To impersonate a 
server, the intruder must do get-request 
(G, .._ ). However, G is a well-kept secret 
and is never transmitted on the network. 
Since we have assumed that G cannot be 
deduced from P (the one-way property of 
fj and that the F-box cannot be circum- 
vented, intruders cannot intercept mes- 
sages not intended for them. An intruder 
doing get-request (F', ... ) will simply 
cause his F-box to listen to the (useless) 
port F(P). Replies from the server to the 

Now consider the system from an 

client are protected the same way, only 
with the client picking a get-port for the 
reply, say G', and including P = F ( G )  in 
the request message. 

The F-box makes it easy to implement 
digital signatures for further authentica- 
tion, if that is desired. Each client 
chooses a random signature S and 
publishes F(S). The F-box must be de- 
signed to work as follows. Each message 
presented to the F-box for transmission 
contains three special header fields: des- 
tination (4, reply (G'), and signature (S). 
The F-box applies the one-way function 
to the second and third of these, trans- 
mitting the three ports as P, F(G'), and 
F ( S ) ,  respectively. The first is used by the 
receiver's F-box to admit only those mes- 
sages for which the corresponding get 
has been done, the second is used as 
the put-port for the reply, and the third 
can be used to authenticate the sender, 
since only the true owner of the signature 
will know what number to put in the third 
field to ensure that the publicly known 
F(S) comes out. 

The F-box implements security and 
protection simply, but gives operating 
system designers considerable latitude in 
choosing policies. The mechanism is flex- 
ible and general, so putting it into hard- 
ware should not preclude yet-to-be-de- 
signed operating systems. 
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Table 1. The delay in milliseconds and the bandwidth in Kbytes per second for remote procedure calls between user pro- 
cesses in three common cases with three different systems. For local RPCs the client and server run on the same processor. 
The Unix driver implements Amoeba RPCs under Sun Unix. 

~ ~ ~ ~~ ~ 

Delay (ms) Bandwidth (Kbytes per second) 
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

(4 bytes) (8 Kbytes) (30 Kbytes) (4 bytes) (8 Kbytes) (30 Kbytes) 

Native Amoeba local 0.8 2.5 7.1 5.0 3,277 4,255 
Native Amoeba remote 1.4 13.1 44.0 2.9 625 677 

Unix driver local 4.5 10.0 32.0 0.9 819 938 
Unix driver remote 7.0 36.4 134.0 0.6 225 224 

Sun RPC local 10.4 23.6 imposs. 0.4 347 imposs. 
Sun RPC remote 12.2 40.6 imposs. 0.3 202 imposs. 

Another broadcast is needed only if a 
server dies or migrates. 

When Amoeba is run over a wide area 
network with a huge number of machines, 
a slightly different scheme is used. Each 
server wishing to export its service sends a 
special message to all domains where it 
wants its service known. (A domain could 
be a company, campus, city, or country.) In 
each domain a dummy process called a 
server agent is created. This process does a 
get-request using the server’s port and 
then lies dormant until a request comes in. 
Then it forwards the message to the server 
for processing. Note that a port is just a 
randomly chosen 48-bit number. It does 
not identify a particular domain, network, 
or machine (see sidebar on secure commu- 
nication). 

Performance. We measured the speed 
of the Amoeba remote procedure call with 
some timing tests. For example, we booted 
the Amoeba kernel on two 16.7-megahertz 
Motorola MC68020s, created a user pro- 
cess on each, and let them communicate 
over a 10-megabit-per-second Ethernet. 
For a message consisting of just a header 
(no data), the complete remote procedure 
call (RPC) took 1.4 ms. With 8 Kbytes of 
data it took 13.1 ms, and with 30 Kbytes it 
took 44.0 ms. The latter corresponds to a 
throughput of 5.4 megabits per second, 
which is half the theoretical capacity of the 
Ethernet and much faster than the speeds 
most other systems achieve. Five client- 
server pairs together can achieve a total 

throughput of 8.4 megabits per second, not 
counting Ethernet and Amoeba packet 
headers. Table 1 shows the speeds and 
throughput of local communication (com- 
munication between processes on the same 
machine) and remote communication 
(communication over Ethernet between 
processes on different machines). Remote 
operations were carried out with requests 
containing 4 bytes, 8 Kbytes, 30 Kbytes, 
and empty replies. Three RPC implemen- 
tations were measured: RPCs on native 
Amoeba, the same Amoeba protocol used 
from a driver under Sun Unix, and Sun’s 
own RPCs. 

