
MORRIS: A Distributed File System for Read-Intensive

Applications

David Chau, Jennifer Lin, Michael Matczynski, Nathan Palmer
{ddcc, jwlin, mikem, palmer}@mit.edu

May 12, 2005

Abstract

This paper presents the design and implementa-
tion of Modularly Optimized Round-robin Read-
Intensive Storage (MORRIS), a file system which
provides high throughput for read-intensive ap-
plications. NFSStripe, MORRIS’ primary com-
ponent, is an NFS loopback server that achieves
performance competitive with the traditional
single-server model by distributing the task of
data storage and retrieval over multiple ma-
chines.

There are two main challenges associated with
such a design. The first consists of structur-
ing the underlying storage of the filesystem in
such a way as to take advantage of multiple
data servers, thereby allowing multiple concur-
rent read operations to be efficiently executed.
We solve this problem by “striping” files across
multiple StripeServer data servers in fixed-size
blocks. Employing multiple machines to serve
data from disk allows our system to fulfill mul-
tiple client requests at once, whereas a single-
server arrangement cannot.

The second challenge is to ensure filesystem
coherence as multiple concurrent client opera-
tions are issued to multiple independent servers.
We solve this problem, while conferring min-
imal impact on the system’s performance, by
designing a multiple-reader/single-writer locking
protocol specifically suited to our system’s data
structures.

1 Introduction

There are a wide variety of data mining problems
where applications make frequent file reads (but
infrequent writes), spending as much as 98−99%
of their time performing read-related operations
and as little as 0.05% writing to disk [11]. Many
of these data mining tasks, particularly those
in the field of bioinformatics, lend themselves
to a high degree of parallelism, where multiple
processes working individually (on independent
machines) perform reads from the same under-
lying database and merge their results quickly
when each node completes its portion of the
work [11, 5, 12].

Many of these data mining applications op-
erate by sequentially reading large flat-file
databases, processing each record in turn [1, 5,
12]. The large size of these databases, often on
the order of several gigabytes [3, 2], makes ag-
gressive client-side caching an impractical solu-
tion to improving performance. The files are of-
ten simply too large to store wholesale in volatile
memory on each client, and even if the memory
were available, a node rarely re-reads the same
portion of a file, meaning that the data would
seldom be revisited after the initial read which
caused the data to be cached. Moreover, this so-
lution fails to address the issue of contention be-
tween clients attempting the initial caching read.

Because of the high degree of parallelism ex-
ploited by these applications, providing concur-
rent read access to the shared data becomes
an important factor in application performance.
Multiple nodes requesting the same file from one
networked storage device can lead to clients sit-

1



0

1

2

3

4

5

6

7

1 2 3 4

Number of Clients

P
e
r-

c
li
e
n

t 
T
h

ro
u

g
h

p
u

t 
(
M

b
 /

 s
e
c
)

Series1

Figure 1: Performance of a single FreeBSD NFS
server serving multiple clients: We varied the number
of clients concurrently reading a 200 MB file and observed
a nearly linear decrease in per-client throughput.

ting idle, wasting valuable computing time, while
waiting for their data to arrive. Considering the
long-running nature of these applications and the
fact that they spend nearly all of their time read-
ing, we suggest that a file server capable of im-
proving read access times for these applications
could provide a significant boost in application
performance.

This paper presents an NFS file server
that provides high throughput for these read-
intensive applications. Our goal is to allevi-
ate the bottleneck that occurs when a single
NFS server is used as the storage medium in
such environments. Figure 1 illustrates the per-
formance degradation experienced by multiple
clients reading the same file from a single NFS
server.

Our system consists of two separate compo-
nents: NFSStripe, which is an NFS loopback
server, and StripeServer, a data block server
that NFSStripe communicates with. NFSStripe
is intended to be run on each client requiring ac-
cess to a common filesystem. It reads and writes
data in fixed-size blocks by communicating with
StripeServer data storage servers which main-
tain the blocks on stable media.

