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Abstract
We show a distributed object model for the Java™1

System [1,6] (hereafter referred to simply as “Java”)
that retains as much of the semantics of the Java ob-
ject model as possible, and only includes differences
where they make sense for distributed objects. The
distributed object system issimple, in that a) distribut-
ed objects are easy to use and to implement, and b)
the system itself is easily extensible and maintainable.
We have designed such a model and implemented a
system that supports remote method invocation (RMI)
for distributed objects in Java. This system combines
aspects of both the Modula-3 Network Objects system
[3] and Spring’s subcontract [8] and includes some
novel features.

To achieve its goal of seamless integration in the lan-
guage, the system exploits the use ofpickling [14] to
transmit arguments and return values and also exploits
unique features of Java in order to dynamically load
stub code to clients2. The final system will include
distributed reference-counting garbage collection for
distributed objects as well as lazy activation [11,16].

1   Introduction
Distributed systems require entities which reside in
different address spaces, potentially on different ma-
chines, to communicate. The Java™ system (hereafter
referred to simply as “Java”) provides a basic commu-
nication mechanism, sockets [13]. While flexible and
sufficient for general communication, the use of sock-
ets requires the client and server using this medium to
engage in some application-level protocol to encode
and decode messages for exchange. Design of such
protocols is cumbersome and can be error-prone.

1. Java and other Java-based names and logos are trade-
marks of Sun Microsystems, Inc., and refer to Sun’s fam-
ily of Java-branded products and services.

2. Patent pending

An alternative to sockets is Remote Procedure Call
(RPC) [13]. RPC systems abstract the communication
interface to the level of a procedure call. Thus, instead
of application programmers having to deal directly
with sockets, the programmer has the illusion of call-
ing a local procedure when, in fact, the arguments of
the call are packaged up and shipped off to the remote
target of the call. Such RPC systems encode argu-
ments and return values using some type of an exter-
nal data representation (e.g., XDR).

RPC, however, does not translate well into distributed
object systems where communication between pro-
gram-level objects residing in different address spaces
is needed. In order to match the semantics of object
invocation, distributed object systems requireremote
method invocation or RMI. In such systems, the pro-
grammer has the illusion of invoking a method on an
object, when in fact the invocation may act on a re-
mote object (one not resident in the caller’s address
space).

In order to support distributed objects in Java, we
have designed a remote method invocation system that
is specifically tailored to operate in the Java environ-
ment. Other RMI systems exist (such as CORBA) that
can be adapted to handle Java objects, but these sys-
tems fall short of seamless integration due to their in-
ter-operability requirement with other languages.
CORBA presumes a heterogeneous, multi-language
environment and thus must have a language neutral
object model. In contrast, the Java language’s RMI
system assumes the homogeneous environment of the
Java Virtual Machine, and the system can therefore
follow the Java object model whenever possible.

We identify several important goals for supporting
distributed objects in Java:

• support seamless remote invocation between Java
objects in different virtual machines;

• integrate the distributed object model into the Java
language in a natural way while retaining most of
Java’s object semantics;
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• make differences between the distributed object
model and the local Java object model apparent;

• minimize complexity seen by the clients that use
remote objects and the servers that implement
them;

• preserve the safety provided by the Java runtime
environment.

These goals fall under two main categories: the sim-
plicity and naturalness of the model. It is most impor-
tant that remote method invocation in Java be simple
(easy to use) and natural (fit well in the language).

In addition, the RMI system should perform garbage
collection of remote objects and should allow exten-
sions such as server replication and the activation of
persistent objects to service an invocation. These ex-
tensions are transparent to the client and add minimal
implementation requirements on the part of the serv-
ers that use them. These additional features motivate
our system-level goals. Thus, the system must sup-
port:

• several invocation capabilities
• simple invocation (unicast)
• invocation to multicast groups (to enable

server replication)
• extensibility to other invocation paradigms

• various reference semantics for remote objects
• live (or non-persistent) references to

remote objects
• persistent references to and lazy activation

of remote objects

• the safe Java environment provided by security
managers and class loaders

• distributed garbage collection of active objects
• capability of supporting multiple transports

In this paper we will briefly describe the Java object
model, then introduce our distributed object model for
Java. We will also describe the system architecture
and relevant system interfaces. Finally, we discuss re-
lated work and conclusions.

2   Java Object Model
Java is a strongly-typed object-oriented language with
a C-style syntax. The language incorporates many
ideas from languages such as Smalltalk [5], Modula-3
[10], Objective C [12] and C++ [4]. Java attempts to
be simple and safe while presenting a rich set of fea-
tures in the object-oriented domain.

Interfaces and Classes

One of the interesting features of Java is its separation
of the notion of interface and class. Many object-ori-

ented languages have the abstraction of “class” but
provide no direct support (at the language level) for
interfaces.

