
 1

Portable Reputations with EgoSphere

Keith Bonawitz Chaitra Chandrasekhar Rui Viana
bonawitz@mit.edu chaitra@mit.edu ruilov@mit.edu

ABSTRACT

Many online services require some form of
trust between users – trust that a seller will
deliver goods as advertised, trust that an
author’s thoughts are worth the time spent on
reading them. To accommodate an internet
community where users are constantly
interacting with strangers, online services
often construct proprietary reputation
management systems for their community,
with the side effect of locking users into that
service if they wish to maintain their
reputation. In contrast, this paper outlines
EgoSphere, a system for portable Internet
reputations, so that reputations built on one
service can be used elsewhere. EgoSphere
hinges on the use of correlational statistics to
automatically project reputations from one
service to other similar services. To achieve
these goals, EgoSphere must gather
webservices’ reputation data. EgoSphere
avoids the unreasonable expectation that all
webservices will publish their reputation
databases, while also avoiding the use of a
webcrawling robot (a violation of many
webservices’ robots.txt restrictions and source
of incurring additional website load) by
gathering its reputation data using a
distributed passive robot system. This system
simulates the function of a standard web-
crawling robot by using webproxies on users’
computers to analyze the responses to
standard webservice requests. This paper
outlines the design and proof-of-concept
implementation of EgoSphere, targeted
specifically at providing portable reputations
for bulletin-board style internet services.

1. INTRODUCTION

Reputation Systems
With over 900 million people [COM]
interacting on the web, Internet users are
regularly finding themselves in situations
where they must choose to trust strangers –
trust them to faithfully complete a commercial
transaction or to provide information that is

worth the time to read.

To facilitate trust among strangers, reputation
systems have been successfully applied in
various settings on the Internet. These
systems provide summaries of users’ pasts,
with the rationale that a user who has acted
trustworthily in the past is likely to continue
to do so. Such summaries must be concise –
if a user’s reputation summary is too lengthy,
reading it will cost more than the
informational gain it provides. In many cases,
these concise summaries take the form of a
single number, with the benefit that software
can also use these numerical summaries to
automatically organize and filter information.

The most notable reputation system currently
deployed is Google's PageRank algorithm for
computing the expected relevance of a hit
from a web search (e.g., how much the user
should trust the hit to provide useful
information). High PageRank indicates high
expected relevance, and results from the page
having a large number of other pages linking
to it. The implicit assumption is that links to a
webpage are evidence that someone finds that
webpage relevant.

Amazon zShops and eBay, two of the most
successful online marketplaces, deploy typical
reputation systems for sites based on
commercial transactions. When users
complete transactions, the system allows the
users to rate each other how smoothly the
transaction was executed. Most of this
information is made public, so that anyone
can easily understand the past performance of
a specific user. In order to demonstrate the
relevance of reputation systems, some
research has already been made [DEL01] on
how e-commerce reputation services can
affect the online markets for the goods offered
through these web-sites. Intuitively, if a user
holds a higher reputation rank, he or she is
able to sell products for a higher price.

 2

Other services, such as Slashdot or
infoAnarchy, use reputations to assign trust to
certain pieces of information. At Slashdot,
users can rate the comments posted by other
users. Although Slashdot only publishes per-
comment rating summaries rather than per-
user rating summaries, it internally uses per-
user summaries (called “Karma” in Slashdot
terms) to make highly-reputed users’
comments more visible by synthetically
boosting their per-comment reputation scores.
This in turn results in earlier placement of the
comment on the web page. Although not
published, a user’s “Karma” can be inferred
by reviewing a history of that user’s per-
comment ratings.

The current design of EgoSphere focuses on
information sharing websites like Slashdot. It
is important to make clear what an overall
reputation value would reflect on such sites. If
a user receives good feedback for one of his
comments on the Apache section of Slashdot,
it could mean that the user is a skilled writer
on technical issues or s/he has a great
knowledge about the Apache server. It is our
desire that the reputation value reported by
EgoSphere will account for both of these
components.