Observations about the workload characteris-
tics of the applications that we expect our sys-
tem to service, in particular, scientific data min-
ing, have allowed us to fine-tune the interaction

between these two components to enable high
read throughput while simultaneously ensuring
the coherence of the filesystem. That is, because
the clients are expected to make frequent con-
current read operations (but infrequent writes),
we allow multiple NFSStripe servers to simulta-
neously read a file, but require that operations
which modify the filesystem be given exclusive
access to those structures being modified. The
protocol that enforces this, combined with a sim-
ple “striping” scheme where the blocks constitut-
ing a file are laid out over multiple StripeServer
machines, enables multiple clients to read the
same file (albeit different blocks) simultaneously
without suffering from delays caused by lock con-
tention or overloaded data servers.

We would like our system to provide seman-
tics to the client that mimic as closely as possi-
ble those of a single local disk, since that is what
most users and programmers have come to ex-
pect. Put another way, users and applications
should notice no difference between interacting
with a filesystem residing on a local disk ver-
sus one mounted via an NFSStripe server. In
this regard, the choice of NFS as an interface
to the client is a reasonable one since that was
one of the original goals laid out by Sandberg et
al. [9]. We note also that, at a more technical
level, because its interface complies to the NFS
v3 [7] standard, existing programs may access an
NFSStripe filesystem without modification.

2 Related Work

In an effort to provide better performance scala-
bility than the single-server setup achieves, we
take an approach similar to that of Frangi-
pani [10] by layering NFSStripe on top of mul-
tiple StripeServer data servers. Similar to
that of the Frangipani’s sister service, Petal,
StripeServer behaves like a “network disk” in
that data may be read or written in blocks. In
contrast with Frangipani, however, NFSStripe
server is a full-featured NFS v3 [7] loopback
server [6], meaning that the large number of
systems already including an NFS client do not
need kernel modification or special device drivers

2



to use our system. Additionally, since both
NFSStripe and StripeServer run as user pro-
cesses and do not require special administrative
privileges to run1, we believe that our system
provides greater administrative flexibility than
does Frangipani.

FAB [8] is a distributed disk array that aims to
achieve reliability through a voting-based algo-
rithm that distributes data among a federation
of bricks. NFSStripe’s goals differ from those
of FAB in that we focus on high read through-
put, whereas FAB focuses on reliability. For
applications that do not need as much reliabil-
ity, e.g., they backup their data, our system has
the potential to better utilize disk resources and
achieve similar levels of throughput.

Zebra [4] is a network filesystem that stripes
its log and batches many small files together to
achieve high performance; it is resilient against
single-server failures because it uses a parity
stripe. Zebra is optimized for sequential small
file accesses however, it is not necessarily suit-
able for running database applications that ran-
domly read large files. Our system is capable of
handling sequential and random reads with high
throughput.

3 Design

Recall that our filesystem consists of two
components: NFSStripe and StripeServer.
NFSStripe is an NFS loopback server that com-
municates with multiple machines running in-
stances of StripeServer. We intend NFSStripe
to be run on each client requiring access to the
shared filesystem. Figure 2 illustrates the inter-
action between the different parts of the system.
StripeServer stores and retrieves 8k blocks of
data, and each file’s content blocks are laid out
and retrieved by NFSStripe in “stripes” across
multiple StripeServer machines.

As mentioned earlier, there are two main chal-
lenges associated with designing a filesystem

1There is one daemon that requires root permissions
to start, but it need only be started once to allow multi-
ple NFSStripe instances to inform the operating system
of their presence, and typically needs no administrative
attention once it is running.

