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Abstract

We have implemented a secure network file system called
SUNDR that guarantees the integrity of data even when
malicious parties control the server. SUNDR splits stor-
age functionality between two untrusted components, a
block store and a consistency server. The block store
holds all file data and most metadata. Without interpret-
ing metadata, it presents a simple interface for clients to
store variable-sized data blocks and later retrieve them by
cryptographic hash.

The consistency server implements a novel protocol
that guarantees close-to-open consistency whenever users
see each other’s updates. The protocol roughly consists
of users exchanging version-stamped digital signatures of
block server metadata, though a number of subtleties arise
in efficiently supporting concurrent clients and group-
writable files. We have proven the protocol’s security un-
der basic cryptographic assumptions. Without somehow
producing signed messages valid under a user’s (or the
superuser’s) public key, an attacker cannot tamper with
a user’s files—even given control of the servers and net-
work. Despite this guarantee, SUNDR performs within
a reasonable factor of existing insecure network file sys-
tems.

1 Introduction

Nobody wants malicious attackers tampering with his
files. This basic and obvious fact underlies much of the
way people manage data. Important file systems must be
kept on secure servers in machine rooms to which only
authorized people have access. Only highly trusted ad-
ministrators can perform mundane tasks such as backup
and hardware maintenance. Conversely, people must ad-
dress the constant threat of attackers gaining administra-
tive privileges on servers. Otherwise, a number of readily
available “rootkits” allow attackers who penetrate a sys-
tem to replace core operating system utilities with altered
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versions that open back doors and conceal evidence of the
security breach.

Data security is often viewed as the problem of building
a better fence around storage servers—limiting the num-
ber of people with server access, disabling unnecessary
daemons that might be remotely exploitable, and staying
current with security patches to minimize the window of
vulnerability to software flaws. This approach has two
drawbacks. First, experience has shown in many cases
that people do not build high enough fences. Second, per-
haps more important, high fences are inconvenient; they
restrict the ways in which people can manage data.

An alternative approach is to reduce the security needs
of file servers. This paper presents SUNDR, a secure net-
work file system designed to do exactly this. Assuming
only the existence of digital signatures and a collision-
resistant hash function, SUNDR’s protocol provably guar-
antees the integrity and consistency of file system data,
even when malicious parties entirely control the server.
Unlike previous Byzantine-fault-tolerant file systems [3,
22] that distribute trust but assume that a threshold frac-
tion of servers are honest, SUNDR assumes no on-line
trusted parties. To tamper with a user’s files without being
detected, an attacker must either compromise the user’s
client while the user is logged in, or otherwise produce
valid digital signatures under the user’s public key. In par-
ticular, the superuser’s private signature key can be stored
off-line when not in use, making it extremely difficult for
an attacker to gain superuser access to the file system.

SUNDR does not currently address the issue of storage
reliability. Of course, an attacker can always physically
damage a server or wipe its disks. However, SUNDR
stores all long-lived data in an append-only block log.
Thus, it could use append-only storage [27] to gain re-
silience to network attacks. Incremental off-site backups
are also easily implementable to survive physical compro-
mise. Moreover, because SUNDR does not trust the file
server, after a disaster, any lost file system data can safely
be recovered from other untrusted sources that might have
the data, such as clients’ file caches.

SUNDR’s security model gives people more options
for managing their data than current systems. For in-
stance, organizations can outsource data storage without
fear of the server operators tampering with data. It also of-
fers a vast improvement over current file system security.
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An attacker who compromises a SUNDR server cannot
tamper with file contents. Our prototype implementation
gives performance within a reasonable factor of the popu-
lar NFS file system, making SUNDR practical despite its
significantly increased security.

The next section gives an overview of the SUNDR pro-
tocol. The following two sections describe SUNDR’s
implementation and how we tuned the protocol to give
acceptable performance. Section 5 evaluates the perfor-
mance of our implementation. Section 6 discusses related
work, and Section 7 concludes.