The Portable Reputation Vision
A critical shortcoming of current reputation
services is that they are generally bound to a
specific website. A user that has built a good
reputation at Slashdot is not able to take
advantage of that reputation at infoAnarchy,
even though these two websites offer highly
similar services.

Amazon, for example, realized the advantages
of portable reputations early and it used to
allow its users to import their eBay ratings.
However, it did not take long for eBay to
complain about this scheme claiming that its
reputation algorithms were proprietary
[RES00]1.

1 Perhaps the true motivation was that eBay was
getting nothing in return for assisting their
customers in switching to Amazon; since
EgoSphere shares reputations symmetrically, we
hope the perceived cost will be minimized.

EgoSphere proposes to integrate different
reputations services into one global system
facilitating the transfer of reputations between
services. Since EgoSphere gathers data from
feedback provided from many different web-
sites, it has more information available to its
algorithms than any single service does. Thus,
EgoSphere can compute reputation rankings
that are more informed than the ones
computed by any single service. Naturally, the
values provided by each service are still
available to the user, but the ability to gather
information from other websites allows
EgoSphere to provide a more complete
reputation profile. EgoSphere particularly
shines in its ability to “ fill in” reputations
when users are new to a service, until the user
can build up a local reputation.

Isolated reputation systems leave no option to
the user other than to perform most of his or
her transactions at the dominant websites. A
good reputation built at a smaller online
service is not nearly as valuable as one built at
the larger websites. Hence, it is extremely
difficult for smaller or new services to
compete against the larger ones. However, if
the reputations of a small service constantly
agree with those of a larger service, then there
seems to be no reason why the users of the
larger website should not trust the reputation
values from the smaller as indicators of trust

Thus, portable reputations not only allow for
more informed reputation reports, but it also
facilitates competition between services,
which should have positive impact on the
quality of the services offered.

EgoSphere goals
There are five major goals that EgoSphere
intends to achieve.

First and foremost, EgoSphere should provide
portable reputations as described above. A
user that has good reputation at Slashdot
should be able to open a new infoAnarchy
account and instantaneously enjoy his old
reputation with his new account. Ideally, any
transaction performed by a user at any service
should have an impact on his or her
reputations everywhere else.

 3

Second, EgoSphere should use the diverse
reputation evidence it gathers to provide more
informed reputation rankings than any single
service is able to. Note that since EgoSphere
is a global system, it must be able to
differentiate between the types of reputation a
user can build up.

Third, EgoSphere should not require the help
of online services to do its own job. It would
be much easier to design EgoSphere if the
major web-sites were willing to cooperate by
offering complete reputation data to
EgoSphere. However, as explained before,
given that EgoSphere should facilitate
competition against these web-sites, it is
unlikely that any help will be provided.

Fourth, users should not have to perform any
complex tasks in order to prove to EgoSphere
that they own the accounts and usernames that
they claim they own. A user will probably
want to register a large number of accounts
with EgoSphere, and if registration consists of
a complicated procedure it is unlikely that
users will adopt the system.

Finally, EgoSphere should provide enough
information about a user’s past so that other
users can make decisions about whether to
trust this user, but no more information than
necessary. The concern is that the diversity of
reputation information EgoSphere maintains
about its users may become a privacy
concern. In particular, EgoSphere should
avoid publishing cross-webservice user
correspondences.

2. DESIGN

Criteria
A successful design for EgoSphere must

perform the following functions:

1. Obtain raw reputation evidence from

webservices, and compute per-user
numerical reputation summaries if these
are not provided

2. Identify which usernames on different
webservices correspond to the same user

3. Estimate to what extent reputations on site
X are relevant to reputations on site Y

4. Combine reputations that originate from
multiple sites

5. Present the results to the user

Rationale
Existing web services typically incorporate
reputation as shown in Figure 1. Users of the
website use their browser to submit requests
for content to the web server. The web server
then queries a content database and a
reputation database, using the database
responses to assemble the HTML document
and return it to the user's browser. The user
can also submit requests for the web server to
update the reputation database based on the
user's opinion of reputation-bearing content.