Figure 2: Interaction between NFSStripe

StripeServer: Each NFSStripe client communicates
with all of the StripeServer data block servers.

where multiple clients need fast concurrent read
access. One is to guarantee filesystem coher-
ence, even in the event of network partitions or
server failures. The second challenge is to devise
a scheme for efficiently distributing data among
the multiple StripeServer instances. We ad-
dress the former in this section along with a dis-
cussion on persistence across system crashes, but
defer discussion of the second challenge until Sec-
tion 4.

3.1 Consistency and Crash Recovery

The main goal of our filesystem is performance.
Users of our system will tolerate downtime
should one of the StripeServer instances be-
come unreachable, and the whole filesystem will
be unusable until the that server again becomes
available. If an operation was in progress when a
server failed, then that operation might be lost.
In other words, our filesystem does not try to
offer better availability than a single local disk.

Although we do not aim to offer enhanced
availability, maintaining data consistency is im-
portant to us. A server crash should not ren-
der the filesystem forever unusable. Once the
server restarts, and without performing any ad-
ditional recovery operation, the directory struc-
ture should be in some usable state.

Our initial goal was to guarantee that the work
done in handling every NFS call appear atomic.
While achieving atomicity is fairly simple when
both servers and clients never fail, it turns out
to be very difficult to make operations atomic

3



across servers if servers fail at arbitrary times2.
Note that we do not address the issue of client
failure.

Therefore, rather than trying to build ex-
tremely complex protocols to ensure atomicity,
we opted for weaker guarantees. We want the
directory structure to be usable whenever the
filesystem is up: that is, if a client can access the
directory structure, the directory structure that
it sees will make sense. For example, a client
should never see a directory entry that points off
to nowhere. However, there may be garbage in
the system, e.g., a file that still takes up space,
even though it cannot be accessed by traversing
the directory tree. We achieve this constraint by
careful ordering of operations. (This is the same
technique that UFS uses).

The general idea is that when adding data to
the filesystem, we ensure that the data is stable
before we update the metadata (i-node) of the
structure being modified. For example, when a
directory entry is being added, we update the
directory entry only after ensuring that the file
to which it will point is in stable storage. We do
the reverse when removing data. This ordering
ensures that a server crash in the middle of an
operation will not result in corrupt metadata,
and that the filesystem’s structure will remain
intact.

Moving a file across directories is ostensibly
the most interesting and challenging operation
to implement correctly in the presence of possi-
ble failures, so we pay it special attention here.
The best we can do with operation ordering is to
guarantee that a file never gets lost. However,
if the server crashes, we might end up with two
copies of the file. Since we implemented a move
by first adding the file to the new directory, and
then deleting it from the old, we will have two
copies of the file in the directory structure if the
crash happens between these two steps.

2In fact, we suspect that enforcing atomic updates to
multiple servers is equivalent to the two-generals problem.
In this case, guaranteeing atomicity is impossible if we
want the client to be able to decide whether a call has
succeeded or failed in bounded time.

3.2 Locking and Filesystem Coher-
ence

We use locking to guarantee the coherence of our
filesystem by making multi-step operations ap-
pear atomic.

Without locking, any operation that modifies
the filesystem and that cannot be performed by a
single call to a StripeServer threatens to leave
the filesystem in an inconsistent state. For exam-
ple, when creating a file, we need to retrieve the
block containing the directory’s contents, add
the entry for the new file, and then put the block
back onto the StripeServer. If a second client
also updates the directory’s contents between the
first client’s fetch and replacement of the block,
the first client’s modifications will overwrite the
second client’s changes. We therefore use locking
to ensure strict consistency so that when a client
modifies a directory, that client is granted sole
access to the directory’s contents and metadata.

We chose the i-node of a file or directory as the
object that we lock. A client with an exclusive
lock on the i-node of a file can be sure that no
other client will modify any part of that file until
the lock is released.