2 Protocol

The SUNDR protocol provably guarantees the integrity
and consistency of file system contents, preventing un-
trusted server operators or malicious parties who compro-
mise a server from undetected tampering with data. This
section gives an overview of the protocol and its security
properties, and explains how SUNDR’s semantics differ
from those of ordinary Unix file systems. A more detailed
description of the protocol and a proof of its security were
presented in [14], though the published version of that pa-
per did not present a protocol for group-writable files.

At the highest level, SUNDR consists of a client, a
block server, and a consistency server. The block server
is responsible for storing and serving data. It names each
data block by a collision-resistant cryptographic hash, al-
lowing clients to verify that every block they retrieve con-
tains the correct contents. The consistency server is re-
sponsible for assigning an order to all file system opera-
tions. It employs a new protocol through which clients
verify that other clients have been presented with a con-
sistent view of the file system.

Every file in a SUNDR file system belongs to either a
user or a group. For the purposes of this paper, a user is
a principal logged into a single SUNDR client. (Human
users logged into multiple terminals function as separate
SUNDR users in the same SUNDR group.) Each user has
a public signature key. To change a file, one must produce
a message signed by the file’s owner or, for group-owned
files, by a member of the group that owns the file. As a
special case, the superuser can sign any data structure.

All users know each other’s public keys and group
membership. Currently, this information is manually dis-
tributed to clients, though in the future we envisage man-
aging keys and groups through superuser-owned files in
the file system. The server does not have any user’s sig-
nature key, and thus cannot make unauthorized changes
to the file system. Moreover, the server operator does not
need the superuser key. In fact, the superuser’s signature
key need not be anywhere on-line unless a privileged user
is accessing the file system as an administrator.

2.1 Data structures

Figure 1 shows the basic SUNDR data structures. Every
file is identified by a 〈principal, i-number〉 pair, where
principal is the user or group that owns the file and i-
number is a per-user or per-group inode number. (Un-
like traditional file systems, SUNDR allows files owned
by different users to have the same i-number.) Directory
entries map file names onto 〈principal, i-number〉 pairs.
A per-principal data structure called the i-table maps each
active i-number to a collision-resistant SHA-1 [7] hash of
the file’s inode. We call this value the file’s i-hash. Inodes
themselves contain SHA-1 hashes of file data blocks and
indirect blocks, an approach taken from the SFSRO [10]
read-only file system.

SUNDR forms a cryptographic hash tree [15] from
each i-table. The root of this tree is called the i-handle.
Given an i-handle and all appropriate intermediary data
structures, one can verify any block of any file in the i-
table. Thus, securely retrieving file system contents boils
down to the problem of first obtaining the latest i-handle
of each user and group, then retrieving any needed data
blocks by their SHA-1 hashes. The latter functionally
is conceptually simple to implement in the block server,
while the former requires a somewhat complex consis-
tency protocol.

2.2 Consistency protocol

Traditional network file systems provide close-to-open
consistency. If one user modifies and closes a file, another
user who subsequently opens and reads the file should see
the data most recently written there. Concurrent opera-
tions can be ordered at the discretion of the server, but all
clients must agree on the order of any conflicting opera-
tions.

SUNDR achieves consistency by embedding i-handles
in digitally signed version structures through which
clients can verify that the file system has been deliver-
ing close-to-open consistency. As long as users see the
effects of each other’s operations, they are guaranteed to
be getting close-to-open consistency.1 There remains the
possibility of a malicious server entirely concealing some
users’ actions from others, if neither collection of users
expects anyone from the other to have accessed the file
system. However, such attacks are very likely to be dis-
covered quickly, as once a malicious server has “forked”
the state of the file system, it can never again allow de-
ceived users to see any evidence of each other’s on-line
activity.

1More precisely, if user A sees the effect of an operation user B

performed at time t, then, at least until t, A and B had close-to-open
consistency with respect to each other. Moreover, anyone who sees a
subsequent operation by A must also have had close-to-open consistency
with respect to B until t.
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Figure 1: Basic SUNDR data structures. An i-handle is the root of a hash tree containing a user or group i-table.
A group i-table maps group inode numbers to user inode numbers. A user i-table maps a user’s inode numbers to
i-hashes. An i-hash is the hash of an inode, which in turn contains hashes of file data blocks.