Why did we base the design on objects, 
capabilities, and RPCs? Objects are a natu- 
ral way to program. By encapsulating in- 
formation, users are forced to pay attention 
to precise interfaces, while irrelevant in- 
formation is hidden from them. Capabili- 
ties are a clean and elegant way to name 
and protect objects. Using an encryption 
scheme to protect objects moves capability 
management out of the kernel. The RPC is 
an obvious way to implement the request- 
reply nature of performing operations on 
objects. 

File system 
Capabilities form Amoeba’s low-level 

naming mechanism, but they are hard for 
people to use. Therefore an extra level of 
mapping is provided from symbolic hierar- 
chical path names to capabilities. A typical 
user has access to literally thousands of 

capabilities - those of the user’s own 
private objects, but also capabilities of 
public objects, such as the executables of 
commands, pool processors, databases, 
and public files. 

While a user could perhaps store his own 
private capabilities somewhere, a system 
manager or project coordinator cannot 
hand out capabilities explicitly to every 
user who may access a shared public ob- 
ject. Public places are needed where users 
can find capabilities of shared objects, so 
that when a new object is made shareable, 
or when a shareable object changes, its 
capability need be put in only one place. 

Hierarchical directory structure. 
Hierarchical directory structures are ideal 
for implementing partially shared name 
spaces. Objects shared among members of 
a project team can be stored in a directory 
that only team members have access to. 
When directories are implemented as ordi- 
nary objects with acapability that is needed 
to use them, group members can be given 
access by giving them the capability of the 
directory, while others are denied access 
by withholding the capability. A directory 
capability is thus a capability for many 
other capabilities. 

To a first approximation, a directory is a 
set of namehapability pairs. The basic 
operations on directory objects are lookup, 
enter, and delete. The first operation looks 
up an object name in a directory and re- 
turns its capability. The other two opera- 
tions enter and delete objects from directo- 
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Bullet server memory 
File table 

File 1 
data 

Figure 3. Bullet server file representation. 

ries. Since directories themselves are ob- 
jects, a directory can contain capabilities 
for other directories, thus allowing users to 
build an arbitrary graph structure. 

Complex sharing can be achieved by 
making directories more sophisticated 
than we have just described. In reality, a 
directory is an (n+l)-column table with 
ASCII names in column 0 and capabilities 
in columns 1 through n. A capability for a 
directory is really a capability for a spe- 
cific column of a directory. Thus, for ex- 
ample, users could arrange their directo- 
ries with one column for themselves, a 
second column for members of their group, 
and a third column for everyone else. This 
scheme provides the same protection rules 
as Unix, but obviously many other schemes 
are possible. 

The directory service can be set up so 
that whenever a new object is entered in a 
directory, the directory service first asks 
the service managing the object to make n 
replicas, which can be physically distrib- 
uted for reliability. All the capabilities are 
then entered into the directory. 

Bullet service. The bullet service is a 
highly unusual file server. Each bullet 
server supports only three principal opera- 
tions: read file, create file, and delete file. 

When a file is created, the user normally 
provides all the data at once, creating the 
file and getting back a capability for it. In 
most circumstances the user will immedi- 
ately give the file a name and ask the 

r-l 
File 2 I data I 

directory service to enter the namekapa- 
bility pair in some directory. 

All files are immutable; once created, 
they cannot be changed. No write opera- 
tion is supported. Since files cannot 
change, the directory service can replicate 
them at its leisure for redundancy. 

