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Many personal computers are operated with no
backup strategy for protecting data in the event of
loss or failure. At the same time, PCs are likely to
contain spare disk space and unused networking re-
sources. We present the Apportioned Backup System
(ABS), which provides a reliable collaborative backup
resource by leveraging these independent, distributed
resources. With ABS, procuring and maintaining spe-
cialized backup hardware is unnecessary. ABS makes
efficient use of network and storage resources through
use of coding techniques, convergent encryption and
storage, and efficient versioning and verification pro-
cesses. The system also painlessly accommodates dy-
namic expansion of system compute, storage, and net-
work resources, and is tolerant of catastrophic node
failures.

1 Introduction

Typical backup systems suffer from several con-
straints imposed largely by centralized architec-
tures. Centralization prohibits scalability; adding
capacity is rarely as easy as adding another com-
puter to the system with more disk storage. To-
day’s backup systems require dedicated hardware
resources, and these resources are usually geo-
graphically localized, making them susceptible to
simultaneous failure. Finally, typical backup sys-
tems ultimately require administrative resources
in addition to those of maintaining the client sys-
tems. Some systems compensate for the locality
inherent in a centralized design by providing off-
site backup, but such compensation comes at the
expense of administrative and maintenance costs.

At the same time, many of the client machines
which rely on backup systems contain unused
storage and computational resources [1], exhibit
geographic diversity, and are already maintained

by their users or administrators. The utility of
these features is invariant with the number of
client machines considered. In other words, these
features scale.

These observations have resulted in the cre-
ation of several self-managed, distributed systems
which take advantage of peer-to-peer relation-
ships to provide backup services [2, 3, 4, 5] (see
Section 8). In this paper we describe ABS, which
presents several novel features not seen in dis-
tributed backup systems thus far, including an
rsync-based versioning scheme, a novel storage
verification process, and storage/recovery guar-
antees in the face of failures.

2 Goals

A number of trade-offs can be made when de-
signing a distributed backup system, dependent
on how the system is expected to be deployed.
The implementation of ABS that we describe in
this paper focuses on the use case of 10s of PCs
connected via a LAN or through broadband Inter-
net connections. We believe the architecture pre-
sented can support other types of environments
with little modification. Though users of an ABS
cluster are expected to generally trust one an-
other, the collaborative nature of the system dic-
tates that safeguards must be in place to prevent
unauthorized access to stored data and to pre-
vent abuse of the system by “greedy” users. ABS
is designed to: 1) allow nodes to join, leave, and
fail with some frequency, without losing data or
preventing backup and restore operations, 2) pro-
vide resiliency to data loss on nodes that have
not failed, 3) store data securely, so that only
authorized users may access content, 4) provide
archival capabilities for both current and previ-
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ous versions of the same file, 5) provide some level
of resistance to misbehavior, including modified
nodes which may wish to “cheat” by storing less
data than they claim, and 6) provide efficient,
load-balanced storage of data,

The system must also be easy to use and ad-
minister. The backup system will be used to
recover corrupted or accidentally deleted files
and access previous versions of existing files. If
the user’s local storage fails, complete recovery
should be possible regardless of whether the user
has a copy of the list of files that were previously
stored.

3 System Architecture
The design of ABS addresses the goals outlined
in Section 2 by employing: 1) coding techniques
to deal with storage node transience and data
loss, 2) encryption to provide privacy and se-
curity, 3) convergent encryption and convergent
storage (also called single instance store [6]) for
efficient storage of data, 4) file versioning [2] for
efficient archival of data, 5) a novel, resource-
efficient data verification scheme for misbehavior
prevention, and 6) a distributed hash table [8] to
provide storage placement, load balancing, and
keyspace management.

ABS is logically separated into two parts: a
server and a client.

