Using libasync

David Mazieres (mostly),
Frank Dabek, Eric Peterson,
and Thomer M. Gil

1 Introduction

This document builds on Using TCP Through Sockets, and Using select, and introduces a
library for doing event-driven I/0, libasync.

Readers of this document are assumed to be proficient in the C and C++ programming
languages including template classes and be comfortable using a Unix operating system to
develop programs. Detailed knowledge of network standards or Unix I/O is not required.

Noting the following typesetting conventions may assist the reader: words set in sans
serif type (such as open) are Unix system calls; any text set in a mono spaced font (such as
nbytes) is either a C code fragment or a C object or name.

2 libasync — an asynchronous socket library

libasync alllows the programmer to associate function callbacks with readability and writabil-
ity conditions on sockets. It also provides a number of helpful utility functions for creating
sockets and connections and buffering data under conditions where the write system call may
not write the full amount requested.

2.1 Memory allocation & debugging

libasync provides C++ support for a debugging malloc. To make the most of this support,
you should emply two macros New and vNew instead of the built-in C++ operator new. Use
New where you would ordinarily use new. It is a wrapper around new that also records line-
number information, making it easy to debug memory leaks and other problems. vNew is
simply a call to New cast to void. Use it to avoid compiler warnings when you ignore the
pointer returned by New. You should still use new for per-class allocators and placement new
(don’t worry if you don’t know what these are).

libasync also provides three classes for reporting errors to the user, warn, fatal, and panic.
warn simply prints a message to the termial, much like the C++ standard library’s cerr. For
example, one might say:

int n = write (fd, buf, nbytes);

if (n < 0 && errno != EAGAIN) {
warn << "could not write to socket: "
<< strerror (errno) << "\n";

/l ...
}

Unlike cerr, however, warn is asynchronous. warn also makes efforts to accumulate and
write data to the terminal in chunks with reasonable boundaries. Thus, when several pro-
cesses write to the same terminal using warn, the combined output is considerably easier to
read than if they had both used cerr. fatal is like warn, except it prepends the word “fatal:
” and exits after printing. panic causes a core dump after printing the message. It should be
used for assertion failures, when the occurrence of an event indicates a bug in the program.

2.2 The suio class

The suio class maintains arrays of iovec structures (see readv or writev man pages if you
really want to) and helps deal with the annoyance of short writes. The suio class has the
following core methods:

e void print (const void *base, size_t len);

suio::print adds len bytes of data stored at base to the end of the array of iovec
structures maintained by suio. suio may or may not copy the contents of the memory
at base. Thus, you must not under any circumstances modify the data until
it has been removed from the suio. Modifying data will cause a crash when the library
is compiled for memory debugging.

e void copy (const void #*base, size_t len);

This is the same as suio::print, except it makes a copy of the data into a temporary
buffer managed by suio. Thus, one can modify the memory at base immediately after
calling suio::copy.

e void rembytes (size_t n);

Removes n bytes from the beginning of the iovec array.

e const iovec *iov () const;
Returns an array of iovec structures corresponding to all the data that has been
accumulated via suio::print calls.

e size_t iovcnt () const;

Returns the length of the array returned by suio::iov.

e size_t resid () const;

Returns the total number of bytes in the iovec array.

As an example, the following shows a rather convoluted function greet (), which prints
the words “hello world” to standard output. It behaves correctly even when standard output
is in non-blocking mode.

void
writewait (int fd)
{

fd_set fds;

assert (fd < FD_SETSIZE);

FD_ZERD (&fds);

FD_SET (fd, &fds);

select (fd + 1, NULL, &fds, NULL, NULL);

void

greet ()

{
char hello[] = "hello";
char spacel[] = " ";
char world[] = "world";
char nl1[] = "\n";

suio uio;

uio.print (hello, sizeof (hello) - 1);
uio.print (space, sizeof (space) - 1);
uio.print (world, sizeof (world) - 1);
uio.print (nl, sizeof (nl) - 1);

while (uio.resid ()) {
writewait (1);
int n = writev (1, uio.iov (),
min<int> (uio.iovent (), UIO_MAXIQV));
if (n < 0 && errno '= EAGAIN)
fatal << "stdout: " << strerror (errno) << "\n";
if (m > 0)
uio.rembytes (n);
}
}

Writing the contents of a suio structure in this way is so common that there is a method
output for doing it. For symmetry, there is also an input function which reads data from a
file descriptor into memory managed by the suio.

e int output (int fd);

suio::output writes as much of the data in a suio structure to £d as possible. It returns
1 after successfully writing some data to the file descriptor, 0 if it was unable to write
because of EAGAIN, and —1 if there was some other write error.

e int input (int fd);

Reads data from file descriptor £d and appends it to the contents of the suio. Returns
the number of bytes read, 0 on end of file, or —1 on error (including EAGAIN).