User/Web
Browser

Reputation
Database

Web
Server

Content
Database

Web Service

Figure 1: Traditional web services only
expose their reputation database

indirectly by servicing HTML requests.

EgoSphere
Reputation
Exchange

User/Web
Browser

Web Service #2

User/Web
Browser

Reputation
Database

Web
Server

Content
Database

Reputation
Database

Web
Server

Content
Database

Web Service #1

Figure 2: Web services could cooperate with EgoSphere when
assembling HTML responses to user queries, as well as updating

EgoSphere with modifications to the reputation database.

 4

Given this architecture, the most direct design
for EgoSphere is shown in Figure 2. In this
design, web services cooperate with
EgoSphere. When the web server for a web-
site handles a user's request, it requests
reputation transfer information from the
EgoSphere Reputation Exchange, and uses
this information when it assembles its HTML
response. The web service also is responsible
for updating EgoSphere when there are
changes to its reputation database.

Unfortunately, this design has a very high
barrier to entry. We would have to convince
many websites to spend money and resources
to integrate EgoSphere into their core
services. This is impractical, both for this
project's time limitations and in general, due
to the fact that web services are not likely to
cooperate and because EgoSphere only shows
its true potential once many web services are
participating.

Design Overview
To eliminate the entry barrier, we opt for a
zero impact approach that supports
incremental adoption from web services,
allowing EgoSphere to function and grow to a
critical mass of supported web sites without
any site modifying its code or expending any
additional resources. In order to achieve the
incremental adoption goal, EgoSphere will
only be able to interact with existing web
services through the standard web server
interface they supply – issuing web requests
and interpreting the HTML responses. This
suggests a robot style design, similar to the
webcrawler robots used by search engines to
index the web. However, in order to comply
with our zero impact design goal, as well as

with the robot restrictions enacted by many of
our target web-sites, we cannot simply have a
robot issue a large number of queries to the
web server. Instead, we design EgoSphere to
use a distributed passive robot scheme, which
simulates the data a robot would gather,
without actually crawling the website.
Instead, the distributed passive robot observes
requests made by users in their normal
interaction with the website, and extracts and
collates from the site’s responses the
information that would have been gathered by
a traditional robot. In EgoSphere, the
distributed passive robot scheme is
implemented by the Webproxy and the
Reputation Database, as described below.
Figure 3 highlights how this design simulates
the presence of the hypothetical access
channels shown in Figure 2 using only the
access channels actual available in Figure 1.

The EgoSphere Webproxy
The EgoSphere Webproxy serves as the
system's eyes, ears, and mouth. Every
EgoSphere user runs an instance of the
EgoSphere Webproxy locally on their
computer, and configures their web browser
to use the webproxy for all requests.
Whenever the user requests a webpage from
an EgoSphere-supported service, the
webproxy first fetches the webpage from the
web server. It then analyzes the HTML,
searching for EgoSphere annotatable content,
such as usernames. The webproxy requests
annotations for those usernames from the
EgoSphere Reputation Exchange, and inserts
the annotations into the HTML at the
appropriate places (i.e., beside the
corresponding username), before returning the
annotated HTML document to the user's
browser.

In addition, the webproxy also analyzes the
HTML it got from the web server for
reputation evidence. This evidence may take
different forms on different sites: for example,
on Slashdot, each comment is accompanied
by a rating given to that comment by other
users on the site. The webproxy sends this
information to the Reputation Database for
this web service.

EgoSphere Virtual Webservice

EgoSphere
Reputation
Exchange

User/Web
Browser

EgoSphere
Webproxy

Egosphere
Reputation
Database

Reputation
Database

Web
Server

Content
Database

Web Service

Figure 3: EgoSphere uses a webproxy on the
client-side to annotate HTML responses from
the web server with EgoSphere information,

and to gather reputation evidence.