Every machine continuously runs an instance
of the server which provides a distributed block
store view to the client. This store allows data of
arbitrary length (fragments) to be stored under
20-byte keys, along with fragment related meta-
data (fragment metadata). Key/data/metadata
tuples are accompanied by signatures, which are
private key signatures over the data/metadata.
These signatures are used as 1) an integrity check
on the data, and 2) as a statement of ownership of
the data. These same keys are used to sign delete
requests, so the signature allows a server to verify
that a delete request is legal and authentic.

The block store hides the complexity of dealing
with server transience and distributed storage be-
hind an API used by the client. This allows the
client to view the block store as a single mono-
lithic entity that will perform best effort put/get
operations, guaranteeing fragment retrieval if a
fragment exists on an active server. The details
of the block store are covered in more detail in
section 5.

The client’s responsibility is to use the prop-
erties provided by the block store to provide
meaningful backup services to a user. The client
chooses, given a file, what fragments should be
stored, under which keys, and what metadata
should accompany those key/data pairs. The
client also monitors the status of fragments it
has added to the system in the past, and is re-
sponsible for ensuring that the correct fragments
are available; for example, if a server crashes, the
client is responsible for determing what data was
lost and replacing it in the network if necessary.

The client provides several services to users.
The most important service is recovery. In the
event of a catastrophic failure, the user needs
only his public/private key pair for the client to
completely recover the user’s files. This service
is provided using the signature infrastructure of
the block store. The second service is version-
ing, which provides efficient backup archiving and
protection from accidental file overwrites. The
details of the client operations are contained in
section 4.

The client uses a coding library to generate
fragments for storage. This provides the client
with some resilience to fragment losses in the
block store (which occur unavoidably due to
downtime of participating nodes). These frag-
ments are also compressed to minimize network
bandwidth and storage requirements. Further-
more, fragments are encrypted to protect the pri-
vacy of users. Finally, the storage keys for the
fragments are generated in a canonical way, so
that ABS can realize the benefits of single in-
stance store: if two users store the same file con-
tents, their clients will generate the same frag-
ments independently, and only one copy of each
fragment will be stored in the network.

The client and server also implement a verifi-
cation operation, a lightweight method by which
the client can confirm that the server is making
a good faith effort to store a fragment.

4 The ABS Client
This section is structured functionally; section 4.1
covers the operations involved in generating and
storing fragments, section 4.2 covers the recipro-
cal operation of recovering users’ files from the
block store, and section 4.3 discusses the actions
taken by the client to maintain the availability
of fragments in the block store and realize the
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Figure 1: File Storage in ABS

storage benefits of single instance store.

4.1 Generation and Storage of Fragments

The user initiates the storage process by selecting
files through a GUI or commandline interface, or
by configuring a daemon such as cron to perform
the task automatically. Once files are selected
for storage in ABS, the client process performs
a sequence of operations on the files to generate
fragments for storage. These fragments are then
inserted into the block store in a canonical way.
The steps involved in storage are shown in Figure
1. The input to this pipeline is a file, with its
associated file system metadata.

4.1.1 File Versioning

The ABS client leverages the capabilities of the
block store and the rsync [9] library to offer file
versioning services to users, which helps maintain
efficient storage use. It takes a disk file (with
associated file system metadata) and produces a
new (possibly different) file and metadata for the
next stage in the pipeline.

The first time a file is stored, the client uses
rsync to generate a difference signature over the
file (which is called the basis file). A difference
signature is a compact, hash-based representation
of a file that supports fast, file block comparisons
between two file versions. Signatures are saved on
the client, and can optionally be backed up to the
block store as a normal file. Once the difference
signature is generated, the file is stored.

If the file being stored already has a difference
signature on file, the client uses rsync to generate
a delta file that encodes the difference between

the file being stored and the original basis file.
This delta file replaces the modified file for the
remainder of the pipeline, and a note is added to
the file metadata indicating which file is the basis
for the delta.

These deltas can often be smaller than the
whole modified file; thus, difference versioning
can provide a space savings. However, it may
also decrease the availability of the modified file
by creating dependencies on prior versions.