2.3 The str and strbuf classes

One complication of programming with callbacks is dealing with freeing dynamically allo-
cated memory. This is particularly true of strings. If a function takes an argument of type
char * and does something asynchronously using the string, the caller may not be allowed
to free the string until later. Keeping track of who is responsible for what strings and for
how long is tricky and error-prone.

For that reason, libasync has a special class str for reference-counted strings.! Strings
are references to immutable character streams. Thus, for instance, the following code prints
“one is ‘one’”:

str two = '"one";
str one = two;
two = "two";

warn << "one is ‘" << one << "’\n";

The strbuf structure allows one to build up a string by appending to it. The following
code illustrates the use of strbuf:

void
func (str arg)
{

strbuf sb;

sb << lla-]:.g iS “n << arg << Il)-ll;
str result = sb;
warn << result << "\n";

}

strbuf is a built around the suio structure. One can access the underlying suio with the
strbuf::tosuio method:

e suio *tosuio () const;

Returns a pointer to the suio in which the strbuf is storing accumulated data.

!Note that C++ has a string class, but the standard does not specify that it has to be reference counted.
Thus, a C++ string implementation can incur the overhead copying a string each time it is passed as a
function argument.

2.4 Reference counting

Strings are not the only data structure for which deallocation becomes tricky in asynchronous
programming. libasync therefore provides a generic mechanism for reference-counted deallo-
cation of arbitrary dynamically allocated data structures. Refcounting is a simple form of
automatic garbage collection: each time a refcounted object is referenced or goes out of scope
its reference count is incremented or decremented, respectively. If the reference count of an
object ever reaches zero, the object’s destructor is called and it is deleted. Note that unlike
real garbage collection in languages like Java, you cannot use reference-counted deallocation
on data structures with pointer cycles.

Reference counted objects are created by allocating an instance of the refcounted tem-
plate:

class foo : public bar { ... };
ref<foo> f = New refcounted<foo> (...);
ptr<bar> b = f;
f = New refcounted<foo> (...);
b = NULL;

Given a class named foo, a refcounted<foo> takes the same constructor arguments
as foo, except that constructors with more than 7 arguments cannot be called due to the
absence of a varargs template. A ptr<foo> p behaves like a foo *p, except that it is
reference counted: *p and p->field are valid operations on p whichever its type. However,
array subscripts will not work on a ptr<foo>. You can only allocate one reference counted
object at a time.

A ref<foo> is like a ptr<foo>, except that a ref<foo> can never be NULL. If you try
to assign a NULL ptr<foo> to a ref<foo> you will get an immediate core dump. The
statement ref<foo> = NULL will generate a compile time error.

A const ref<foo> cannot change what it is pointing to, but the foo pointed to can
be modified. A ref<const foo> points to a foo you cannot change. A ref<foo> can
be converted to a ref<const foo>. In general, you can implicitly convert a ref<A> to a
ref if you can implicitly convert an A to a B. You can also implicitly convert a ref<foo>
or ptr<foo> to a foo *. Many functions can get away with taking a foo * instead of a
ptr<foo> if they don’t eliminate any existing references.

On both the Pentium and Pentium Pro, a function taking a ref<foo> argument usually
seems to take 10-15 more cycles the same function with a foo argument. With some versions
of g++, though, this number can go as high as 50 cycles unless you compile with ’-fno-
exceptions’.

Sometimes you want to do something other than simply free an object when its reference
count goes to 0. This can usually be accomplished by the reference counted object’s destruc-
tor. However, after a destructor is run, the memory associated with an object is freed. If
you don’t want the object to be deleted, you can define a finalize method that gets invoked
once the reference count goes to 0. Any class with a finalize method must declare a virtual
base class of refcount. For example:

class foo : public virtual refcount {

void finalize () { recycle (this); }
s

Occasionally you may want to generate a reference counted ref or ptr from an ordinary
pointer. This might, for instance, be used by the recycle function above. You can do this
with the function mkref, but again only if the underlying type has a virtual base class of
refcount. Given the above definition, recycle might do this:

void
recycle (foo *fp)
{
ref<foo> = mkref (fp);

Note that unlike in Java, an object’s finalize method will be called every time the refer-
ence count reaches 0, not just the first time. Thus, there is nothing morally wrong with
“resurrecting” objects as they are being garbage collected.

Use of mkref is potentially dangerous, however. You can disallow its use on a per-class
basis by simply not giving your object a public virtual base class of refcount.

class foo {
// fine, no mkref or finalize allowed

}’

class foo : private virtual refcount {
void finalize () { ... }
// finalize will work, but not mkref

};

If you like to live dangerously, there are a few more things you can do (but probably
shouldn’t). If foo has a virtual base class of refcount, it will also inherit the methods
refcount_inc() and refcount_dec(). You can use these to create memory leaks and
crash your program, respectively.