 5

The EgoSphere Reputation Database
The EgoSphere Reputation Database collates
the evidence gathered from many users'
webproxies into a unified view of the
reputations of users on a system. Together
with the webproxy, these two EgoSphere
components form the distributed passive
robot subsystem.

The EgoSphere Reputation Database will
receive reputation evidence from many
webproxy sources, each of which will have an
incomplete view of the website users'
reputations. For example, most pages a user
requests from the website will not have
reputation evidence about all users of the
system: on Slashdot, reputation evidence is
only provided for those users which have
commented on the current article.
Furthermore, the evidence may evolve over
time: as a Slashdot comment gathers more
ratings, its rating total will change. Finally, a
single evidence view may not be sufficient to
determine the user's reputation: at Slashdot, a
user's reputation would be more adequately
described by the average rating of all their
comments, then by the rating assigned to just
one of their comments. The EgoSphere
Reputation Database is responsible for
receiving and managing reputation evidence
in order to compute a reputation estimate and
a reputation uncertainty factor for each user
(e.g., the more reputation evidence has been
gathered, the more certain the reputation
estimate is), as well as for updating the
EgoSphere Reputation Exchange with this
information.

The EgoSphere Reputation Exchange
The EgoSphere Reputation Exchange is
responsible for storing the reputation of each
EgoSphere user on each web service, and for
computing how much reputation should
transfer from one service to another. The
Exchange tackles the problem of transferring
reputation using a simple linear regression
model with correlation analysis. Regression
data between services is periodically
calculated and stored in a database. Services
with correlation values exceeding a threshold
level of certainty are considered to be
correlated web services. The regression
estimate is used to calculate the transferred

reputation. This is sent to the webproxy,
which displays it in a format suitable for the
user. For privacy reasons, Exchange will
return the transferred reputation from another
service (with the service name) but not the
actual username on that service.

Specifically, when the Reputation Exchange
is asked to transfer the reputation of user X
from website A to website B, it forms a vector
U of all the users with reputations on both of
these sites, as well as vectors A(U) and B(U)
containing the reputation estimates of those
users on each site. By computing the
correlation between A(U) and B(U),
EgoSphere can estimate how well reputation
transfers between domain A and domain B.
Finally, the Reputation Exchange can
compute a regression for the A(U) and B(U)
vectors; using this regression, it can predict
B(X) given A(X).

Both the vectors A(U) and B(U) are subject to
measurement error so the kind of regression
used is with consideration that there are errors
in both estimates. Let x=A(X) be the
independent variable which can used to
predict y=B(X), the dependent variable.
Egosphere uses a simple linear regression
model using the least squared error method

Y = aX + b
The fitted line is obtained by minimizing the
sum of squared residuals; i.e. finding a and
b so that (Y1- a - bX1)

2 + …. (Yn- a - bXn)
2

is as small as possible. The transfer of
reputations is done using the a and b values.
Y is the predicted reputation of the user in
Service A given his reputation X in service B.

To test for the strength of the correlation, the
Pearson correlation coefficient r is used. The
formula for r is:

Correlation is perfect when r = ±1, strong
when r is greater than 0.8 in size and weak
when r is less than 0.5 in size.

The Pearson r measures precision of the
relationship and not accuracy. The r-squared

 6

value (square of Pearson r) gives an estimate
of the gain in accuracy between using the
model and just guessing. So a value of r=0.5
implies a 25% gain in accuracy due to the
model. The accuracy of the prediction model
is determined using the standard error of the
estimate. This is measured using the Pearson
chi-square test. The formula for X2 is

The square root of the chi-square allows for
evaluation of the goodness of fit. It gives the
estimated error in the Y values. EgoSphere in
particular tolerates an error of up to 1. Since
the reputation is always a small integral value,
this tolerance is rational.