An interface, in Java, describes a set of methods for
an object, but provides no implementation. Aclass, on
the other hand, can describe as well as implement
methods. A class may also includefields to hold data,
but interfaces cannot. Thus, a class is the implementa-
tion vehicle in Java; an interface provides a powerful
abstraction that contains no implementation detail.

Java allows subtyping of interfaces and classes by the
use ofextension. An interface may extend one or more
interfaces; this capability is known as multiple-inherit-
ance. Classes, however, are single-inheritance and
may extend at most one other class.

While a class may extend at most one other class, it
may implement any number of interfaces. A class that
implements an interface provides implementations for
all the methods described in that interface. If a class is
defined to implement an interface, but does not pro-
vide an implementation for a particular method of that
interface, it must declare that method to beabstract.
A class containing abstract methods may not be in-
stantiated.

An example of an arbitrary class definition in Java is
as follows:

class Bar

extends Foo

implements Ping, Pong { ... }

whereBar is the class name,Foo is the name of the
class being extended andPing andPong are the names
of interfaces implemented by the classBar.

Object Class Methods

All classes in Java extend the classObject, either im-
plicitly or explicitly. The classObject has several
methods which an extended class can override to have
behavior specific to that class. These methods are:

• equals — tests the argument for equality with the
object

• hashCode — returns a hash code for the object
• toString — returns a string representing the object
• clone — returns a clone of the object
• finalize — called to allow cleanup when the object

is garbage collected

These methods are integral to the semantics of objects
in Java.

Method Invocation

Method invocation in Java has the following syntax:



result = object.method(arg1, arg2, ...);

where:object is the entity which is being acted upon,
method is the name of the method being called,argN
is a parameter to the method, andresult is the return
value.

Method Parameters and Return Values

In Java, all parameters to and return values from a
method are passedby-value. Only references to ob-
jects exist in Java, so object references (not objects)
are passed by value. Thus, a change to an object
passed to a method will be visible to the caller of the
method.

The type of an object passed polymorphically does
not change the type of the underlying object.

3   Distributed Object Model
In our model, aremote object is one whose methods
can be accessed from another address space, potential-
ly on a different machine. An object of this type is de-
scribed by aremote interface, which is an interface (in
Java) that declares the methods of a remote object.
Remote method invocation (or RMI) is the action of
invoking a method (of a remote interface) on a remote
object. Most importantly, a method invocation on a re-
mote object has the same syntax as a method invoca-
tion on a local object.

Clients of remote objects program to remote interfac-
es, not to the implementation classes of those interfac-
es. Since the failure modes of accessing remote
objects are inherently different than the failure seman-
tics of local objects, clients must deal with an addi-
tional exception that can occur during any remote
method invocation.

What follows is a brief comparison of the distributed
object model and the Java object model. The similari-
ties between the models are:

• a reference to a remote object can be passed as an
argument or returned as a result in any method
invocation (local or remote);

• a remote object can be cast to any of the set of
remote interfaces supported by the implementation
using the built-in Java syntax for casting;

• the built-in Java instanceof operator can be used to
test the remote interfaces supported by a remote
object.

There are several basic differences between the dis-
tributed object model and the Java object model:

• clients of remote objects interact with remote
interfaces, never with the implementation classes
of those interfaces;

• clients must handle an additional exception for
each remote method invocation;

• parameter passing semantics are slightly different
in calls to remote objects;

• semantics ofObject methods are defined to make
sense for remote objects.

Remote Interfaces

In order to implement a remote object, one must first
define a remote interface for that object. A remote in-
terface must extend (either directly or indirectly) a
distinguished interface calledjava.rmi.Remote. This
interface is completely abstract and has no methods.

interface Remote {}

For example, the following code fragment defines a
remote interface for a bank account that contains
methods that deposit to the account, withdraw from
the account, and get the account balance:

import java.rmi.*;

public interface BankAccount

       extends Remote

{

    public void deposit(float amount)

throws RemoteException;

    public void withdraw(float amount)

throws OverdrawnException,
      RemoteException;

    public float balance()

throws RemoteException;

}

As shown above, each method declared in an interface
for a remote object must includejava.rmi.RemoteEx-
ception in its throws clause. IfRemoteException is
thrown during a remote call, then some communica-
tion failure happened during the call. Remote objects
have very different failure semantics than local ob-
jects. These failures cannot be hidden from the pro-
grammer since they cannot be masked by the
underlying system [15]. Therefore, we choose to ex-
pose the additional exceptionRemoteException in all
remote method calls, so that programmers can handle
this failure appropriately.

Remote Implementations

There are two ways to implement a remote interface
(such asBankAccount). The simplest implementation
route is for the implementation class, e.g.,BankAc-
ctImpl, to extend the classRemoteServer. We call this
first schemeremote implementation reuse. Figure 1
below is an illustration of the interface and class hier-



archies for remote interfaces and implementations in
this scheme.