2.5 Callbacks

Using libasync to perform socket operations also entails the use of the template class callback—
a type that approximates function currying. An object of type callback<R, B1l, B2> con-
tains a member R operator() (B1, B2). Thus callbacks are function objects with the first

template type specifying the return of the function and the remaining arguments specifying
the types of the arguments to pass the function.

Callbacks are limited to 3 arguments by a compile-time default. Template arguments that
aren’t specified default to void and don’t need to be passed in. Thus, a callback<int> acts
like a function with signature int fn (), a callback<int, char *> acts like a function
with signature int fn (char *), and so forth.

Each callback class has two type members, ptr and ref (accessed as ::ptr and : :ref),
specifying refcounted pointers and references to the callback object respectively (see above
for a description of the refcount class)

The function wrap is used to create references to callbacks. Given a function with signa-
ture R fn (A1, A2, A3)”, wrap can generate the following references:

wrap (fn) — callback<R, Al, A2, A3>::ref
wrap (fn, al) — callback<R, A2, A3>::ref
wrap (fn, al, a2) — callback<R, A3>::ref
wrap (fn, al, a2, a3) — callback<R>::ref

When the resulting callback is actually called, it invokes fn. The argument list it passes
fn starts with whatever arguments were initially passed to wrap and then contains whatever
arguments are given to the callback object. For example, given fn above, this code ends up
calling fn (al, a2, a3) and assigning the return value to r:

R r;

Al ail;

A2 a2;

A3 a3;

callback<R, A2, A3>::ptr cb;

cb = wrap (fn, al);
r = (xcb) (a2, a3);

One can create callbacks from class methods as well as from global functions. To do this,
simply pass the object as the first parameter to wrap, and the method as the second. For
example:

struct foo {
void bar (int, char *);
callback<void, char *>::ref baz () {
return wrap (this, &foo::bar, 7);
}
};

Note the only way to generate pointers to class members in ANSI C++ is with fully
qualified member names. &foo::bar cannot be abbreviated to bar in the above example,
though some C++ compilers still accept that syntax.

If wrap is called with a refcounted ref or ptr to an object, instead of a simple pointer,
the resulting callback will maintain a reference to the object, ensuring it is not deleted.
For example, in the following code, baz returns a callback with a reference to the current
object. This ensures that a foo will not be deleted until after the callback has been deleted.
Without the call to mkref, if a callback happened after the reference count on a foo object
went to zero, the foo object would previously have been deleted and its vtable pointer likely
clobbered, resulting in a core dump.

struct foo : public virtual refcount {
virtual void bar (int, char *);
callback<void, char *>::ref baz () {
return wrap (mkref (this), &foo::bar, 7);

}
};

2.5.1 An example

void

printstrings (char *a, char *b, char *c)

{
printf ("%s %s %s\n", a, b, c);

}

int

main ()

{
callback<void, char *>::ref cbl = wrap (printstrings, "cbla", "cblb");
callback<void, char *, char *>::ref cb2 = wrap (printstrings, "cb2a");
callback<void, char *, char *, char *>::ref cb3 = wrap (printstrings);
(xcbl) ("cbic"); // prints: cbla cblb cblc
(xcb2) ("cb2b", "cb2c™); // prints: cb2a cb2b cb2c
(*cb3) ("cb3a", "cb3b", "cb3c"); // prints: cb3a cb3b cb3c
return 0;

}

2.6 libasync routines

Libasync provides a number of useful functions for registering callbacks (fdcb, amain) as
well as performing common tasks relating to sockets (tcpconnect, inetsocket). Each of these
functions is prototyped in either async.h or amisc.h.

e void fdcb (int socket, char operation, callback<void>::ptr cb)

associates a callback with the specified condition (readability or writability) on socket.
The conditions may be specified by the constants selread or selwrite. Exception con-
ditions are not currently supported. To create the refcounted callback to pass to fdcb
use wrap. For instance: wrap(&read_cb, fd) produces a refcounted callback which
matches a function of the signature void read_cb(int fd);

To unregister a callback, call fdcb with the cb argument set to NULL. Note that
callbacks do not unregister once they are called and that no more than one callback
can be associated with the same condition on any one socket.

timecb_t *delaycb (time_t sec, u_int32_t nsec, callback<void>::ref cb)
Arranges for a callback to be called a certain number of seconds and nanoseconds in
the future. Returns a pointer suitable for passing to timecb_remove.

void timecb_remove (timecb_t *)

Removes a scheduled timer callback.

void amain ()

Repeatedly checks to see if any registered callbacks should be triggered. amain() does
not return and must not be called recursively from a callback.