Reputation Contexts
In the introduction to this paper, we observed
that a reputation at one service may have
several components (such as raw writing skill
and expert knowledge about a particular
domain) and that only some of those
components may be transferable to any given
target webservice. Seemingly at odds to this,
we have just described reputation correlation
and regression calculations which group all
users from a particular service into a single
reputation context. We reconcile these
positions by considering the (implicit) set of
reputation contexts C1, C2, … representing the
potentially transferable components of a
reputation (eg, C1=“writing skill” , C2=“expert
on Apache” , etc). The reputation context on
the Apache section of Slashdot can then be
thought of as a compound context, for
example Cslashdot.apache = C1 + C2 + C65. Our
correlational statistics will uncover some
predictive power between, say, Cservice X = C1 +
C3 due to the shared C1 component context.
However, the correlation will be much
stronger for Cservice Y = C1 + C2, since more the
Cservice Y is shared with Cslashdot.apache. Thus, by
favoring highly correlated services, we
implicitly access these context components.

Merging Transferred Reputations
Egosphere transfers reputation information
from multiple source webservices individually
using the regression model. In order to

compute a single most-informed estimate of
reputation at the target service, EgoSphere
must merge these estimates into a single
overall value. Each estimate is accompanied
by an uncertainty value, based on:
1. The uncertainty of the reputation

summary at the source webservice
2. The uncertainty of the regression-transfer.
EgoSphere computes the merged reputation
using a weighted average of the estimates
from all sources, where the weights are
inversely related to the uncertainty values.

Solving The User Correspondence Problem
A critical component of EgoSphere's
Reputation Exchange process is determining
the correspondence between users on site A
and users on site B. A straightforward
approach would be to require the use of
identical IDs across websites, which could be
in the form of a username, e-mail address, etc.
Unfortunately, usernames are unreliable since
a majority of the users do not use the same
name across services. Also, email addresses
are usually obfuscated in most services and
Egosphere (in the current version) will not be
privy to this information. Even if EgoSphere
could expect identical IDs, it would still need
to confirm their authenticity.

To solve this ID correspondence problem,
EgoSphere requests that users demonstrate
control of particular usernames. Users log
onto the EgoSphere website and claim to be a
particular user on a particular webservice.
EgoSphere will then ask them to post a
specific random verification string in a user-
controlled portion of the web service – for
example, in a comment on Slashdot. When an
EgoSphere webproxy observes a verification
string, it notifies EgoSphere that a particular
string appeared in a particular user-controlled
area. If the string was posted by the correct
user, then the EgoSphere user is verified to
have control of that webservice account. This
should work well for the bulletin-board style
reputation problem that we are addressing.

Solving this problem also helps us deal with
malicious attacks. Either a service could be
malicious and trick EgoSphere into believing
it has a high correlation with a trusted service
or a set of users could try to launch a similar

 7

attack. A malicious service (X) could
manipulate Egosphere into thinking that X
correlates well with a trusted service only if it
could have a lot of common users between the
two services. It does not have access to the
Egosphere IDs of most of the users on the
trusted service so it would have to set up fake
Egosphere accounts that make the webservice
correlate highly. Even if this happens, the
users on service X would not have high
reputations on the trusted service and hence
would not benefit by correlating with a trusted
service. Similarly, a set of malicious users
cannot benefit by using this attack.