4.1.2 Coding and Fragmenting

After versioning is complete, the next step is to
split the incoming file into some number of frag-
ments. This split is accomplished following cod-
ing.

Coding techniques allow for recovery of data
in the face of failure by producing data parity.
Coded data can then be divided into fragments,
where only some number of fragments less than
the total number are needed to reconstruct the
file.1 The design of ABS calls for using a version
of the large block FEC described in [10], which
produces blocks of parity to be appended to the
file. The guarantee for retrieval in the face of
failure is adjustable.

In order to maintain the invariant that no two
fragments belonging to the same file are stored
on the same node (which is necessary to pro-
vide the above guarantees), the content of the
file is hashed to produce a file collision key. The
block store helps the client guarantee that no
two fragments with the same file collision key are
placed on the same physical machine. This helps
preserve independence between fragment losses,
since the fragments from a file are each placed on
different servers.

Thus, the coding step takes a file and some
metadata and produces n fragments with n as-
sociated pieces of metadata. This metadata is a
complete copy of the file metadata, plus the infor-
mation required to identify this fragment’s place
in the file (e.g. “fragment 3/6, large block FEC”).

4.1.3 Compression

Next, fragments may be optionally compressed
to reduce their size. Compression occurs be-
fore encryption to take advantage of regularity

1in our preliminary implementation, we use replication
instead of a low-density parity-check codec. Replica-
tion is a subset of coding, providing protection for x-1
failures where the number of replicas is x.
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within the fragment and occurs after the cod-
ing stage to minimize dependencies among stored
fragments. Experimental results (detailed in Sec-
tion 7.1) confirm that this compression strategy
yields significant storage reductions.

Compression only covers the fragment, leaving
the metadata intact. It does, however, append
a note to the metadata indicating whether the
fragment was compressed.

4.1.4 Encryption

After compression, each fragment is encrypted us-
ing a symmetric encryption function. The key
for this encryption is the hash of the fragment’s
contents. This encryption is meant to prevent
nodes storing a fragment from determining the
fragment’s contents.

The key is chosen to be the fragment hash for
several reasons. First, it preserves single instance
store [6], since identical fragments will remain
identical after encryption, even when encrypted
by different users. This is also known as con-
vergent encryption [11]. Second, it suggests that
only users with access to the fragment’s unen-
crypted content can generate the key needed to
decrypt the encrypted fragment.

The key used in the encryption is added to the
fragment metadata, and the fragment metadata
is finalized by encrypting it using the user’s public
key. This ensures the privacy of the metadata and
protects the encryption key added to the meta-
data during the encryption step.

4.1.5 Signing

The final step prior to storage is the generation
of a signature for the fragment. The signature is
taken over the entire encrypted fragment and the
finalized metadata using the user’s private key.

The signature is significant for several reasons.
First, it is an integrity check on the data and
metadata. Second, it acts as a statement of own-
ership: a server in the block store can now tell
that the user owns the fragment. During recov-
ery from a catastrophic failure, the user may only
have access to his public key pair: the signature
allows the server to provide the user with any
fragments he has stored. It also allows the user to
validate the data he receives during the recovery.
The signature’s statement of ownership is also im-
portant when a user wishes to remove data from
the backup system; only a removal request signed
by the same key as the data/metadata signature

will be honored by the block store.
4.1.6 Storage

Now the fragments are ready for storage. First,
the client generates a storage key, which is the
hash of the key used to encrypt the fragment.
This method of storage key generation provides
two desirable benefits. First, it maintains the
single instance store property, since identical en-
crypted fragments will have the same storage key.
Second, the storage key is easily recovered from
the unencrypted fragment, so a user cannot lose
a storage key while retaining the corresponding
data.