Since the final file size is known when a 
file is created, files can be and are stored 
contiguously, both on the disk and in bullet 
servers’ caches, as Figure 3 illustrates. 
Administrative information for a file is 
thus reduced to its origin and size, plus 
some ownership data. The complete ad- 
ministrative table is loaded into the bullet 
server’s memory when it is booted. For a 
read operation the object number in the 
capability is used as an index into this 
table, and the file is read into the cache in 
a single (possibly multitrack) disk opera- 
tion. 

The bullet file service can deliver large 
files from its cache or accept large files 
into its cache at maximum RPC speeds, 
that is, at 677 Kbytes per second. A remote 
client can read a 4-Kbyte file from a bullet 
server’s cache (over Ethernet) in 7 ms; a 1- 
Mbyte file takes 1.6 seconds.8 

Although the bullet service wastes some 
space because of fragmentation, its per- 
formance easily compensates for having to 
buy an 800-Mbyte disk to store, say, 500 
Mbytes of data. 

Atomicity. Ideally, names always refer 
to consistent objects, and sets of names 

always refer to mutually consistent sets of 
objects. In practice, this is seldom the case 
and is, in fact, not always necessary or 
desirable. But in many cases consistency is 
necessary. 

Atomic actions are useful for achieving 
consistent updates to object sets. Protocols 
for atomic updates are well understood, 
and it is possible to provide a tool kit that 
allows independently implemented ser- 
vices to collaborate in atomic updates of 
multiple objects managed by several ser- 
vices. 

For Amoeba we chose a different ap- 
proach. The directory service handles 
atomic updates by allowing atomic 
changes in the mapping of arbitrary name 
sets onto arbitrary capability sets. The 
objects referred to by these capabilities 
must be immutable, either because the 
services that manage them refuse to change 
them (for example, the bullet service) or 
because the users refrain from changing 
them. 

The atomic transactions provided by the 
directory service are not particularly use- 
ful  for dedicated transaction-processing 
applications (for example, banking and 
airline reservation systems), hut they do 
prevent the glitches that sometimes result 
when people use an application just as a 
new version is installed, or the lost update 
that results when two people simultane- 
ously update a file. 

Reliability and security. The directory 
service is crucial to the system: Nearly 
every application depends on it for finding 
the capabilities it needs. If the directory 
service stops, everything else will come to 
a halt as well. So that no single-site failure 
can bring it down, the directory service 
uses techniques similar to those used in 
fault-tolerant database systems to replicate 
all its internal tables on multiple disks. 

The directory service must also work 
correctly and should never divulge a capa- 
bility to an entity not entitled to see it. Yet 
even a perfectly designed directory service 
might allow unauthorized users to catch 
glimpses of data. Hardware diagnostic 
software, for example, has access to the 
directory server’s disk storage. Bugs in the 
operating system kernel might allow users 
to read portions of the disk. 

Directories can be encrypted so that 
bugs in the directory server and the operat- 
ing system (or other idiosyncrasies) will 
not reveal confidential information. The 
encryption key can be exclusive-ORed 
with a random number and the result stored 
alongside the directory, while the random 
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number is put in the directory’s capability. 
After giving the capability to the owner, 
the directory service itself can forget the 
random number. It needs the number only 
when the directory has to be decrypted to 
carry out operations on the directory, and 
will always receive the number in the 
capability that comes with every client’s 
request. 

Why did we design such an unconven- 
tional file system? Partly to achieve great 
speed and partly for simplicity in design 
and implementation. The use of immutable 
files (and some other objects) allows the 
replication mechanism to be centralized in 
the directory service. Immutable files are 
also easy to cache (because a cached 
immutable file can never become stale), an 
important issue when Amoeba is run over 
wide area networks. 

Process capability 

Process management 

Host descriptor 

Amoeba processes can have multiple 
threads of control. A process consists of a 
segmented virtual address space and one or 
more threads. Processes can be remotely 
created, destroyed, checkpointed, mi- 
grated, and debugged. 

On a uniprocessor, threads run quasi- 
parallel; on a shared-memory multiproces- 
sor, as many threads can run simultane- 
ously as there are processors. Processes 
cannot be split over more than one ma- 
chine. 