Managing Load
Each of the logical services (the Egosphere
Webproxy, Reputation Database, and
Reputation Exchange) are implemented as
independent servers. In the anticipated use of
the EgoSphere system, every user would run
his own Webproxy, so this computational
effort is essentially free. This scheme also
affords the user privacy: no centralized
service monitors the user’s complete web
usage, which might include privacy oriented
sites such as online banking or webmail; this
information never leaves the users’ own
machine. A separate Reputation Database can
be run in correspondence with each
webservice whose reputations are being
accumulated. Because the Database is only
charged with taking a significant sampling of
the reputation data for its associated website,
it may freely choose to ignore reputation
evidence messages from users’ Webproxies if
the Database is getting an overload of
messages. Finally, several instances of the

Exchange server can be run: one of them as
the master which accepts updates from the
various Databases and runs the statistical
computations, the rest as slaves which are
updated by the master. The slave Exchange
servers can service a large number of client
Webproxies through a load-balancing
configuration. Because it is not critical that
clients see completely up-to-date information,
load on the Exchange master can be managed
by having Databases only periodically update
the Exchange master with new information,
and by allowing the Exchange master to
compute the statistics offline before passing
the results on to the Exchange slaves.

3. IMPLEMENTATION

Overview
For our proof-of-concept implementation, we
built each module on top of the libasync
framework [MAZ, LIB]. Interservice
communication is implemented with Sun’s
RPC/XDR specification [SUNa, SUNb]. The
RPC client and server implementation is built
using the rpcc utility, modeling off of the
sample system available at [6824]. RPC is a
stronger commitment than necessary for
certain communication channels – for
example, it is acceptable for calls from a
Webproxy to a Reputation Database to go
unacknowledged and even to be lost under
heavy load. To keep our implementation
straightforward, however, we have used RPC
for all communication and reserve
performance-tuning of the communication
protocol as a future enhancement.

Webproxy
(User 1)

Webproxy
(User 2)

Webproxy
(User 3)

Webproxy
(User n)

Rep DB
(Service A)

Rep DB
(Service B)

Rep DB
(Service Z)

Exchange
Master

Exchange
(Slave)

Exchange
(Slave)

Exchange
(Slave)

...

...

...

W
ebproxy R

equests Load-B
alanced

A
ccross E

xchange S
laves

Figure 4: Managing request load on a
production-level Egosphere system.

browser
(client)

webproxy
(egosphere)

web server
(slashdot)

rep db
(egosphere)

exchange
(egosphere)

tim
e

scan http
request

serve
webpage

scan http
response

get reputation
annotations

record
reputation
evidence

annotate
html

request
webpage

display
webpage

Figure 5: The flow of control as
Egosphere services a client’s request.

 8

Webproxy
The Egosphere Webproxy is a straightforward
web proxy implementation. It determines
whether each http request it processes is
intended for an EgoSphere-supported
webservice by examining the requested URL.
For such requests, the Webproxy requests the
document from the webserver and buffers the
server’s response. The response HTML is
then scraped using a set of regular expressions
to extract information such as usernames,
webservice supplied reputation evidence, and
byte-offsets into the response where
Egosphere annotations should be inserted.
Note that every webservice that is supported
by EgoSphere requires the webproxy to be
given a customized set of regular expressions
that are tailored to scrape the appropriate
content from that site’s pages.

The Webproxy sends the Exchange server the
list of usernames found along with the name
of the webservice. The Exchange server
replies with a list of user-annotations, each of
which is inserted at the proper location in the
buffered HTML before the Webproxy returns
the annotated response to the client. While
the Webproxy is waiting for a response from
the Exchange server, it also reports the
reputation evidence it gathered to the
Egosphere Reputation database responsible
for the current webservice. If any Egosphere
account verification codes are detected, these
are reported as well. Verification codes have
an easily detectible pattern (eg, “#ego20329”),
so a simple regular expression is sufficient for
detection.

The annotations returned by the Exchange
server for each user are sets of tuples of the
form (W, rW, uW), indicating that the Exchange
server used evidence from webservice W to
estimate a reputation rW for this request’s
webservice, and that this estimate is uncertain
within the range rW±uW. The Webproxy
reports this information directly, but for the
user’s convenience, it first reports a merged
reputation rm computed using evidence from
all webservices and weighted by uncertainty:

rm = 1 / usum * SUMw [(1 / uw) * rw]
 where usum = SUMw (1 / uw)

Following [POL] and ignoring uncertainty

about the uncertainty estimates themselves,
we can estimate um, the range of uncertainty
of around rm:

um = 1 / usum * SQRT(SUMw 1)

With this information, a rendered annotation
looks something like:

(rm±um || W1: rW±uW || W2: rW±uW)

Accumulator (EgoSphere Reputation DB)
The accumulator serves two main functions in
the EgoSphere system:
1) It acts as the central repository of the

distributed passive robot. The
Accumulator receives all the data
obtained by the webproxies, and must
figure out what to do with this data.