Version structures use a technique somewhat similar to
version vectors [4] to detect inconsistencies. Each user
and group has a version number. A version structure con-
tains the latest version number of every user and group
at the time of the file system operations it reflects. Two
version structures are compatible if one contains at least
as high a version number as the other for all principals.
When creating a version structure, users increment both
their own version numbers and the version numbers of any
group whose i-tables they are modifying. Both opens and
closes require new version structures to be computed. If
the server fails to deliver close-to-open consistency, users
will detect this upon seeing each other’s incompatible ver-
sion structures. Figure 2 gives an example.

While the basic idea is simple, a significant complica-
tion is that under concurrent updates, SUNDR users need
to compute and sign their own version structures with-
out necessarily having access to all other users’ latest ver-
sion structures. To allow concurrent updates, the SUNDR
consistency protocol introduces two RPCs, UPDATE and
COMMIT, illustrated in Figure 3. Both RPCs contain mes-
sages signed under users’ public keys.

Intuitively, UPDATE declares a user’s intent to perform
some operation on the file system. An honest server to-
tally orders all file system operations by the time at which
it receives their update certificate. UPDATE returns the
precise state of the file system at the time the correspond-
ing operation is to have taken place. COMMIT contains
the user’s version structure, certifying the order that the
server has assigned to operations. Clients wait for and
verify users’ signed version structures before reading the
effects of any declared modifications, so as to verify the
consistency provided by the server.

In more detail, when a user makes a file system call,

E) u2 : 〈u1-2 u2-2 g-4〉

A) u1 : 〈u1-1 u2-0 g-1〉

B) u2 : 〈u1-1 u2-1 g-2〉

C) u1 : 〈u1-2 u2-1 g-3〉

D) u1 : 〈u1-3 u2-1 g-4〉

Figure 2: Example version structures. In A–C, users u1

and u2 both modify group g’s i-handle and increment its
version number. u1 again modifies g in D, but the mali-
cious server conceals this update from u2, forking the file
system state. u2 subsequently signs a version structure in-
compatible with u1’s, which the two users will discover
should they ever again see any of each other’s updates.
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Figure 3: SUNDR consistency protocol. The client de-
clares its intent to fetch or modify file system content with
a signed update certificate. The server responds with the
latest version structure for each i-handle plus any pend-
ing update certificates. The client then computes new i-
handles and sends a signed version structure to the server.

the client first sends the server a signed update certificate
including the user’s version number in the forthcoming
version structure and a list of changes or deltas the user
wishes to make to the file system. If the user is simply
looking up a file name in a directory or opening a file
for reading, the list of deltas is empty. Otherwise, when
changing the state of the file system, deltas may be of four
types:

• Set file 〈user, i#〉 to i-hash h.

• Set group file 〈group, i#〉 to 〈user, i#〉.

• Set/delete entry name in directory 〈princ., i#〉.

• Pre-allocate a range of group i-numbers (pointing
them to unallocated user i-numbers).

The effects of all deltas are deterministic, so that multiple
clients applying the same deltas to the same i-handles in
the same order will always produce the same result.

In response to an update message, the server sends back
the latest signed version structure that it has for every i-
handle, plus a list of signed update certificates for opera-
tions not yet reflected in the version structure list. We call
the collection of version structures returned the version
structure list, or VSL, and the list of update certificates
the pending version list, or PVL. An operation with up-
date certificate x occurs after every operation reflected in
the VSL and PVL returned for x, and before any operation
whose UPDATE RPCs return x in the PVL.

When the client receives the reply to its update certifi-
cate, it checks the PVL for any read-after-write conflicts.