Figure 1. Reusing a remote implementation

The default constructor forRemoteServer takes care
of making an implementation object remotely accessi-
ble to clients byexporting the remote object imple-
mentation to the RMI runtime. The class
RemoteObject overrides methods inherited fromOb-
ject to have semantics that make sense for remote ob-
jects. We will discuss what the appropriate semantics
for these methods are in the section on “Object Meth-
od Semantics”.

In the second implementation scheme, calledlocal im-
plementation reuse, the implementation class for a re-
mote object does not extend RemoteServer but may
extend any other local implementation class as appro-
priate. However, the implementation must explicitly
export the object to make it remotely accessible.

Figure 2. Reusing a local implementation class

The “local implementation reuse” scheme (shown in
Figure 2), while allowing the class to reuse existing
implementation code, does require that the class deal

with the details of making instances of that class re-
motely accessible (by exporting the object to the RMI
runtime). Such exporting is already taken care of in
the RemoteServer constructor used in the first
scheme.

Implementations using the second scheme must also
be responsible for their own Java Object semantics
and therefore must redefine methods inherited from
the classObject appropriately. These object methods
are already taken care of in the implementation ofRe-
moteObject, used in the other scheme.

We deem the “remote implementation reuse” scheme
more seamlessly integrated into the Java object model
as well as requiring less implementation detail; so we
will explain that implementation scheme in depth
here. The other scheme, local implementation reuse, is
included for implementation flexibility if such is re-
quired by the programmer.

Thus, BankAcctImpl, an implementation class of the
remote interface BankAccount can be defined by ex-
tending RemoteServer as follows and would imple-
ment all the methods ofBankAccount:

package myPackage;

import java.rmi.RemoteException;

import java.rmi.server.RemoteServer;

public class BankAcctImpl

extends RemoteServer

implements BankAccount

{

    public void deposit(float amount)

throws RemoteException {...};

    public void withdraw(float amount)

throws OverdrawnException,

      RemoteException {...};

    public float balance()

throws RemoteException {...};

}

A few additional notes about implementing remote in-
terfaces are:

• An implementation class may implement any
number of remote interfaces.

• An implementation class may extend any other
implementation class of a remote interface.

• Only those methods that appear in a remote
interface (one that extendsRemote either directly
or indirectly) can be accessed remotely; thus non-
remote methods in an implementation class can
only be accessed locally.

Remote

BankAccount BankAcctImpl

RemoteServer

RemoteObject

Interfaces Classes

extension
implementation

Remote

BankAccount BankAcctImpl

Account

Interfaces Classes

extension
implementation



The server implementation scheme fits very well into
the Java object model and the Java language.

Remote Reference Types

In the distributed object model, clients interact with
stub (surrogate) objects that have exactly the same set
of remote interfaces defined by the remote object’s
class; the stub class does not include the non-remote
portions of the class hierarchy that constitutes the ob-
ject’s type graph. This is because the stub class is gen-
erated from the most refined implementation class that
implements one or more remote interfaces. For exam-
ple, if C extends B and B extends A, but only B im-
plements a remote interface, then a stub is generated
from B, not C.

Because the stub implements the same set of remote
interfaces as the remote object’s class, the stub has,
from the point of view of the Java system, the same
type as the remote portions of the server object’s type
graph. A client, therefore, can make use of the built-in
Java operations to check a remote object's type and to
cast from one remote interface to another, e.g.:

Remote obj = ...;// lookup object

if (obj instanceof BankAccount) {

    BankAccount acct = (BankAccount)obj;

    //...

}

The system employs a mechanism calleddynamic stub
loading to make the correct stub for the remote object
available to the client (this technique is fully de-
scribed in the section “System Architecture”).

Remote Method Invocation

For a client to invoke a method on a remote object,
that client must first obtain a reference to the object.
A reference to a remote object is obtained in the usual
manner: as a return value in a method call or as a pa-
rameter passed to a method. The RMI system provides
a simple bootstrap name server from which to obtain
remote objects on given hosts.

Invoking a method on a remote object has the same
syntax as invoking a method on any Java object. For
example, here's how the bank account could be ac-
cessed (without exception handling):

BankAccount acct = ...;// lookup account

float balance;

acct.deposit(243.50);

acct.withdraw(100.00);

balance = acct.balance();

Since remote methods includeRemoteException in
their signature, the caller must be prepared to handle
those exceptions in addition to other application spe-
cific exceptions. So, for each of the calls above (de-
posit, withdraw, andbalance), the code needs to catch
RemoteException (and thewithdraw call would need
to also catchOverdrawnException).

If RemoteException is thrown during a remote call,
then some communication failure happened during the
call. The client has little to no information on the out-
come of the call—whether a failure happened before,
during, or after the call completed. Thus, remote inter-
faces should be designed with these failure semantics
in mind [9,15]. The semantics of a remote method
may need to be idempotent whereas calls within the
local address space likely do not have to be. Note that
the above bank account interface does not support
idempotent operations, so if an operation fails, the cli-
ent needs to perform some type of recovery to deter-
mine the true state of the bank account (using
transactions would solve this problem).