2) It computes reputation and uncertainty
values for each (service, user) pair and
sends these values to the exchange server.

The first of three major issues in
implementing these functions is that the
Accumulator must deal with a large amount of
information. Since every user must run a
proxy, and every proxy is constantly sending
data to the Accumulator, the Accumulator can
easily get overloaded depending on the
number of users of EgoSphere. The existing
Accumulator does not use any special
methods to deal with the large amount of data
coming in. It simply processes one request at
a time. As we expect very few people to be
running webproxies in this implementation,
this solution is satisfactory. However, in a full
system, the workload will probably be disk
intensive as the Accumulator must keep a
large database of users and comments. Thus,
an asynchronous server would probably be
best suited for this job.

Second, malicious users will certainly be able
to build fake webproxies that attempt to
corrupt the reputation values reported to
EgoSphere. Note, however, that the data sent
by valid webproxies do not have to agree all
the time, as for example, if the reputation of a
user actually changes. Thus, the Accumulator
must be able to differentiate between valid but
conflicting information and corrupted data
that conflict with legitimate data. The current
implementation uses the value with the latest
time tag. A more complete implementation

 9

would keep a count of how many times it has
seen each value and at what times, and only
believe that a reputation value has changed
after enough webproxies have reported it.

Finally, for each user in each service, the
Accumulator receives feedback about many of
the user’s comments. It must then calculate
unique reputation and uncertainty values for
that user and send these to the Exchange
server. However, this sort of computation is
likely to be expensive when performed for a
large base of users, and so the Accumulator
must be able to do it at convenient times.
Again, the current implementation takes the
simple approach. It computes the average of
all of one user’s ratings as a piece of
information about that user comes in, and it
uses this number as the reputation value. The
standard deviation, representing uncertainty,
is also computed on-the-fly. The complete
implementation would probably log the data it
receives when it is under heavy load, and only
actually compute those values when it can.

Exchange
The Exchange consists of one database with
three related components
1. Services database: For each webservice,

this database maps local userids on that
service to other information about the user
including EgoSphere ID

2. User database: Maps EgoSphere IDs to a
list of (webservice, local userid, valcode)
tuples which gives the userid of the
EgoSphere user and the status of
validation (whether the EgoSphere user
can be trusted to have that id.

3. Correlational database: Maps pairs of
webservices to [correlation measure, a, b]
tuples (where a and b are the coefficients
of the least-square minimization line).

These databases are stored dynamically as
hash structures and statically in a directory
structure. The regression data is calculated
and stored in the correlation database. The
correlation value is measured in a range from
+1 to –1. The closer to +1 or -1, the stronger
the relationship. The closer to zero, the
weaker the relationship. The other two values
that are stored in each tuple of the correlation
database are used to calculate the transferred

reputation. a and b are the coefficients in the
line of best fit which gives the prediction of
the reputation.

The Exchange responds to three main queries
i. setReputations(W, Accumulator

Reputation Database): Updates the
reputations of users in webservice W with
the details given in the Database

ii. getAnnotations(W, L): Returns a list of
Annotations A which has the mappings of
users specified in the list L (who are part
of webservice W) to a list of annotation
tuples (SourceWebservice, Estimate,
Uncertainty). SourceWebservices is a
subset of those that the user is a member
of and there is a high correlation between
W and these SourceWebservices,

iii. observeValidationCode(W, U, ValCode):
Updates the User Database and sets the
validation code (ValCode) of user U in
webservice W.