The client can now send the storage key, the
encrypted fragment, the finalized fragment meta-
data, and the fragment signature to the block
store. In the normal case, the block store will save
the fragment, metadata, and signature under the
storage key. If two identical fragments are stored
by different users, only one instance of the frag-
ment is stored, but separate metadata and signa-
tures are saved for each user. When a fragment
is removed, the corresponding metadata and sig-
nature are deleted; the fragment itself is only re-
moved if there are no more metadata/signature
pairs present. Thus, the signature and metadata
stored by the block store serve as a crude form of
reference counting on the fragments.

In some cases, the block store will be unable
to save a fragment and its auxiliary data under
a particular storage key. This could happen be-
cause the file collision key generated during cod-
ing collides with another fragment stored on the
same physical machine. It could also occur if the
physical machine for the storage key is unavail-
able, or if the machine has insufficient disk space
to hold the fragment.

In these cases, the client simply generates a
new storage key by computing the hash of the old
storage key. It then retries the operation using
the new key. This process continues recursively
until an acceptable storage key is found or the
client has tried all hosts on the network, in which
case the store operation simply fails.

After the operation is complete, the origi-
nal storage key and the hash depth required to
store the fragment are recorded in a client side
database to simplify retrieval. This database may
also be stored as a file in the block store. Note
that this database is completely optional, since
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the fragment can always be recovered by polling
all the nodes in the block store with the user’s
public key.

4.2 Retrieval of Fragments and File Recovery

The file retrieval operation is simply the reverse
of the storage operation. Given a file to retrieve,
the client looks in its database to determine which
fragments it needs and the storage keys corre-
sponding to those fragments, then requests the
fragments from the block store. If the database
is lost, then the client uses the user’s public key
to recover the database from the block store; or,
failing that, simply recovers as many fragments as
possible from the block store by exhaustive search
on the user’s public key until the necessary frag-
ments are found.

Once the fragments are retrieved, the client
verifies their signatures, then decrypts the final-
ized metadata. It then decrypts the fragments
using the keys from the corresponding fragment
metadatas. If necessary, it also decrypts the frag-
ments. Next, it uses the information in the meta-
data to invert the coding step and reassemble the
complete file data from its fragments. Finally, it
adds the file to the local file system, using the file
system metadata in the fragments’ metadata.

4.3 Maintenance of the Block Store

The client is also responsible for ensuring that
files stored in the block store remain available.
The client runs two processes to do this: merge
high and data verification.

4.3.1 Merge High

In some cases, the initial storage key for a frag-
ment may be unacceptable due to load-balancing
requirements, unreachability of destination stor-
age node, or file collision key requirements. Relo-
cating a fragment is accomplished by rehashing a
fragment’s storage key and reinserting it into the
system.

To ensure that convergent storage occurs to the
largest extent possible for such fragments, clients
are responsible for moving fragments as close to
the initial storage key as possible using a process
we call merge high. As part of the periodic veri-
fication process (explained in the next section), a
client attempts to move key/data pairs ’up’ the
hash chain defined by the storage key. This as-
sures that identical fragments stored by separate
clients will eventually converge in storage if pos-

sible.

4.3.2 Data Verification

Periodically, the client verifies that storage
servers still hold the correct fragments by em-
ploying a technique that maintains O(1) network
operations between any client/server pair, inde-
pendent of the number of fragments stored by the
server on behalf of the client.

The algorithm is as follows: prior to storing an
encrypted fragment, the client generates a ran-
dom number seed and uses it to generate a string
of successive random indices into the fragment
data. Byte values from these offsets are concate-
nated into a string; this string is hashed to create
a fingerprint.

After the fragment is stored, when the client
wishes to verify that the server still holds the
fragment, it transmits the seed to the server. If
the fragment is present, the server uses the seed
in conjunction with the fragment to compute the
fingerprint, which it returns to the client. If the
fingerprint sent by the server matches the client’s
saved fingerprint, the client can assume with con-
fidence that the fragment exists within the sys-
tem.

Cheating is difficult since servers cannot be
sure which seed the client will ask for, and would
thus need to invest extensive resources creating
and storing an exhaustive fingerprint list.