If it is not trying to read a file that another client is cur-
rently in the process of modifying, the client can return
immediately from the file system call. Otherwise, it must
wait for any pending conflicting operations to move from
the PVL to the VSL. In either case, the client computes a
new version structure based on the VSL and PVL it has re-
ceived. This version structure contains the user’s i-handle,
the i-handles of any groups the user has modified, the cur-
rent latest version number of every user and every group,
and a list of pending operations in the PVL, including for
each pending operation a SHA-1 hash of its forthcoming
version structure without the i-handles. When computing
group i-handles, the client must reflect any previous mod-
ifications to the group in the PVL.

A proof of the consistency protocol was presented
in [14], but is beyond the scope of this paper. At a
high level, however, its security follows from two prop-
erties. First, once two users have signed incompatible
version structures, they can never again sign compatible
ones without detecting the attack. Second, once a pend-
ing operation has appeared in the PVL, it will remain there
until the corresponding version structure (or a later one) is
signed by the user making the update. Thus, if server mis-
behavior makes two users’ version structures incompati-
ble, neither user can complete any system call that con-
flicts with an operation by the other that was pending at
the time of the attack. It is this last property that makes
it safe for one user to apply another user’s deltas to group
i-tables.

2.3 Semantics

SUNDR’s semantics differ from traditional Unix file sys-
tems in several ways. The implementation currently
does not keep track of time of last access (“atime”) for
files, as atime cannot be tracked securely by an untrusted
server. Other file times, including the i-node change time
(“ctime”), are set by clients, allowing users who hack their
client software to set ctimes of files they own to arbitrary
values. SUNDR also has no equivalent of the Unix “sticky
bit” on directories.

While Unix files have both an owner and a group,
group-writable files in SUNDR do not have a comparable
notion of owner—the user who last wrote the file func-
tions as its owner. The process of changing the permis-
sions on a SUNDR file also functions more like making
a new copy of the file; it requires write permission on the
parent directory and does not affect other hard links to
the file. Fortunately, SUNDR’s content-hash based block
store allows such copies to be made cheaply. The owner of
a directory also can delete any entries in that directory—
including non-empty directories to which he or she does
not have write permission.

SUNDR’s semantics were primarily driven by its secu-
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Figure 4: Implementation overview

rity requirements. Though they depart significantly from
traditional file systems in some areas, the new semantics
offer several benefits. In particular, it is often useful to
know which user has last written a group-writable file.
Furthermore, if the SUNDR block server implemented
disk quotas, it could limit users by the actual number of
new blocks they write, whether to group-owned or user-
owned files. In Unix, the fact that users may be unable to
delete subdirectories of their own directories is somewhat
of an annoyance; giving them this right does not apprecia-
bly weaken security, as users anyway have the ability to
rename directories they cannot remove. Note that except
for the ctime value, malicious users who violate the pro-
tocol can only affect files in ways they equivalently could
through the system call interface.

We emphasize also that SUNDR’s focus is on guaran-
teeing the integrity and consistency of data. The current
implementation does not directly address the questions
of privacy, availability, or reliability, but SUNDR is en-
tirely compatible with these goals. A number of previ-
ously developed cryptographic storage techniques could
be applied to achieve some degree of privacy in SUNDR,
e.g. [12, 1]. Extensive work has also been done on ensur-
ing data availability in the face of disk and server failures.
The fact that STORE RPCs can safely be reordered would
make it easy to replicate the block server, while the con-
sistency protocol already replicates the PVL and and VSL
on clients. SUNDR also facilitates reliability by storing
long-lived data in an append-only log, making the server
amenable to backup on write-once media and incremen-
tal transfer to off-site replicas. Because the server is not
trusted, a damaged file system can be reconstructed from
all available sources of data, including file caches on un-
trusted clients.

3 File system implementation

Figure 4 shows the overall architecture of the SUNDR im-
plementation. The client is implemented at user level,
using a modified version of the xfs device driver from
the ARLA [28] file system on top of a slightly modified
FreeBSD kernel. Server functionality is divided between

a consistency server and a block server. The consistency
server implements the UPDATE and COMMIT RPCs de-
scribed in the previous section. The only file system data
it ever sees are the i-handles embedded in version struc-
tures.