4. RESULTS

The results of this project include a proof-of-
concept implementation of EgoSphere in 5000
lines of C++ code and XDR specifications.
Figures 6 and 7 demonstrate a user’s
experience while viewing Slashdot without
and with EgoSphere reputations, respectively.

5. FUTURE WORK

The EgoSphere framework serves as the basis
for future research. First, experiments should
be conducted investigating how well
EgoSphere’s division of labor allows the
system to cope with large numbers of users,
and tailoring the communication protocols to
work around bottlenecks. A first step would
be to move away from RPC for messages
which do not require acknowledgements. A
more complicated system may be needed if
clients are putting too much load on a popular
Reputation Database; it may be necessary to
coordinate the load across various database
replicas and/or implement a feedback channel
which allows the Reputation Database to
throttle Webproxy input.
Future research should also investigate more
robust algorithms for inferring reputation
values from the information supplied to the
Reputation Database. For example, one could

 10

imagine modeling the inference as a partially
observable Markov decision process, where
hidden variables include the actual per-
comment rating and whether or not the
reporter is faulty/malicious. The per-
comment rating would be modeled as having
a small probability of change between
observations. Reputation observations would
be based on both hidden variables, such that
faulty/malicious users report random values.
Standard statistical inference techniques
should then be able to estimate the most likely
values of these hidden variables at each point
in time.

Finally, alternate methods of regression
should be pursued. Our model of reputation
exchange uses a relatively simple linear
regression, but a more sophisticated model
may be more accurate.

REFERENCES
[6824] “6.824 Airline reservation rpcc demo.”
http://pdos.lcs.mit.edu/6.824-
2002/lecnotes/{rx.x, rs.C, rc.C}.

[COM] Computer Industry Almanac. http://
www.clickz.com/stats/big_picture/geogr
aphics/article.php/5911_151151

[DEL01] Chrysanthos Dellarocas.
“Analyzing the Economic Efficiency of eBay-
like Online Reputation Reporting
Mechanisms". MIT Sloan Working Paper No.
4181-01. October 2001.

[DEL03] Crysanthos Dellarocas and Paul
Resnick. “Online Reputation Mechanisms: A

Roadmap for Future Research.” First
Interdisciplinary Symposium on Online
Reputation Mechanisms, 2003.
http://www.si.umich.edu/~presnick/rep
utation/symposium/ReportDraft1.doc

[LAB01] Fen Labalme and Kevin Burton.
“Enhancing the Internet with Reputations: An
OpenPrivacy white paper.” 2001.
http://www.openprivacy.org/papers/200
103-white.html

[LIB] “Libasync tutorial.”
http://www.pdos.lcs.mit.edu/6.824/asy
nc/index.html

[MAZ] David Mazieres, Frank Dabek, Eric
Peterson, and Thomer Gil. “Using libasync.”
http://pdos.lcs.mit.edu/6.824/doc/lib
async.ps

[POL] Polson, James. “Uncertainty
Propagation and Linear Least-Squares
Fitting” http://www.upei.ca/~physics/
polson/course/P211/lab/error.pdf

[RES00] Paul Resnick, Richard Zeckhauser,
Eric Friedman, and Ko Kuwabara.
“Reputation Systems: Facilitating Trust in
Internet Interactions.” Communications of the
ACM, 43(12), December 2000, pages 45-48.

[SUNa] Sun Microsystems. “ONC+
Developer’s Guide: RPC Protocol and
Language Specification.” 2002.
http://docs.sun.com/db/doc/816-
1435/6m7rrfn9f?a=view

[SUNb] Sun Microsystems. “ONC+
Developer’s Guide: XDR Specification.”
2002. http://docs.sun.com/db/doc/816-
1435/6m7rrfn9l?a=view

Figure 6: Slashdot without EgoSphere annotations

Figure 7: Slashdot with EgoSphere annotations