This algorithm may be chained : the fingerprint
from one fragment becomes the seed for a finger-
print in the next fragment. Doing this allows a
client to verify multiple fragments stored on the
same server in one compact request/reply pair.

When a verification operation fails, the client
can assume that its fragment was lost, regenerate
it (provided the corresponding file can still be re-
trieved), and store it again, perhaps on a different
node.

This verification scheme is a lightweight way
of providing modest protection against fragment
loss. It assumes the compare-by-hash risks de-
scribed in [13]. It does not provide strong guar-
antees. Further study is warranted.

5 The ABS Block Store
The backend for ABS is a distributed block store
that offers DHT-like semantics with support for
file collision keys and signature reference count-
ing. Essentially, the goal of the block store is
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twofold: 1) if a fragment exists on any ABS ma-
chine in the cluster, it should be possible to find
it, and 2) if the fragment exists in the ABS sys-
tem, it should be easy to locate, using relatively
few network queries. In every design decision,
the former trumps the latter. The most crucial
thing about a store for a backup system is that it
recover data, if there is data to recover.

5.1 Key slices, the slice table

In order to efficiently support storage and re-
trieval of fragments, the space of all possible stor-
age key values is divided into equal-sized discrete
regions called slices. A system-wide table, the
slice table, maps ABS nodes to hash slices. In the
steady state, each slice has exactly one node that
is used for both reading and writing of fragments.
However, as nodes enter and leave the system, it
is possible that several nodes will end up holding
keys for a slice, resulting in multiple read nodes.
In a well-formed table, therefore, each slice is
mapped to at most one write node, and possibly
several read nodes. Read nodes slowly transfer
fragments to the write node, so that steady state
eventually converges to one read/write node per
slice.

To insert data into the fragment store under a
particular key, the client looks up the write node
associated with the key’s hash slice, and sends the
data to that node. When attempting to recover
data for a key, the client checks the read nodes in
sequence until it finds a match.

Some slices may not have a write node. Clients
treat slices without write nodes as though the
write node for the slice was offline; the fragment
key is rehashed, and this new value is used for
storage. If a write node later comes online, the
merge high process migrates the data to the new
node (see Section 4.3.1). If a read node has no
keys for its slice, the node removes itself from the
list of read nodes for that slice. In steady state,
each slice has exactly one node which is both its
read and write node.

Slices and the slice table guide the client to
the correct server quickly during key lookups and
insertions. Given a storage key, a glance at the
slice table allows a client to determine the correct
server to query.

5.2 File collision keys and signature reference
counting

The fragment store extends the traditional DHT
semantics by providing support for file collision
keys and signature reference counting/single in-
stance store. Nodes guarantee that only one
key/value pair is held for any particular frag-
ment collision key. An attempt to store a pair
with a duplicate collision key results in an error.
The client can respond by rehashing the key and
therefore placing the data on a different node.

Nodes also keep track of signature/metadata
information for each logically distinct client that
stores a key/value pair. The key/value pair is
only removed when all the signatures/metadata
pairs have been deleted.

5.3 Maintaining the slice table

Preserving the correctness of the slice table across
node failures and network partitions is essential
to the correctness of the backup system. The
ABS cluster elects a leader as soon as it is brought
online. This leader is responsible for maintaining
the authoritative copy of the slice table. All ABS
nodes keep local copies of the slice table, but pe-
riodically refresh from the leader. Changes to the
slice table are always made and propagated from
the leader. If the leader goes offline, an election is
held to find a new leader, and all nodes download
copies of the slice table from that leader. This
strategy is sufficient, since the merge high and
join processes ensure that the new table evolves
to correctly describe the system. The slice table
is effectively soft state.

To join the ABS cluster, a new node locates
the leader, and asks to be added. The node then
retrieves a copy of the modified slice table and
begins operating. The leader changes the table
as follows:

• if there is a slice without a write node, the
leader assigns the new node as the write node
for the slice that was least recently held by
a node. If no slices are empty, the process is
more complicated (see Section 5.4).