Most file system data is stored on the block server.
The block server is a user-level program that reads and
writes raw disks through character devices so as to man-
age its own cache and control the order in which writes go
to disk. The interface primarily consists of three RPCs,
STORE, RETRIEVE, and DECREF. STORE stores a block
of data at the server. RETRIEVE takes a SHA-1 hash as
an argument and returns a block with that hash (assuming
one has been stored). DECREF informs the server that the
client will no longer attempt to retrieve a particular SHA-
1 hash, so that the server can discard the corresponding
block if no one else has stored it. A few less fundamental
RPCs are not shown in Figure 4—for instance to support
authenticated communication so that an attacker cannot
impersonate the block server and begin discarding newly
stored blocks.

The remainder of this section describes the implemen-
tation of the client and consistency server, and explains
how we optimized the SUNDR protocol to make the file
system perform acceptably. The next section gives the
details of our high-performance block server implementa-
tion.

3.1 File system client

The xfs device driver used by SUNDR is designed for
whole-file caching. When a file is opened, xfs makes an
upcall to the SUNDR client asking for the file’s data. The
client returns the identity of a local file that has a cached
copy of the data. All reads and writes are performed on
the cached copy, without further involvement of SUNDR.
When the file is closed (or flushed with fsync), if it has
been modified, xfs makes another upcall asking the client
to write the data back to the server. Several other types of
upcalls allow xfs to look up names in directories, request
file attributes, create/delete files, and change metadata.

As distributed, xfs’s interface posed two problems for
SUNDR. First, xfs caches information, such as local file
bindings, which it uses to satisfy some requests without
upcalls. In SUNDR, some of these requests require inter-
action with the consistency server for the security prop-
erties to hold. We therefore modified xfs to invalidate
its cache tokens immediately after getting or writing back
cached data, so as to ensure that the user-level client gets
control whenever the protocol requires an UPDATE RPC.

Second, some system calls that should require only a
single interaction with the SUNDR consistency server re-
sult in multiple kernel vnode operations and xfs upcalls.
For example, the system call “stat ("a/b/c", &sb)”
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results in three xfs GETNODE upcalls (for the directory
lookups) and one GETATTR. The whole system call should
require only one UPDATE RPC. Yet if the user-level client
does not know that the four upcalls are on behalf of the
same system call, it must check the freshness of its i-
handles four separate times with four UPDATE RPCs.

To eliminate unnecessary RPCs, we modified the
FreeBSD kernel to keep a count of the number of invo-
cations of system calls that might require an interaction
with the consistency server. We increment the counter
at the start of every system call that takes a pathname as
an argument (e.g., stat, open, readlink, chdir). The
SUNDR client memory maps this counter and records the
last value it has seen. If xfs makes an upcall that does not
change the state of the file system and the counter has not
changed, then the client can use its cached copies of all
i-handles.

3.2 Protocol optimizations

Any implementation of the SUNDR protocol faces a num-
ber of potential performance bottlenecks. Digital signa-
tures can be costly to compute and verify, yet are on the
critical path for every RPC to the consistency server. Re-
computing hash trees for every file system modification is
expensive and requires large amounts of bandwidth and
storage from the block server. Group i-tables in particular
are expensive to update, as different users must transfer
new hash nodes back and forth through the block server,
and a new i-table could potentially force clients to flush
their name caches.

The first requirement for decent performance was to re-
duce the cost of digital signatures in SUNDR. Our im-
plementation does so in three ways—by choosing an ef-
ficient signature algorithm, by reducing the total number
of signatures required, and by moving signatures and ver-
ifications out of the critical path wherever possible. We
chose the Esign [18] signature algorithm for SUNDR be-
cause it is over an order of magnitude faster than more
popular schemes such as RSA. While there are no known
attacks on the version of Esign we are using, a flaw was
recently found in its proof of security and a better variant
proposed [11] with a correct proof. We intend to switch to
the newer variant. All experiments reported in this paper
use 2,048-bit public keys, which require a work factor of
well over 280 to break using the fastest known algorithms.