To enhance performance, our filesystem differ-
entiates between read and write locks. Multiple
clients may have read locks out on the same i-
node, but only one client may have a write lock.
(The clients need to acquire read locks before
reading to prevent them from seeing parts of an
operation in progress.) The lock server, imple-
mented as part of StripeServer, will not grant
a write lock until all other read and write locks
on the i-node are released. Once the lock server
grants a write lock, it will not grant any other
locks on the i-node until the write lock is re-
leased.

The lock service, like the block service, is
distributed. The server that is responsible for
serving a given i-node (discussed in Section 4)
is also responsible for managing the locks as-
sociated with that i-node. In other words, ev-
ery StripeServer has integrated into it a lock
server. This design eliminates the bottleneck of
having just a single lock server, which also helps
to improve performance.

4



For performance reasons, the client does not
store its locks in permanent storage. It is there-
fore possible that a client may fail after acquir-
ing, but before releasing, a lock. In this case,
the lock may never be released. We decided not
to handle this mode of failure in our filesystem,
although one possible solution is to allow users
to manually release locks using a separate util-
ity when users discover that the client holding a
lock has crashed.

3.2.1 When to Perform Locking

Not every NFS call requires locking. Because we
implement UFS semantics by writing the i-node
last, a call that only reads metadata, such as
GETATTR, does not require locking.

The operations that require locking are the
ones that examine an i-node and then decide
which data blocks to read or write. For exam-
ple, a READ call needs to lock, because if it did
not, then after it read the i-node to determine
the file’s size, another client might shorten the
file before the READ call has a chance to actu-
ally fetch the data blocks. We also need locking
for any structural modifications that are made
to the directory tree in order to prevent another
client from simultaneously modifying the same
structure.

As an example, the locking for the RENAME
call presents a special challenge: we need to lock
both the source and the destination directories,
but there is the risk that another client may try
to move a file in the opposite direction at the
same time, resulting in a deadlock. To solve this
problem, we decided to lock the i-nodes of the
two directories in lexicographic order.

4 Implementation

4.1 Distributing Data Among Multi-
ple Servers

Although an NFS file handle logically identifies a
file in our filesystem, we need a method to locate
content blocks and metadata for each file among
the multiple StripeServer instances in the sys-
tem. To represent this mapping, a 96-bit identi-

fier (ID) is used internally to name each block.
This identifier consists of a 64-bit NFS file handle
onto which we concatenate a 32-bit integer “off-
set.” By convention, offset 0 is reserved for the
block containing the file’s metadata. The con-
tent blocks for a file are sequentially segmented
into 8k units and stored with ID offsets ranging
from 1 to 232 − 1. Since each block is 8k, each
file can theoretically contain up to 35 terabytes
of data.

To determine which StripeServer a particu-
lar block resides on, we add the ID’s file handle to
its offset. We then take this 64-bit sum modulo
the number of servers k to get a server identifier
in the range of 0 to k−1. We assign an arbitrary
but fixed ordering of the StripeServer instances
with which NFSStripe communicates, labeling
each uniquely with one of i ∈ {0 ≤ k−1}. In this
way, the server identifier computed above maps
to a StripeServer responsible for the block in
question. Assuming an unbiased distribution of
file sizes, this scheme results in uniform expected
load balancing, as each new file created in the
filesystem will have its i-node stored on the next
server in the sequence. The 8k data blocks are
distributed in a round-robin fashion beginning
with the next block server after the one hold-
ing the i-node. In practice, we have found this
scheme to result in a reasonably uniform distri-
bution of 8k blocks among the StripeServer
machines.

4.2 Reading a File

When NFSStripe receives a request requiring
it to fetch a block of data, it first calculates
which block server holds the file’s i-node. It
then asks the server holding the i-node for a
read lock on the file. This read lock on the
i-node is valid for any part of the file’s con-
tents. The NFSStripe server then calculates
which StripeServer instances hold the blocks
containing the data for the portion of the file be-
ing read. This calculation may result in more
than one StripeServer, as a client may read
data past an 8k-block boundary. Finally, each
individual StripeServer is asked to send the
relevant data blocks to NFSStripe. The blocks

5



are then merged and the data is sent back to
the client to satisfy its original request. If
StripeServer finds that some client has cur-
rently locked the specified file for writing, it de-
lays granting the read lock and performing the
subsequent fetch until the write operation fin-
ishes and a read lock can be acquired.