• the new node is added as a read node for
any slices for which the new node already
has key/value pairs. This could occur when
nodes recover from downtime.

Over time, the new node takes on additional
responsibility, since data is migrated from read
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nodes for the slice to the new node. Further-
more, merge high operations will most likely be-
gin shifting keys to the new node. The new node
also takes responsibility for new writes to that
key space.

Whenever a node retrieves a copy of the slice
table, it checks to make sure that it has write
responsibility for at least one slice and that it has
read responsibility for all of the slices for which
it has key/value pairs. If it does not have write
responsibility, it rejoins the network with a join
call. If it does not have a read responsibility, it
informs the current leader, so that the slice table
can be updated appropriately.

To leave the system, a node informs the leader
that it wishes to leave. The leader then marks
the node as no longer holding write responsibility
for any slices. A well behaved exiting node will
remain online until all of its data is transferred
to new nodes. However, this is not required for
correctness.

Unreachable nodes do not necessarily lose their
write slices. Unreachable nodes are marked in
the slice table as inactive. Inactive nodes are by-
passed for purposes of storing keys, just as though
the slice were unassigned. However, when a down
node returns, it is likely to keep its old slice, min-
imizing the amount of data relocation required.

This system does not guarantee that all nodes
have the same view of the slice table. However,
different slice tables on different hosts is accept-
able, as long as the tables eventually converge,
since there is a mechanism for reshuffling data
(e.g. the merge process). We envision that node
joins and leaves will be fairly infrequent, with sev-
eral hours between events, so a gradually converg-
ing process is likely to be successful.

5.4 Empty slices

The system is likely to work best if there are
usually hash slices empty. Joins are thus trivial
and involve minimal copying. Empty hash slices
cost storage and lookup very little time, since
an empty hash slice can be bypassed without a
network query. We suspect that having roughly
twice as many hash slices as physical hosts is
a good balance. In the event that the cluster
grows more than anticipated, it is possible to re-
size slices. Each slice can simply be partitioned
into two slices. The old write node for the large
slice becomes the write node for only one of the

new slices, but the read node for both. If such
slice resizes are to be done, it most likely makes
sense to do them rarely, and only in the circum-
stance of a cluster expanding to twice its origi-
nally envisioned size.

5.5 Network partitions

Network partitions are manageable under this
scheme. After a partition heals, members of the
cluster will notice that there are two leaders (pos-
sibly by periodically asking other nodes who the
leader is). The two leaders can choose a new
leader between themselves, and the two slice ta-
bles can be merged. Since the slice tables are es-
sentially soft state, the precise mechanics of the
merge are not important. Even the trivial merge,
where the new leader executes a join operation
for each node from the other side of the partition
converges to a well formed slice table. We did
not implement code to handle network partitions
due to time constraints; however, doing so in the
future should be straightforward.

6 Implementation

Our current implementation of ABS is built us-
ing BerkeleyDB as the backing store for the
client and storage processes. Storage servers and
clients communicate via RPC, and both rely on li-
brary functionality provided by SFS, gcrypt, and
gpgerror. Versioning is accomplished with the
help of rsync. A coding library wrapped around
LDGM/LDPC also forms part of our implemen-
tation, though storage and retrieval operations
do not currently use it. Client utilities include
command-line programs as well as a GUI inter-
face. In addition to these tools, we have also built
a visualization tool to aid in demonstration and
development of ABS, and which allows us to mon-
itor the amount of data being stored on nodes,
view logs from nodes, and stop, fail, and restart
nodes.

6.1 Interfacing

ABS aims to provide a design that enables un-
complicated, cross-platform access for its users.
Multiple modes coexist in support of these goals.
A set of command line and GUI utilities allows
the user to store, retrieve, and view information.
Perhaps more interestingly, a NFS and Samba
client could be created to allow the system to
maintain typical filesystem semantics, thus en-
abling deployment in a wide variety of environ-
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ments with a broad range of operating systems.
In all interface modes, clients maintain a default
configuration which users can manipulate.