To get verification out of the critical path, the consis-
tency server also processes and replies to an UPDATE RPC
before verifying the signature on its update certificate. If
the signature fails to verify, the server reverts any effects
of the RPC (before other clients can see them) and drops
the TCP connection to the forging client. This behavior is
acceptable because only a faulty client would forge signa-
tures. With this optimization, the consistency server’s ver-

ification of one signature overlaps with the client’s com-
putation of the next.

The second class of optimizations reduces the cost of
processing i-table hash trees. First, because group i-tables
are particularly expensive to modify, SUNDR minimizes
the number of times group i-handles change through a
level of indirection; group i-table entries map to user i-
table entries which map to i-hashes. Thus, a group i-
handle doesn’t change when a group-writable file or di-
rectory is modified multiple times by the same user, a
common case. When creating group-writable files, clients
pre-allocate group i-numbers in batches, pointing them to
unused ranges of user i-nodes. 256 group i-numbers can
be pre-allocated with a single delta in an update certifi-
cate.

As a further optimization for both user and group i-
tables, SUNDR avoids recomputing i-handles on every
update. Instead, it specifies a principal’s i-table with
two hashes embedded in version structures—an i-handle,
which is still the root of a hash tree, and a log hash, which
is the SHA-1 hash of a vector of deltas to be applied to
state of the hash tree. The COMMIT RPC takes a log as
well as a version structure, and the UPDATE RPC returns
a log for each i-handle. Clients only periodically compute
new i-handles to clear the log hash.

Log hashes have a number of benefits. They amortize
computation of new i-handles over many updates. They
save bandwidth to the block server by requiring fewer
hash tree blocks to be stored. For group i-tables, they al-
low one client to apply another’s update certificate deltas
without fetching any blocks from the server. Most im-
portantly, they allow clients to validate cached informa-
tion without fetching i-table blocks from the server. Both
name cache entries and cached file contents are valid so
long as the relevant i-handles haven’t changed and the par-
ticular file is not affected by any deltas in the hashed log.

3.3 Future optimizations

Finally, we mention several optimizations that we would
like to implement but have not yet. To reduce the num-
ber of signatures required, the SUNDR client might avoid
signing version structures by eliding COMMIT RPCs.
(This is safe, as from other clients’ point of view an omit-
ted COMMIT is equivalent to two COMMITs arriving back-
to-back at the server.) After completing an UPDATE RPC,
the client can return immediately to xfs, delaying com-
putation of the new version structure. If, within a small
number of milliseconds, no further UPDATE RPCs are re-
quired, the client can then sign a version structure and
make a COMMIT RPC. If, on the other hand, the client im-
mediately makes another UPDATE RPC, it can avoid sign-
ing the first version structure or making the first COMMIT

RPC. Under workloads such as unpacking tar archives,
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Figure 5: Block server architecture

this optimization might save the signing cost of several
consecutive version structures.

Bandwidth to the consistency server could also be con-
siderably reduced. UPDATE RPCs currently return the en-
tire VSL and PVL. However, a client will generally al-
ready have many of the entries in these lists. The consis-
tency server should therefore return only VSL and PVL
entries that changed since the last UPDATE reply it has
sent to a particular client. Similarly, both UPDATE replies
and COMMIT RPCs currently send the entire delta log with
each i-handle, when only new entries need be sent. Even
version structures need not be sent in their entirety, as
most of their content other than i-handles is implicit in the
order of PVL entries and the groups they affect. On sys-
tems with many users, the messages exchanged with the
consistency server should be proportional in size to the
number of active users and groups, while currently they
are proportional to the total number of principals.