In most cases, a method invoked on a remote object is
indirected through the remote object’s stub to which
the caller has a reference. In a method invocation to a
remote object which actuallyresides in the same vir-
tual machine as the caller, the callmay be a local in-
vocation and not a call via the stub for the remote
object. If the caller has an actual reference to the re-
mote object implementation, the method call is local
and is not forwarded via a stub. However, a caller may
receive, from a remote object in a different virtual ma-
chine, a remote reference to the object whose imple-
mentation is in the same virtual machine. In this case,
the client (the caller) has a reference to a stub for the
remote object; thus, a method call on this reference
would be indirected through the stub.

Object Method Semantics

The default implementations for the methods of class
Object (equals, hashCode, toString, clone, and final-
ize) are not appropriate for remote objects. The class
RemoteObject provides implementations for these
methods that have semantics more appropriate for re-
mote objects.

In order for a remote object to be used as a key in a
hash table, the methodsequals andhashCode need to
be overridden in a remote object implementation. The
semantics ofequals for a remote object must be de-
fined such that remote objects have reference equality.
Thus, given any two remote references to the same
underlying object, those objects will be equal. No
stronger equality, such as “content” equality, may be
defined for remote objects, since determining the



equality of contents would require a remote call. Re-
member that in a remote call, aRemoteException may
be raised, and the methodequals has no such excep-
tion in its throws clause. Due to the different failure
semantics between local and remote calls, we chose to
implement only reference equality for remote objects.

The hashCode method will return the same value for
remote references that refer to the same underlying
object.

The toString method is defined to return a string
which represents the reference of the object. In the
current implementation that supports unicast method
invocation, the contents of this string includes trans-
port specific information about the object (e.g., host
name and port number) and an object identifier.

Objects are only cloneable using the Java language’s
default mechanism if they support thejava.lang.Clone-
able interface. Remote objects do not implement this
interface, but do implement theclone method so that
if subclasses need to implementCloneable, the remote
classes will function correctly.

Cloning a reference to a remote object is a local oper-
ation and cannot be used by clients to create a new re-
mote object.

For RemoteServer objects,clone is implemented to
make a new remote object distinct from the original.
Cloning a remote object is only available in the server
process where the remote object exists. If a remote
object does not extend RemoteServer, it must imple-
ment its own version ofclone and be able to export a
cloned object.

The clone method for a remote object is defined to re-
turn a reference to the remote object. This operation
does not copy any contents of the remote object, it
simply returns a reference (since determining contents
would require a remote call, andclone does not have
RemoteException in its throws clause which would be
raised in the event of a remote call failure).

The finalize method is used in specific circumstances
depending on the type of remote object (for example,
if a remote object is one that can be activated, some
cleanup may be necessary).

There are several other methods defined in the class
Object. These methods, however, are declared as final,
which means that they cannot be overridden in an ex-
tended class. The methods are:getClass, notify, notify-
All, andwait.

The default implementation forgetClass is appropri-
ate for all Java objects, local or remote. The method
needs no special implementation for remote objects.

When used on a remote object, thegetClass method
reports the exact type of the generated stub object.
Note that this type reflects only the remote interfaces
implemented by the object, not its local interfaces.

The wait/notify methods ofObject deal with waiting
and notification in the context of Java’s threading
model. While use of these methods for remote objects
does not break the Java threading model, these meth-
ods do not have the same semantics as they do for lo-
cal Java objects. Use of these methods would only
operate on the client’s local reference to the remote
object, not the actual object at the remote site. Since
these methods are final, they cannot be extended to
have behavior specific to remote objects.

Due to the differing failure modes of local and remote
objects, distributed wait and notification requires a
more sophisticated protocol between the entities in-
volved (so that, for example, a client crash does not
cause a remote object to be locked forever), and as
such, cannot be easily fitted into the local threading
model in Java. Hence, a client can usenotify andwait
methods on a remote reference, but that client must be
aware that such actions will not involve the actual re-
mote object, only the local proxy (stub) for the remote
object.

Parameter Passing in Remote Invocation

A parameter of any Java type can be passed in a re-
mote call. These types include both Java primitive
types and Java objects (both remote and non-remote).

The parameter passing semantics for remote calls are
the same as the Java semanticsexcept:

• non-remote objects contained in a parameter of a
remote call are passed bycopy; and,

• non-remote objects returned as the result of a
remote call are also passed bycopy.

That is, when a non-remote object is passed in a re-
mote call, the content of the non-remote object is cop-
ied before invoking the call on the remote object.
Thus, there is no relationship between the non-remote
object the client holds and the one it sends to a remote
server in a call. For example, let's suppose that the re-
mote objectbank has a method to obtain the bank ac-
count given a name and social security number; the
account informationinfo is not a remote object but a
local Java object:

Bank bank = ...;

String ssn = "999-999-9999";

AccountInfo info =

    new AccountInfo("Robin Smith", ssn);

BankAccount acct = bank.getAccount(info);



info.setName("Robyn Smith");

The contents of the objectinfo is copied before invok-
ing the remote call on the bank. A client can make
changes toinfo without effecting the server's copy and
vice versa.