By striping the data across multiple block
servers, the individual load on any particu-
lar block server will remain low, thus allow-
ing the aggregate throughput to scale as more
StripeServer instances are added. That is,
since a client attempting to read sequentially
through a large file will cause NFSStripe to re-
trieve blocks from each StripeServer in round-
robin fashion, each StripeServer will become
immediately available to serve other NFSStripe
requests, presumably from other clients.

One weakness of this design centers around the
need for each READ request to retrieve a file’s i-
node, which, for any given file is stored on a sin-
gle StripeServer. Although our multi-reader
locking scheme mitigates the performance hit on
an i-node’s StripeServer, this issue may cause
scalability problems and is an area for future re-
search. One approach to alleviating this bot-
tleneck may involve caching metadata on each
NFSStripe server. Another solution may in-
volve replicating each metadata block onto ev-
ery StripeServer, allowing NFSStripe to ac-
quire metadata from the same StripeServer
it intends to read content from. Both of
these schemes, however, would require significant
changes to our locking protocol.

4.3 Writing to a File

When NFSStripe receives a request requiring it
to modify a data structure in the filesystem, such
as writing to a file, it first determines which
StripeServer holds the file’s i-node. NFSStripe
then sends that server a request for a write lock
on the file. The lock server running as part
of that StripeServer instance then waits un-
til all read locks on that file have been released.
Once that happens, a write lock is issued to the
NFSStripe server that requested it. This lock
allows exclusive access to all data in the file.

The procedure for writing follows from that
used when reading: a block is fetched from the
appropriate StripeServer, modified, then writ-
ten back to the same server (if no block previ-
ously existed for the extent of the file being writ-
ten, one is created, rather than fetched). Af-
terwards, NFSStripe contacts the i-node’s lock
server to release the write lock.

4.4 StripeServer Operations

Each of the following calls execute atomically
on StripeServer, in the order they are received.

acquire read(key): Lock the block named by
key for reading. The server will allow other
acquire read()s on the same key, but will
block acquire write()s.

acquire write(key): Lock the block named
by key for writing. The server will block other
acquire write()s and acquire read()s on the
same key.

get(key): Return the block named by key.

put(key, data): Store the block data named
by key.

delete(key): Delete the block named by
key.

unlock(key): Unlock the block named by
key.

4.5 NFS Calls

We implemented all of the relevant NFS RPCs,
including RMDIR and RENAME. For ACCESS, we
chose not to implement permissions and allowed
execution of all operations. To give the reader
a sense of how NFSStripe actually implements
these operations via the StripeServer interface,
we give a detailed explanation of the CREATE rou-
tine.

In CREATE, we acquire a write lock on the i-
node of the directory in which the file will be

6



MORRIS: A Distributed File Server for Read-Intensive Applications

David Chau, Jennifer Lin, Michael Matczynski, Nathan Palmer
{ddcc, jwlin, mikem, palmer}@mit.edu

May 12, 2005

1 asdf

1.1 NFS Calls

We implemented all of the relevant NFS RPCs,
including RMDIR and RENAME. For ACCESS, we
chose not to implement permissions and allowed
execution of all operations. To give the reader
a sense of how actually implements these opera-
tions via the interface, we give a detailed expla-
nation of the CREATE routine.

Note that for efficiency, we do not update the
atime on files when we access them. Only the
mtime and ctime are updated upon modifica-
tion.