Processes have explicit control over 
their address space. They can add new 
segments to it by mapping them in and 
remove segments by mapping them out. 
Along with virtual address and length, a 
capability can be specified in a map opera- 
tion. This capability must belong to a 
filelike object, which is read by the kernel 
to initialize the new segment. This allows 
processes to do mapped-file I/O. 

When a segment is mapped out, it re- 
mains in memory, although no longer as 
part of the address space of any process. 
The unmap operation returns a capability 
for the segment, which can then be read 
and written like a file. One process can thus 
map a segment out and pass the capability 
to another process; the other process can 
then map the segment in again. If the pro- 
cesses are on different machines, the con- 
tents of the segment are copied (by one 
kernel doing read operations and the other 
kernel servicing them). On the same ma- 
chine, the kernel can use shortcuts for the 
same effect. 

A process is created by sending a pro- 
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Figure 4. Layout of a process descriptor. 

cess descriptor to a kernel in an execute- 
process request. Figure 4 shows the four 
parts of a process descriptor. The host 
descriptor describes the machine on which 
the process can run - for example, its 
instruction set, extended instruction sets 
(when required), and memory needs - but 
it can also specify a class of machines, a 
group of machines, or a particular ma- 
chine. A kernel that does not match the 
host descriptor will refuse to execute the 
process. 

The capabilities are next. One is the 
process capability that every client ma- 
nipulating the process needs. Another is 
the capability of a handler, a service that 
deals with process exits, exceptions, sig- 
nals, and other anomalies of the process. 

The memory map has an entry for each 
segment in the address space of the process 
to be. An entry gives virtual address, seg- 
ment length, how the segment should be 
mapped (read only, read/write, execute 
only, and so forth), and the capability of a 
file or segment from which the new seg- 
ment should be initialized. 

The thread map describes the initial state 
of each thread in the new process: the 
processor status word, the program 
counter, the stack pointer, the stack base, 
the register values, and the system call 
state. This rather elaborate notion of thread 
state allows process descriptors to be used 
not only for the representation of execut- 
able files, but also for processes being 
migrated, debugged, or checkpointed. 

In most operating systems, system call 
state is large and complicated to represent 
outside an operating system kernel. In 
Amoeba, fortunately, there are very few 
system calls that can block in the kernel. 
The most complicated ones are for 
communication: do-operation and 
get-request. 

Processes can be in two states: running 
or stunned. A stunned process - for ex- 
ample, a process being debugged - exists 
but does not execute instructions. The low- 
level communication protocols in the op- 
erating system kernel respond with “this 
process is stunned” messages to attempts 
to communicate with the process. The 
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sending kernel will keep trying to commu- 
nicate until the process is running again or 
until it is killed. Thus, communication 
continues with a process being interac- 
tively debugged. 

A running process can be stunned by a 
stun request from the outside world (the 
stunner must have the process capability as 
evidence of ownership) or by an uncaught 
exception. When the process becomes 
stunned, the kernel sends its state in a 
process descriptor to a handler, whose 
identity is a capability that belongs to the 
process’ state. After examining the pro- 
cess descriptor, and possibly modifying it 
or the stunned process’ memory, the han- 
dler can reply with either a resume or a kill 
command. 

Debugging and migration are done 
through stunning. The debugger takes the 
role of the handler. For migration, first the 
candidate process is stunned; then the 
handler gives the process descriptor to the 
new host. The new host fetches memory 
contents from the old host in a series of file 
read requests, starts the process, and re- 
turns the capability of the new process to 
the handler. Finally, the handler returns a 
kill reply to the old host. Processes com- 
municating with a process being migrated 
will receive “process is stunned” replies to 
their attempts until the process on the old 
host is killed. They will then get a “process 
not here” reaction. After they find the 
process on its new host, communication 
will resume. 

The mechanism allows command inter- 
preters to cache process descriptors of the 
programs they start and kernels to cache 
code segments of the processes they run, 
Combined, these caching techniques 
shorten process start-up times. 

Our process management mechanisms 
are unusual, but they are intended for an 
unusual environment, one where remote 
execution is normal and local execution is 
the exception. The boundary conditions 
for our design were a few simple mecha- 
nisms that allowed us to implement pro- 
cess execution, migration, debugging, and 
checkpointing efficiently. 