Another class of possible optimizations target the block
server. SUNDR currently breaks files into fixed-size 8K
blocks, stores the blocks at the block server, and puts their
SHA-1 hashes into inode and indirect block data struc-
tures. Because the block server handles variable-sized
blocks efficiently, the client could compress blocks be-
fore sending, saving both network bandwidth and storage
at the server. Moreover, recent work [17] suggests that
by breaking files into carefully-constructed variable-sized
blocks, one can increase the number of blocks common
across files. Such commonality would reduce the number
of block transfers needed, save space at the block server,
and furthermore increase the effectiveness of the block
server’s cache.

4 Block server implementation

In SUNDR, all data and most metadata are stored on and
retrieved from the block server, called bsrv. bsrv presents
clients with an extremely simple interface. Clients send
the server data blocks and later retrieve them by SHA-1
hash. Since the client actually implements most file sys-
tem functionality, the block server cannot interpret or pri-
oritize blocks. Moreover, the server does not have any
user signature keys, and thus does not even have permis-
sion to repair the file system should something go wrong.
Thus, while traditional file systems write many types of
data asynchronously, crash recoverability requires that
bsrv write every block to stable storage before returning to
the client. In addition, block server performance is critical
to good file system performance in SUNDR.

4.1 Background: Venti

bsrv is certainly not the first content-hash-based block
server. In fact, bsrv’s design takes its inspiration from
the Venti [19] block server. Venti appends variable-sized
blocks sequentially to a large log disk or RAID array, and
then indexes them by SHA-1 hash on a fast SCSI disk.
An index entry is stored in a logical block on disk de-
termined entirely by the SHA-1 hash. Overflow entries
in Venti spill over onto the next block. Venti provides
archival storage, i.e., it never deletes blocks. The authors
argue that it nonetheless can be used to build a regular file
system, because storage capacities are increasing faster
than users can generate data. We agree with this assess-
ment, and have likewise designed bsrv to be an archival
block server. In the future, we envisage support for snap-
shots, allowing SUNDR users to access previous versions
of the file system. Archival storage would easily allow
such functionality.

Whereas we follow Venti’s general design, we argue
that it has drawbacks that make it ill-suited for SUNDR.
In particular (1) it buffers writes so it cannot guaran-
tee data stability (2) it is strictly archival and hence
would store many short-lived blocks such as i-table hash
tree nodes in perpetuity and (3) it can achieve only 5–
7 MBytes/sec of write throughput, while we desire a block
server capable of absorbing data at fast Ethernet rates.
To overcome these problems, bsrv introduces a temporary
log to Venti’s original design.

4.2 bsrv architecture

Figure 5 shows bsrv’s general architecture. The block
server requires at least three disks, a large log disk (or
RAID array), a small temporary log disk, and one or more
index disks. As an example configuration, this paper re-
ports on a server that uses high-capacity IDE disks for the
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log and temporary log, while striping the index over four
fast SCSI disks.

bsrv accesses disks through the raw character device
interface. Because Unix devices have a blocking inter-
face, it uses a number of helper processes to issue con-
current I/O requests, thereby keeping multiple disks busy
and enjoying better disk scheduling through SCSI tagged
command queuing on the index disks. bsrv spawns four
instances of the helper program, called aiod, for each disk
on the system. It communicates with them through large
regions of shared memory. Each group of four aiods also
listens on a pipe. To initiate an I/O, bsrv writes to the ap-
propriate pipe an 8-byte pointer to a command block in
shared memory. When the I/O is complete, aiod writes
the status into the command block and notifies bsrv by
sending the command block’s address back over a Unix-
domain socket. In order to avoid waking up four kernel-
level threads each time bsrv writes to a pipe, the aiod pro-
cesses use an flock lockfile to ensure only one process at
a time blocks reading a given pipe. (flock is specifically
implemented to avoid waking threads up unnecessarily.)

The bsrv interface consists of the following five RPCs:

STORE (header,block)
RETRIEVE (hash)
DECREF (hash)
CSTORE (hash)
PSTORE (header, block)

The STORE RPC takes a data block preceded by a block
header and writes them both to stable storage if the server
does not already have a copy of the block. The header has
information encapsulating the owner and creation time of
the block, as well as fields that could be used to store
the encoding method and decoded length of compressed
blocks. The RETRIEVE RPC retrieves a block from the
server given its SHA-1 hash. It also returns the first header
STOREd with the particular block.