Locating Remote Objects

A simple bootstrap name server is provided for storing
named references to remote objects. A remote object
reference can be stored using the URL-based interface
java.rmi.Naming.

For a client to invoke a method on a remote object,
that client must first obtain a reference to the object.
A reference to a remote object is usually obtained as a
return value in a method call. The RMI system pro-
vides a simple bootstrap name server from which to
obtain remote objects on given hosts. TheNaming in-
terface provides Uniform Resource Locator (URL)
based methods to lookup, bind, rebind, unbind and list
the name and object pairings maintained on a particu-
lar host and port.

Here's an example of how to bind and lookup remote
objects:

BankAccount acct = new BankAcctImpl();

URL url = new URL(“rmi://zaphod/account”);

// bind url to remote object

java.rmi.Naming.bind(url, acct);

// ...

// lookup account

acct = java.rmi.Naming.lookup(url);

In the current implementation, a “naming” registry
contains a non-persistent database of name-object
bindings. This database does not survive system
crashes.

4   System Architecture
We have designed our RMI system in order to support
the distributed object model discussed above. The sys-
tem consists of three basic layers: thestub/skeleton
layer, remote reference layer, andtransport. A specif-
ic interface and protocol defines the boundary at each
layer. Thus, each layer is independent of the next and
can be replaced by an alternate implementation with-
out effecting the other layers in the system. For exam-
ple, the current transport implementation is TCP-
based (using Java sockets), but a transport based on
UDP could be used interchangeably.

To accomplish transparent transmission of objects
from one address space to another, the technique of
pickling [14] (designed specifically for Java) is used.

Another technique, that we calldynamic stub loading,
is used to support client-side stubs which implement
the same set of remote interfaces as a remote object it-
self. Since a stub of the exact type is available to the
client of a remote object, a client can use Java’s built-
in operators for casting and typechecking remote in-
terfaces.

Architectural Overview

The three layers of the RMI system consist of the fol-
lowing:

• stub/skeletons — client-side stubs (proxies) and
server-side skeletons (dispatchers)

• remote reference layer — invocation behavior and
reference semantics (e.g., unicast, multicast)

• transport — connection set up and management
and remote object tracking

The application layer sits on top of the RMI system.

Figure 3. System Architecture

Figure 3 is an illustration of the layers of the RMI
system. A remote method invocation from a client to a
remote server object travels down through the layers
of the RMI system to the client-side transport, then up
through the server-side transport to the server. The
rest of this section summarizes the functionality at
each layer in the system.

A client invoking a method on a remote server object
actually makes use of astub or proxy for the remote
object as a conduit to the remote object. A client-held
reference to a remote object is a reference to a local
stub. This stub is an implementation of the remote in-
terfaces of the remote object and forwards invocation
requests to that server object via the remote reference
layer.

The remote reference layer is responsible for carrying
out the semantics of thetype of invocation. For exam-
ple this layer is responsible for handling unicast or
multicast invocation to a server. Each remote object

Client

Remote Reference Layer

Application

RMI
System
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Stubs Skeletons
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implementation chooses its own invocation seman-
tics—whether communication to the server is unicast,
or the server is part of a multicast group (to accom-
plish server replication).

Also handled by the remote reference layer are the
reference semantics for the server. For example, the
remote reference layer handles live and/or persistent
references to remote objects. Persistent object refer-
ences are required in order to activate objects to sup-
port long-running servers.

The transport is responsible for connection set-up
with remote locations and  connection management,
and also keeping track of and dispatching to remote
objects (the targets of remote calls) residing in the
transport’s local address space.

In order to dispatch to a remote object, the server’s
transport forwards the remote call up to the remote
reference layer (specific to the server). The remote
reference layer handles any server-side behavior that
needs to be done before handing off the request to the
server-side skeleton. The skeleton for a remote object
makes an up-call to the remote object implementation
which carries out the actual method call.

The return value of a call is sent back through the
skeleton, remote reference layer and transport on the
server side, and then up through the transport, remote
reference layer and stub on the client side.

Stub/Skeleton Layer

The stub/skeleton layer is the interface between the
application layer and the rest of the RMI system. This
layer does not deal with specifics of any transport, but
transmits data to the remote reference layer via the ab-
straction ofmarshal streams. Marshal streams employ
a mechanism calledpickling which enables Java ob-
jects to be transmitted between address spaces. Ob-
jects transmitted using the pickling system are passed
by copy to the remote address space.