Unix emulation 

Amoeba’s system interface is quite dif- 
ferent from those of today’s popular oper- 
ating systems. We did not want to write 
hundreds of utility programs for Amoeba 
from scratch, so we quickly decided to 
write a Unix emulation package to allow 

most Unix utilities to work on Amoeba, 
sometimes with small changes. We consid- 
ered binary compatibility but rejected it for 
an initial emulation package because bi- 
nary compatibility is more complicated 
and less useful. (First, we would have to 
choose a particular version of Unix; sec- 
ond, binaries usually work for only one 
machine architecture, while sources can be 
compiled for any machine architecture; 
and third, binary emulation is bound to be 
slow.) 

Our emulation facility started as a li- 
brary of Unix routines that have the stan- 
dard Unix interface and semantics but do 
their work by calling the bullet service, the 
directory service, and the Amoeba process 
management facilities. The system calls 
implemented initially were those for file 
I/O (open, close, dup, read, write, Iseek) 
and a few of the ioctl calls for ttys. These 
were very easy t o  implement under 
Amoeba (about two weeks’ work) and 
were enough to run a surprising number of 
Unix utilities. 

Next a session server was developed to 
allocate Unix PIDs and PPIDs, and to as- 
sist in the handling of system calls involv- 
ing them (for example, fork, exec, signal, 
kill). The session server is also used for 
dealing with Unix pipes and allows many 
other Unix utilities to run on Amoeba. 
Users each start one session server along- 
side their login shell. 

About 150 utilities now run on Amoeba 
without any changes to the source code. 
We have not attempted to port some of the 
more esoteric Unix programs, but we are 
working to make our Unix interface com- 
patible with some emerging standards (for 
example, IEEE Posix). 

The X Window System has been ported 
to Amoeba and supports both TCPnP and 
Amoeba RPCs, so an X client on Amoeba 
can converse with an X server on Amoeba 
and vice versa. 

The Unix utilities have eased the transi- 
tion to Amoeba. Gradually, however, 
many of them will be replaced by utilities 
better adapted to the Amoeba distributed 
environment. Our new parallel Make is an 
obvious example. 

If we had designed a system that was 
binary compatible with Unix, it would not 
have been much of a step beyond the ideas 
of the early 1970s. We wanted a new sys- 
tem for the 1990s, designed from the 
ground up. If the Unix designers had con- 
strained themselves to being binary com- 
patible with the then-popular RT- 11 oper- 
ating system, Unix would not be where it is 
now. 

A mong the design decisions for 
Amoeba we have been most 
pleased with is our determina- 

tion not to restrict ourselves to existing op- 
erating systems or operating system inter- 
faces. Unix is an excellent operating sys- 
tem, but it was not designed for distributed 
systems. We could not have made such a 
balanced design with a Unix interface. 
Nevertheless, we found it remarkably easy 
to port to Amoeba all the Unix software we 
wanted to use. Programs that are hard to 
port are mostly for operations that Amoeba 
handles in other ways (network access and 
system maintenance and management, for 
example). 

Amoeba’s use of objects and capabili- 
ties means that when we design a service 
we need not worry about the protection of 
its objects. The capabilities mechanism 
automatically provides enough protection. 
The system also provides a very uniform 
and decentralized object-naming and 
object-access mechanism. 

Building directly on the hardware in- 
stead of on an existing operating system 
has been absolutely essential to Amoeba’s 
success. A primary goal was to design and 
build a high-performance system, and this 
can hardly be done on top of another sys- 
tem. As far as we can tell, only systems 
with custom-built hardware or special 
microcode can outperform Amoeba’s 
remote procedure calls and file system on 
comparable hardware. 

The Amoeba kernel is small and simple. 
It implements only a few operations for 
process management and interprocess 
communication, but they are versatile 
and easy to use. The kernel is easy to 
port between hardware platforms. 
Amoeba now runs on VAXs and on Motor- 
ola MC68020 and MC68030 processors, 
and is currently being ported to the Intel 
80386. 
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