7 Analysis
Storage efficiency in ABS is provided by file com-
pression, convergent storage, and file versioning.
The presence of these is justified by the measur-
able benefit as weighed against its cost, as ex-
amined in Sections 7.1, 7.2, and 7.3. Section 7.4
explores availability guarantees as a function of
node failures and coding protection.

7.1 File Compression

Initial trials with a small number of files shows
that data which has been coded with the large
block FEC mentioned in Section 4.1.3 maintains
compressibility with the same attributes as un-
encoded data; although the added parity blocks
are not generally compressable, the non-parity re-
mainder of the file achieves roughly 99% of its
non-coded reduction in size across a range of file
types and sizes when the file (including coded par-
ity data) is compressed in its entirety. In other
words, the storage benefit is essentially the same
as if the non-coded fragments of the file were com-
pressed while the parity fragments were not.

As for the cost of compressing file fragments in-
stead of files in their entirety, trials with gzip were
performed on files of different types (postscript,
C++ source code, a binary executable, and an
mp3 audio file) ranging in size from 44K to 11M.
Measurements were taken using gzip on the whole
files, on the files split into 10 fragments, and
on the files split into 100 fragments. All exam-
ples (except for the already compressed mp3 file)
compressed to 22.7%-41.4% of their original size.
Compressibility of the fragmented files matched
that of the whole file with an extra storage cost
of between 0.5%-7%, and an extra computation
cost of between 4%-18%. The slight loss of effi-
ciency due to fragmenting is a valid tradeoff for
increased efficiency in convergent storage.

7.2 Convergent Storage

According to [11], over 90% of machines share
common files, justifying the inclusion of conver-
gent storage in the system. Its use will help main-
tain efficient storage use by reducing stored vol-
ume on initial system insertion. File versioning,
analyzed below, will maintain storage efficiency
as files change over time.
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Figure 2: Average number of lookups required to
avoid coding collisions

The major cost associated with ABS’ imple-
mentation of convergent storage is that of en-
suring that fragments belonging to the same file
end up being stored on different physical nodes.
This requires that when intra-file fragment col-
lisions occur, the colliding fragment must have
a new storage key generated, requiring further
lookup(s). .

7.2.1 Networking

Figure 2 depicts these measured and modeled
lookup costs. We forego a model discussion here
for purposes of brevity. The x-axis denotes the
percent of total system, m

n (100), machines cur-
rently storing a fragment from a given file. The
y-axis denotes the number of storage operations
necessary to find a storage node that avoids col-
lisions.

Each experimental data point represents 100
write operations to 8 storage servers. The oper-
ation consists of writing multiple replicas of ran-
domly generated 1KB files. The number of repli-
cas stored per point increases from 2 to 8 (25%
to 100% unavailability) with increasing x. The
figure positively validates the analytical model.

Interestingly, until file fragments from one file
have been stored on approximately 80% of the
system’s storage nodes, collisions rarely occur.
Even more importantly, as the size of the sys-
tem increases, the operating region of the graph
approaches the y-axis, i.e. limn→∞

m
n = 0 as-

suming m remains some fixed integer. System
performance improves as system size increases.

7.3 File Versioning Efficiency

Versioning efficiency was investigated by conduct-
ing four experiments. Experiments were divided
into versioning and non-versioning classes. Both
experiment classes were begun by writing 320
randomly generated files of size 32KB into ABS
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Figure 3: ABS Resilience to Node Failures

using 2 replicas.

In the first two experiments, nine rounds of
the following procedure was executed. First, ev-
ery byte in each file was randomly mutated. In
the versioning class, changes between new and
old versions were written into ABS. In the non-
version class, the entire new version was written
into the system.

Both classes consumed 240MB of storage. Be-
cause in each experiment entire files were ran-
domly regenerated, one would expect subsequent
versions to drastically differ. As such, the ver-
sioning experiment should and does approach the
non-versioning in storage consumption because
each new version is a more-or-less completely new
file.