CREATE RPC

create(dir file handle, file name):

acquire write(dir file handle)

get(dir inode)

get(dir listing)

if (dir does not already contain filename):

put(inode for new file)

put(updated dir list with new file entry)

put(dir inode) with updated mtime, ctime

unlock(dir file handle)

Pseudocode of CREATE RPC: Create a file, where

inode(fh) represents the key for the inode for the given

file handle and data(fh) represents the key(s) for the data

corresponding to the file handle.

2 Performance

1

Figure 3: Pseudocode of CREATE RPC: Create a
file, where inode(fh) represents the key for the inode for
the given file handle and data(fh) represents the key(s)
for the data corresponding to the file handle.

created, as shown in the pseudocode in Figure 3.
We retrieve the block containing the directory’s
contents, add the entry for the new file if it does
not already exist, and then put the i-node for
the new file followed by the updated block of di-
rectory’s content on the server. We then update
the i-node of the directory and release the write
lock.

Locking is necessary to prevent, for example,
LOOKUP from accessing the new i-node for the
new file until the CREATE operation is done, thus
ensuring atomicity. If the server crashes before
CREATE finishes, then we will have the i-node for
the new file stored somewhere, but the new file
will not be accessible from the directory tree,
which is acceptable.

Note that for efficiency, we do not update the
atime on files when we access them. Only the
mtime and ctime are updated upon modifica-
tion.

5 Performance

We evaluated the performance of our system on
the Emulab [13] testbed, using two different con-
figurations of eight 850 Mhz Pentium III ma-
chines running FreeBSD 4.9, each containing 512
MB of RAM. All of the tests presented here con-
sisted of reading a single 200 MB file.

5.1 The Marginal Penalty for an Ad-
ditional Reader

In the first experiment, we set up four of
the machines running StripeServer instances,
while the remaining four acted as clients run-
ning NFSStripe instances. Our goal in this ex-
periment was to understand the marginal per-
formance penalty, if any, that our system in-
curred when an additional client attempts a
concurrent read of a file striped across mul-
tiple StripeServer instances. To study this,
we measured the per-client throughput when
one, two, three or four clients (all running their
own NFSStripe instances) concurrently read
the same 200 MB file striped across the four
StripeServer instances.

In order to compare our system to a stan-
dard single-server NFS setup, we exported (via
FreeBSD 4.9’s native NFS server) a directory
stored on local disk on one of the machines that
served as a StripeServer in the above exper-
iment. We placed the same 200 MB file in
that directory, and took the same measurements
as above, measuring per-client throughput when
one, two, three, and four clients attempted to
read the file at the same time.

Figure 4 illustrates the results of these two
experiments. With only one NFSStripe client
reading, our system provides an average read
rate of 2.58 MB/sec, roughly 40% of FreeBSD’s
6.50 MB/sec average. We highlight, however,
the fact that when all four clients are reading,
FreeBSD’s per-client throughput drops substan-
tially to 36% of its one-client throughput. In con-
trast, with four readers, NFSStripe’s per-client
throughput falls only slightly to 81% of its single-
reader throughput.

Preliminary analysis of the activity on the
StripeServer machines seems to indicate that
the drop in performance that NFSStripe sees
when multiple clients read the same file can be
attributed to the metadata for a file being stored
on only one StripeServer. Each NFS READ op-
eration requires that the file’s i-node be fetched
and thus, the server holding the i-node for our
200 MB test file received an inordinate amount of
traffic in relation to the other block servers. As

7



Figure 4: Performance of NFSStripe communicating with four StripeServer instances compared to
FreeBSD’s NFS server serving multiple clients: We varied the number of clients concurrently reading a 200
MB file and observed only a 19% decrease in per-client throughput for NFSStripe between the 1-client and 4-client
scenarios, and an increase in total throughput by a factor of 3.25. FreeBSD’s NFS server suffers roughly a 64%
decrease in per-client throughput, while aggregate throughput remains basically constant.

mentioned in Section 4.2, there are several possi-
ble solutions that we intend to explore, including
caching and replication of metadata. Real-world
workloads, however, are likely to consist of more
than one file, and should not present such a dras-
tic problem.