A stub for a remote object is the client-side proxy for
the remote object. Such a stub implements all the in-
terfaces that are supported by the remote object imple-
mentation. A client-side stub is responsible for:

• initiating a call to the remote object (by calling the
remote reference layer)

• marshaling arguments to a marshal stream
(obtained from the remote reference layer)

• informing the remote reference layer that the call
should be invoked

• unmarshaling the return value from a marshal
stream

• informing the remote reference layer that the call
is complete

A skeleton for a remote object is a server-side entity
that contains a method which dispatches calls to the
actual remote object implementation. The skeleton is
responsible for:

• unmarshaling arguments from the marshal stream
• making the up-call to the actual remote object

implementation
• marshaling the return value of the call onto the

marshal stream

Remote Reference Layer

The remote reference layer deals with the lower level
transport interface. This layer is also responsible for
carrying out a specific invocation protocol which is in-
dependent of the client stubs and server skeletons.

Each remote object implementation chooses its own
invocation protocol that operates on its behalf. Such
an invocation protocol is fixed for the life of the ob-
ject. Various invocation protocols can be carried out at
this layer, for example:

• unicast invocation
• multicast invocation
• support for a specific replication strategy
• support for a persistent reference to the remote

object (enabling activation of the remote object)
• reconnection strategies (if remote object becomes

inaccessible)

These invocation protocols are not mutually exclusive,
but may be combined. For example, a remote object
may require both persistent reference semantics and
replication. Both of these protocols would be carried
out in the remote reference layer.

The invocation protocol is divided into two cooperat-
ing components: the client-side and the server-side
components. The client-side component contains in-
formation specific to the remote server (or servers, if
invocation is to a multicast group) and communicates
via the transport to the server-side component. During
each method invocation, the client and server-side
components are given a chance to intervene in order
to accomplish the specific invocation and reference se-
mantics. For example, if a remote object is part of a
multicast group, the client-side component can for-
ward the invocation to the multicast group rather than
just a single remote object.

In a corresponding manner, the server-side component
is given a chance to intervene before delivering a re-
mote method invocation to the skeleton. This compo-
nent, for example, could handle ensuring atomic



multicast delivery by communicating with other repli-
cas in the multicast group.

The remote reference layer transmits data to the trans-
port layer via the abstraction of a stream-orientedcon-
nection. The transport takes care of the
implementation details of connections. Although con-
nections present a streams-based interface, a connec-
tionless transport may actually be implemented
beneath the abstraction.

Transport

In general, the transport of the RMI system is respon-
sible for:

• setting up connections to remote address spaces
• managing connections
• monitoring connection liveness
• listening for incoming calls
• maintaining a table of remote objects that reside in

the local address space
• setting up a connection for an incoming call
• locating the dispatcher for the target of the remote

call and passing the connection to this dispatcher

The concrete representation of a remote object refer-
ence consists of an endpoint and an object identifier.
We call this representation alive reference. Thus, giv-
en a live reference for a remote object, a transport can
use the endpoint to set up a communication channel to
the address space in which the remote object resides.
On the server side, the transport uses the object iden-
tifier to look up the target of the remote call.

The transport for the RMI system consists of four ba-
sic abstractions (based somewhat on the transport of
the Modula-3 network object system):

• Endpoint — An endpoint denotes an address space.
In the implementation, an endpoint can be mapped
to its transport. That is, given an endpoint, a
specific transport instance can be obtained.

• Transport — The transport abstraction manages
channels. Each channel is a virtual connection
between two address spaces. Within a transport,
only one channel exists per pair of address spaces,
the local address space and a remote address
space. Given an endpoint to a remote address
space, a transport sets up a channel to that address
space. The transport abstraction is also responsible
for accepting calls on incoming connections to the
address space, setting up a connection object for
the call, and dispatching to higher layers in the
system.

• Channel — Abstractly, a channel is the conduit
between two address spaces. As such, it is
responsible for managing connections between the
local address space and the remote address space
for which it is a channel.

• Connection —A connection is the abstraction for
transferring data (performing input/output).

A transport defines what the concrete representation
of an endpoint is, so multiple transport implementa-
tions may exist. The design and implementation also
allow multiple transports per address space (so both
TCP and UDP can be supported in the same address
space). Thus, client and server transports can negoti-
ate to find a common transport between them.

Garbage Collection

In a distributed system, just as in the local system, it
is desirable to automatically delete those remote ob-
jects that are no longer referenced by any client. This
frees the programmer from needing to keep track of a
remote object’s clients so that the remote object can
terminate appropriately. RMI uses a reference count-
ing garbage collection algorithm similar to the one
used for Modula-3 Network Objects [2].

To accomplish reference-counting garbage collection,
the RMI runtime keeps track of all live references
within each Java virtual machine. When a live refer-
ence enters a Java virtual machine its reference count
is incremented. The first reference to an object sends a
“referenced” message to the server for the object. As
live references are found to be unreferenced in the lo-
cal virtual machine, their finalization decrements the
count. When the last reference has been discarded an
unreferenced message is sent to the server. Many sub-
tleties exist in the protocol, most related to maintain-
ing the ordering of referenced and unreferenced
messages to insure the object is not prematurely col-
lected.