void tcpconnect (str hostname, int port, callback<void, int>::ref cb)

creates an asynchronous connection to the specified host and port. The connected
socket will be returned as the argument to the callback specified by cb, or that argument
will be —1 to indicate an error.

int inetsocket (int type, int_16 port, u_int32_t addr)

creates a socket, but unlike tcpconnect does not connect it. inetsocket does, however,
bind the socket to the specified local port and address. type should be SOCK_STREAM
for a TCP socket, and SOCK_DGRAM for a UDP socket. inetsocket does not put the socket
into non-blocking mode; you must call make_async yourself.

void make_async (int fd)

sets the 0_NONBLOCK flag for the socket s and places the socket in non-blocking mode.

void close_on_exec (int fd)

sets the close-on-exec flag of the socket to true. When this flag is true any process
created by calling exec will not inherit s.

void tcp_nodelay (int fd)

sets the TCP_NODELAY socket option to true. This command allows TCP to keep
more than one small packet of data outstanding at a time. See the tcp(4) manual page
or RFC0896.

2.7 multifinger.C

Using libasync, the multifinger example can be implemented in approximately 100 lines of
C++ code.

Multifinger begins by registering as many callbacks for finger requests as possible (that
number is limited by a conservative estimate of how many file descriptors are available).
As each request completes, the done() function registers additional callbacks. A global
variable, ncon, tracks the number of pending transactions: when ncon reaches 0 the program
terminates by calling exit.

For each transaction, the multifinger client moves through a series of states whose bound-
aries are defined by system calls that potentially return EAGAIN. The code progresses through
these states by “chaining” callbacks: for instance, when the write of the username is com-
plete, the write_cb unregisters the write conditioned callback and registers a callback for
readability on the socket.

#include "async.h"

#define FD_MAX 64
#define NCON_MAX FD_MAX - 8
#define FINGER_PORT 79

char **xnexttarget;
char **xlasttarget;
void launchmore ();

struct finger {
static int ncon;

const str user;
const str host;
int fd;

strbuf buf;

static void launch (const char *target);
finger (str u, str h);

“finger ();

void connected (int f);

void senduser ();

void recvreply ();

s
int finger: :ncon;

void
finger::launch (const char *target)
{
if (comst char *at = strrchr (target, ’@’)) {
str user (target, at - target);
str host (at + 1);
vNew finger (user, host);

}

10

else
warn << target << ": could not parse finger target\n";

}

finger::finger (str u, str h)

: user (u), host (h), fd (-1)
{

ncon++;

buf << user << "\r\n";

tcpconnect (host, FINGER_PORT, wrap (this, &finger::connected));
}

void
finger::connected (int f)
{
fd = f;
if (fd < 0) {
warn << host << ": " << strerror (errno) << "\n";
delete this;
return;
}

fdcb (fd, selwrite, wrap (this, &finger::senduser));

void
finger: :senduser ()
{
if (buf.tosuio ()->output (£d) < 0) {
warn << host << ": " << strerror (errmno) << "\n";
delete this;
return;

}
if (!buf.tosuio ()->resid ()) {

buf << "[" << user << "@" << host << "]\n";

fdcb (fd, selwrite, NULL);

fdcb (fd, selread, wrap (this, &finger::recvreply));
}

}
void
finger::recvreply ()
{
switch (buf.tosuio ()->input (£d4)) {
case -1:
if (errno != EAGAIN) {
warn << host << ": " << strerror (errmno) << "\n";
delete this;
}
break;
case 0:

buf.tosuio ()->output (1);
delete this;
break;

11

}
}

finger:: finger ()
{
if (fd >= 0) {
fdcb (fd, selread, NULL);
fdcb (fd, selwrite, NULL);
close (fd);
}

ncon--;
launchmore ();

}

void
launchmore ()
{
while (nexttarget < lasttarget &% finger::ncon < NCON_MAX)
finger::launch (*nexttarget++);
if (nexttarget == lasttarget &% !'finger::ncon)
exit (0);
}

int
main (int argc, char **argv)
{
make_sync (1);
nexttarget = argv + 1;
lasttarget = argv + argc;
launchmore ();
amain ();

3 Finding out more

This document outlines the system calls needed to perform network I/O on UNIX systems.
You may find that you wish to know more about the workings of these calls when you are
programming. Fortunately these system calls are documented in detail in the Unix manual
pages, which you can access via the man command. Section 2 of the manual corresponds
to system calls. To look up the manual page for a system call such as socket, you can
simply execute the command “man socket.” Unfortunately, some system calls such as write
have names that conflict with Unix commands. To see the manual page for write, you must
explicitly specify section two of the manual page, which you can do with “man 2 write”
on BSD machines or “man -s 2 write” on System V. If you are unsure in which section of
the manual to look for a command, you can run “whatis write” to see a list of sections in
which it appears.

12