In the second two experiments, nine rounds
of changes were appended to each file. Changes
consisted of 32KB of randomly generated bytes.
Upon completion, the versioning class consumed
240MB of storage, while the non-version class
consumed greater than 1.1 GB. These two exper-
iments highlight the benefits of versioning when
file changes do not include entire files.

7.4 Resiliency to Failures

ABS guarantees survival of data in the face of
some amount of node failures. The amount of
failure ABS protects against can be chosen by the
user, though standard values are provided by cod-
ing defaults. The graph in Figure 3 demonstrates
how failure resiliency varies with node failure and

coding protection.2 The data presented here was
collected on an 8 node ABS cluster by storing and
attempting to retrieve 20 random files. Each file
was protected against the percentage of node fail-
ures listed in the legend. Interestingly, ABS al-
lows a user to retrieve 90% of his files even with
6 failed nodes, so long as 4 replicas of each are
stored. In other words, the system provides rea-
sonable best-effort recovery when more nodes fail
than coding protects against.

8 Related Work
Since storing files for backup is similar in many
regards to storing files for live use, the earliest
work on distributed backup systems built heavily
on ideas and mechanisms developed for use in dis-
tributed file systems such as PAST [14], Farsite
[6], OceanStore [15], and CFS [16]. Each of these
systems has the capability to serve as a backup
device, but their designs were intended for more
general use, with none specifically tailored to the
backup task.

The first work specifically targeted at dis-
tributed backup that we are aware of is the
pStore cooperative backup system [2]. pStore
used Chord [8] to store file object replicas to a
number of nodes on the backup cluster in a man-
ner similar to that proposed in ABS, but operated
at the file block level to achieve convergent stor-
age. pStore exhibited some resilience to node fail-
ures, with preliminary experiments showing that
roughly 5% of data was lost when 7 out of 30
nodes failed. The Phoenix Recovery System [4]
built on ideas in pStore to build a backup sys-
tem which provides some resiliency to malicious
Internet epidemics by ensuring that backups are
stored on a set of systems that are diverse (in
terms of the operating system) from that of the
client. Pastiche [3] took the opposite approach
to maximize storage efficiency; backup peers are
selected mainly by the criteria that they are al-
ready similar (in terms of native files). Pastiche
incorporated several useful mechanisms for fur-
ther increasing storage efficiency, including use
of content-based indexing to find common data
across different files and convergent encryption
to ensure that identical data stored by multiple

2Coding protection in this experiment was provided
through replication, though more efficient codecs can
reduce the space requirements for the same amount of
protection.
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users would not be duplicated for each storage
operation. In Samsara [5], the authors of Pas-
tiche explored solutions to the problem of mali-
cious nodes and greedy use through enforcement
of consumption symmetric with contribution.

9 Conclusions
In this paper we have presented a design for a
distributed backup system which combines a col-
lection of known techniques in a novel way, em-
ploying convergent storage and file versioning to
minimize storage. A novel verification process
adds consistency checking with minimal server
load. Cryptographic techniques have been em-
ployed to maintain data integrity and privacy.
We have developed a membership strategy that
allows the system to store and retrieve informa-
tion in a transient environment characterized by
changing storage server availability. We described
an implementation and made observations con-
cerning aspects of system scalability and analyzed
system performance, showing that our storage
scheme remains network and space efficient while
maintaining reliablility. Experimental evidence
suggested that collisions and network retries are
rare when less than 80% of block servers contain
a file fraction. Fragment compression was shown
to save between 22.7%-41.4% over no compres-
sion. File versioning consumed similar volume to
non-versioning in the worst case and four times
less in the best. Coding techniques allow data to
be stored with 100% guarantee of retrieval, pro-
vided that a certain percentage of nodes in the
cluster remain available, and also provide grace-
ful, best-effort recovery when large numbers of
nodes failed.
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