Another possible cause for NFSStripe’s per-
formance degradation on READ operations may
be that the interaction between NFSStripe and
StripeServer required to fulfill a READ request
results in significantly more network messages
than the standard NFS setup. NFSStripe must
first wait for a read lock to be granted (two mes-
sages), then send a request for the file’s metadata
(another two messages), and finally request a
particular data block and wait for its arrival (an-
other two messages). At a total of six messages,
NFSStripe and StripeServer are three times
as chatty as the interaction between a standard
NFS server and client. It is possible that net-
work latency is the bottleneck causing our sys-
tem’s slower performance. While sending thrice
as many messages, our system is slightly more
than twice as slow (in the single-client scenario)
as the FreeBSD NFS server. In future versions,

we would like to explore methods for integrating
lock requests with their respective block requests
in order to reduce the number of messages passed
between NFSStripe and StripeServer.

Since average per-client throughput dropped
to only 81% when all four clients were reading,
the total throughput of the system increased by a
factor of roughly 3.25 to 8.37 MB/sec. Increasing
the number of clients reading from our system in-
creased its total throughput, whereas FreeBSD’s
total throughput remains constant (with the ex-
ception of the single client scenario) at just over
11 MB/sec.

5.2 Determining an Optimal MOR-
RIS Configuration

In a second experiment, we wanted to study how
our system performs relative to a standard NFS
server when both systems are pushed to their
limit with READ requests. Figure 5 sumarizes
the results of this experiment. We first set up
one machine running StripeServer and six ma-
chines acting as clients, each running its own
NFSStripe instance. After placing our 200 MB
test file in the filesystem managed by NFSStripe,

8



we measured average total system throughput
(the average sum of the throughput measure-
ments taken for each NFSStripe server). We
then repeated this test, but increased the number
of StripeServer instances servicing NFSStripe
to two. For comparison, we measured the total
throughput of six clients reading the same file
from FreeBSD’s NFS server, and observed, pre-
dictably, that it was just above 11 MB/sec.

We drew two conclusions from this experi-
ment. The first, given the sharp upward trend
in performance when we introduced the second
StripeServer, is that when there are multi-
ple clients performing reads, employing several
data servers is an effective strategy to scale to-
tal throughput, assuming the number of clients
is greater than the number of servers. Though
we lacked the resources to present evidence in
this paper, we expect that there is nothing to be
gained by using more StripeServer instances
than readers. Intuitively, we would expect that
this will result in some servers sitting idle while
the clients are busy requesting blocks from oth-
ers.

The second, and perhaps more interesting,
conclusion comes from the observation that the
arrangement of four StripeServer machines
serving four NFSStripe machines (explained in
section 5.1) provided lower total throughput
than did the two StripeServer, six NFSStripe
arrangement employed here. This implies that
one StripeServer is capable of serving data
quickly enough to keep multiple NFSStripe
servers satisfied at the same time. Again, we
suggest that this performance characteristic is a
result of network latency; the StripeServer ma-
chines are sitting basically idle while waiting for
messages to arrive at and from the NFSStripe
servers. Put another way, this experiment sug-
gests that, for a fixed set of resources (machines),
obtaining optimal throughput using the MOR-
RIS system requires using significantly more
client NFSStripe machines than StripeServer
machines.

We assume that after progressively increasing
the ratio of readers to StripeServer machines,
total throughput performance will plateau once
demand on the StripeServer machines meets

or exceeds their ability to respond. Again, we
lacked the resources to determine this threshold,
since we were limited to eight machines when
testing.

6 Conclusion

MORRIS achieves high throughput and filesys-
tem coherence for read-intensive applications.
It efficiently distributes data across multi-
ple StripeServer instances to attain load-
balancing. Our multiple-reader/single-writer
locking protocol allows this design to scale bet-
ter than a single NFS system. With further re-
search, this design has the potential to outper-
form existing filesystems for read-intensive ap-
plications.