When a remote object is not referenced by any client,
the RMI runtime refers to it using a weak reference.
The weak reference allows the Java virtual machine’s
garbage collector to discard the object if no other lo-
cal references to the object exist. The distributed gar-
bage collection algorithm interacts with the local Java
virtual machine’s garbage collector in the usual ways
by holding normal or weak references to objects. As
in the normal object life-cycle, finalize will be called
after the garbage collector determines that no more
references to the object exist.

As long as a local or remote reference to a remote ob-
ject exists, the remote object cannot be garbage col-
lected and it may be passed in remote calls or returned



to clients. Passing a remote object adds the client or
server to which it was passed to the remote object’s
referenced set. A remote object needing unreferenced
notification must implement thejava.rmi.server.Unref-
erenced interface. When those references no longer
exist, unreferenced will be invoked. unreferenced is
called when the set of references is found to be empty
so it may be called more than once. Remote objects
are only collected when no more references, either lo-
cal or remote, still exist.

Note that if there exists a network partition between a
client and remote server object, it is possible that pre-
mature collection of the remote object will occur
(since the transport may think that the client crashed).
Because of the possibility of premature collection, re-
mote references cannot guarantee referential integrity;
in other words, it is always possible that a remote ref-
erence may in fact not refer to an existing object. An
attempt to use such a reference will generate aRemo-
teException which must be handled by the application.

Dynamic Stub Loading

In remote procedure call systems, client-side stub
code must be generated and linked into a client before
a remote procedure call can be done. This code may
be either statically linked into the client or linked in at
run-time via dynamic linking with libraries available
locally or over a network file system. In either the
case of static or dynamic linking, the specific code to
handle an RPC must be available to the client machine
in compiled form.

This approach to code linking is static in that the stub
code must be compiled and directly available to the
client in binary-compatible form at compile time and
at run time. Also with these systems, the stub code
that the client uses is determined and fixed at compile
time. Because of the static nature of the stub code
available to clients in such systems, the code may not
be the actual stub code that the client needs at run
time, but perhaps the closest matched code that can be
determined at compile time. For example in an RMI
system, perhaps only a supertype (less specific form)
of a more specific stub is available to the client at run-
time. This code mismatch can lead to run-time errors
if the client in fact needs a subtype (more specific
form) of the stub that has been linked in at compile-
time.

Our approach solves this code mismatch by loading
the exact stub code (in Java’s architecture neutral
bytecode format) at run-time to handle method invo-
cations on a remote object. This mechanism, called
dynamic stub loading, exploits the Java mechanism
for downloading code.

Dynamic stub loading is used only when code for a
needed stub is not already available. The argument
and return types specified in the remote interfaces are
made available using the same mechanism. Loading
arbitrary classes into clients or servers presents a po-
tential security problem; this problem is addressed by
requiring that a security manager check any classes
downloaded for RMI.

In this scheme, client-side stub code is generated from
the remote object implementation class, and therefore
supports the same set of remote interfaces as support-
ed by the remote implementation. Such stub code re-
sides on the server’s host (or perhaps another
location), and can be downloaded to the client on de-
mand (if the correct stub code is not already available
to the client). Stub code for a remote implementation
could be generated on-the-fly at the remote site and
shipped to the client or could be generated on the cli-
ent-side from the list of remote interfaces supported
by the remote implementation.

Dynamic stub loading employs three mechanisms: a
specialized Java class loader, a security manager, and
the pickling system. When a remote object reference
is passed as a parameter or as the result of a method
call, the marshal stream that transmits the reference
includes information indicating where the stub class
for the remote object can be loaded from, if its URL is
known.

A marshal stream is implemented by an underlying
pickle stream. Pickle streams provide an opportunity
to embed information for each class and object that is
transmitted. When transmitting class information for a
remote object being marshaled, a marshal stream em-
beds a URL that specifies where the stub code resides.
Thus, when a reference to a remote object is unmar-
shaled at the destination site, the marshal stream can
locate and load the stub code (via the specialized class
loader, checked by the security manager) so that the
correct stub is available to the client.

Security

The securityof a process using RMI is protected by
existing Java mechanisms of the security manager and
class loader. The security manager regulates access to
sensitive functions, and the class loader makes sure
that loaded classes are subject to the security manager
and adhere to the standard Java safety guarantees.

The JDK (Java Developer Kit) 1.0 security manager
does not regulate resource consumption, so the current
RMI system has no mechanisms available to prevent
classes loaded from abusing resources. As new securi-



ty manager mechanisms are developed to control re-
source use, RMI will use them.

The Applet Environment

In the applet environment, theAppletSecurityManager
andAppletClassLoader are used exclusively. RMI uses
only the established security manager and class load-
er. In this environment remote object stubs, parameter
classes and return object classes can be loaded only
from the applet host or its designated code base hosts.
This requires that applet developers install the appro-
priate classes on the applet host.