6.1 Other Applications

In addition to providing a high throughput server
for data-mining applications, MORRIS can be
set up as a decentralized workgroup data store
that allows workstations to combine spare disk
space into a unified shared filesystem. For ex-
ample, if 10 users contribute 5 GB each, the
workstations can share a single 50 GB filesys-
tem. Aside from saving the disk space and has-
sle associated with multiple clients maintaining
independent copies of the same file, this arrange-
ment also provides natural load balancing, as all
workstations contribute to serving files. Thus,
the effect of one slow or busy workstation will be
minimized.

References

[1] S. F. Altschul, T. L. Madden, A. A. Schaffer,
J. Zhang, Z. Zhang, W. Miller, and D. J. Lip-
man. Gapped BLAST and PSI–BLAST: a new
generation of protein database search programs.
Nucleic Acids Res., 25:3389–3402, 1997.

[2] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman,
J. Ostell, and D. L. Wheeler. Genbank: update.
Nucleic Acids Research, 23, Database issue:D23–
D26, 2004.

[3] H.M. Berman, J. Westbrook, Z. Feng,
G. Gilliland, T.N. Bhat, H. Weissig, I.N.

9



Figure 5: Performance of NFSStripe communicating with one and two StripeServer instances: We varied
the number of StripeServer instances serving NFSStripe while clients concurrently read a 200 MB file. We see a
significant increase in total system throughput with the introduction of only one additional StripeServer. With two
StripeServer instances, our system comes close to the 11.28 MB/sec served by FreeBSD’s NFS server.

Shindyalov, and P.E. Bourne. The protein data
bank. Nucleic Acids Res., 28:235–242, 2000.

[4] John H. Hartman and John K. Ousterhout. The
zebra striped network file system. ACM Trans.
Comput. Syst., 13(3):274–310, 1995.

[5] K. Li. Clustalw-mpi: Clustalw analysis using
distributed and parallel computing. Bioinfor-
matics, 19, no.12:1585–1586, 2003.

[6] D. Mazieres.

[7] B. Pawlowski, C. Juszczak, P. Staubach,
C. Smith, D. Lebel, and D. Hitz. Nfs version
3 design and implementation. In Proceedings
of the Summer USENIX Technical Conference,
pages 137 – 152, 1994.

[8] Y. Saito, S. Frolund, A. Veitch, A. Merchant,
and S. Spence. Fab:building distributed enter-
prise disk arrays from commodity components.
ACM SIGPLAN Notices, 39, issue 11:48 – 58,
2004.

[9] R. Sandberg, D. Goldberg, S. Kleiman,
D. Walsh, and B. Lyon. Design and implemen-
tation of the Sun Network Filesystem. In Proc.
Summer 1985 USENIX Conf., pages 119–130,
Portland OR (USA), 1985.

[10] Chandramohan A. Thekkath, Timothy Mann,
and Edward K. Lee. Frangipani: A scalable dis-

tributed file system. In Symposium on Operating
Systems Principles, pages 224–237, 1997.

[11] P. Vaidyanathan and T. Madhyastha. Dynamic
replication to improve input/output scalability
of genomic alignment. In Proceedings of the
International Workshop on Challenges of Large
Applications in Distributed Environments, 2003.

[12] A. Waugh, G. A. Williams, L. Wei, and R. B.
Altman. Using metacomputing tools to facili-
tate large scale analyses of biological databases.
In Proceedings of the Pacific Symposium on Bio-
computing 2001, 2001.

[13] B. White, J. Lepreau, L. Stoller, R. Ricci,
S. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental envi-
ronment for distributed systems and networks.
In Proceedings of the 5th Symposium on Operat-
ing Systems Design and Implementation, pages
255–270, 2002.

10