The Server Environment

In the server environment, where a Java process is be-
ing used to serve RMI requests, the server may need
to use a security manager to isolate itself from stub
misbehavior. The server functions will usually be im-
plemented by classes loaded from the local system
and therefore not subject to the restrictions of the se-
curity manager. If the remote object interfaces allow
objects, either local or remote, to be passed to the
server, then those object classes must be accessible to
the server. Usually those classes will be built-in class-
es or will be defined by the server. As long the classes
are available locally there is no need for a specialized
security manager or stub loader. To support this case,
if no security manager is specified, stub loading from
network sources is disabled.

When a server is passed a remote object for which it
has no corresponding stub code, it may also be passed
the location from which the classes for that remote
object may be loaded. Two properties control if and
from where the stub class can be loaded.

java.rmi.server.ClientClassDisable controls whether
the URL’s supplied by clients are used; if set to true,
URL’s from clients are ignored and stub classes are
loaded using the stub class base.

java.rmi.server.StubClassBase defines the URL from
which stub classes will be loaded. This is the URL
that is passed along with remote object references so
clients will know the location from which to load stub
classes.

The StubClassLoader is a specialized class loader
used by the RMI runtime to load classes. When load-
ing any class, the runtime first attempts to use this
class loader. If it succeeds those classes will be sub-
ject to the current security manager and any classes
the stub needs will be loaded and then regulated by
that security manager. If the security manager disal-
lows creating the class loader, the class (including
stub classes) will be loaded using the default

Class.forName mechanism. Thus, a server may define
its own policies via the security manager and stub
loader and the RMI system will operate within them.

5   Related Work
The Common Object Request Broker Architecture
(CORBA) [11] is designed to support remote method
invocation between heterogeneous languages and sys-
tems. In CORBA, distributed objects are described in
an interface definition language (IDL). IDL presents
its own object model, and interfaces defined in IDL
must be mapped into a target language and object
model.

Because of IDL’s language neutrality, the semantics of
its object model does not match the object model se-
mantics of any implementation language. This mis-
match inhibits seamless integration of the CORBA
distributed object model into any specific target lan-
guage. Hence, programmers must deal with two very
different object models when writing distributed pro-
grams: the local object model of the language, and the
distributed object model mapped from IDL.

Our system differs from CORBA in two essential
ways: it language-dependence and its ability to load
stub code dynamically. Since our system is language-
dependent, we can integrate the distributed object
model more closely with the target language, Java. Al-
so, systems that are CORBA compliant are unable to
exploit the use of dynamic stub loading, since COR-
BA generally assumes that stub code is linked in at
compile time.

Our approach is more akin to the Modula-3 (M3) net-
work object system [3]. The Modula-3 system sup-
ports remote method invocation on objects in a
language-dependent fashion (i.e., the system does not
support interoperability with other languages). A sec-
ond similarity is that the M3 system transmits objects
via pickling. Our RMI system is similar in those re-
spects (it depends on the architecture neutrality of
Java bytecodes); however, our system is less static in
its determination of stub code. The M3 network object
system uses the closest matching stub code (called the
most-specific surrogate) available at compile-time,
rather than our approach in which the exact matching
stub code is determined at run-time and downloaded
over the network if such code is unavailable on the
client.

The implementation of our system is similar to the
M3 system in another respect: that is, the inclusion of
a distinct abstraction for the transport. While the net-
work object system has a similar notion of a transport
abstraction, it does not include a separate remote ref-



erence layer to handle varying types of invocation se-
mantics. Because of this limitation, this type of
functionality is not easily layered on the network ob-
ject system without adding some burden to the pro-
grammer.

Spring [7] is an object oriented operating system de-
signed as a successor to UNIX. Spring has the notion
of a subcontract [8] which has similar functionality to
the remote reference layer in the RMI system. Our
system differs in that the remote reference layer has a
narrower interface that is more tailored to handling re-
mote method invocation semantics. Subcontract is
also very intimate with its doors-based transport, and
as such does not support alternate transport implemen-
tations as readily as our approach.

Like CORBA, Spring uses an interface definition lan-
guage to describe remote objects. Spring uses mar-
shaling code generated from IDL descriptions of
objects, whereas our system pickles exact representa-
tions of objects at run-time.

6   Future Work
The current system supports unicast remote method
invocation to remote objects in Java. The system also
implements pickling, dynamic stub loading, and gar-
bage collection. We have fully designed and partially
implemented activation for distributed objects in this
framework. This effort is on-going. Also included will
be the capability for server replication in this para-
digm.

7   Conclusions
Our RMI system design leverages the two basic as-
sumptions of platform homogeneity and language-de-
pendence. We can assume homogeneity due to the
architecture neutrality that the Java virtual machine
provides. Since we are able to focus on language-de-
pendent distributed objects, the resulting system pre-
sents a simple model that fits well into the Java
framework, is highly flexible, and is accessible on a
wide variety of machines.

Availability
The Java RMI system will be released with JDK 1.1.
Early access versions of this system can be obtained
from thehttp://java.sun.com web site.
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