DECREF informs the server that a block with a particu-
lar SHA-1 hash is no longer needed and can be discarded.
bsrv’s dereferencing semantics are conservative. When
a block is first STOREd, the server establishes a short
window (one minute by default) during which it can be
deleted. If a client STOREs then DECREFs a block within
this window, the server marks the block as garbage and
does not permanently store it. If two clients store the
same block during the dereference window, the block is
also marked as permanent. Once a block has been marked
permanent, it can never be deleted from the block server.

Two more RPCs exist that are not currently used by
the SUNDR client. CSTORE, short for “conditional store,”
functions like a read that doesn’t return the data—it sim-
ply tells the client whether or not the server is storing
a block with a particular SHA-1 hash. In addition, any
CSTOREd block is automatically marked permanent. A

client could use this RPC to save bandwidth when storing
blocks that are likely to exist already at the server.

Internally, the block server has a function pstore (“per-
manent store”) that bypasses the temporary log. We ex-
pose the pstore function through a PSTORE RPC for the
purpose of testing and comparison. PSTORE functions like
a store followed by a sync in Venti, and thus is useful for
quantifying the benefits of bsrv’s temporary log. The RPC
is not intended to be called by clients.

We now describe how bsrv uses its disks.

4.3 Temporary Log

When a client issues a STORE RPC, the server will im-
mediately store the given block to the temporary log sub-
system. In our implementation, this subsystem comprises
a small raw partition on an IDE disk, and an in-memory
cache that mirrors the contents of the temporary log. By
the time it responds to the RPC, the server has either writ-
ten the block to the temporary log disk or located a copy of
the block on a disk in the system, thus guaranteeing dura-
bility in the event of a crash. Keeping a redundant copy
of the block in memory assures us that we need to read
from the temporary log only to support crash recovery.
Assuming the temporary log disk does not serve requests
generated by other processes, it need rarely seek. Rather,
an overwhelming portion of disk traffic will be sequential
writes, thus enjoying the same performance characteris-
tics as a database log.

We should note that all writes to the temporary log are
aligned along sector boundaries. This wastes, on average,
half a sector of disk space per block. The space overhead
is of little concern given that the server continually recy-
cles the temporary log and that the temporary log is very
small relative to the capacity of modern IDE disks. Align-
ing writes to sector boundaries avoids the need for succes-
sive writes of the same sector, which the operating system
cannot issue concurrently and which therefore cost a disk
rotation.

4.4 Permanent Log

The server periodically processes the temporary log, ag-
ing out those blocks that have exceeded their dereference
window. If a block has been dereferenced but not accessed
in any other way, the server will delete the block from the
temporary log, being certain not to enter the block into
any of the various caching systems. Otherwise, the server
pstores the block. pstore will write a block to the per-
manent log provided that the block does not already exist
on the server. Blocks are organized in the permanent log
sequentially along 4-byte boundaries to optimize storage
density. Once a block is written to the permanent log, it is
read-only and immutable.
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Since the server processes the temporary log in batches,
it will write blocks to the permanent log in batches. For
a batch that consists of n blocks, the server will usually
require only nb/m sequential writes to the log disk, where
b is the average block size, and m is the maximum write
size. On our system, b = 8K and m = 64K, thus we need
only write to disk once every 8 blocks.

Our server uses a large raw IDE hard disk for its perma-
nent log. The log subsystem also includes an LRU cache.
We store blocks into this cache if they have been redun-
dantly stored. A redundant store is a good cue that a block
is common to multiple files; caching these blocks can save
random seeks on the permanent log IDE drive during RE-
TRIEVEs.

4.5 Index

The index subsystem serves to locate blocks on the per-
manent log, keyed by their SHA-1 hashes. An ideal index
would be a simple in-memory hash table mapping 20-byte
SHA-1 hashes to an 8-byte disk offset. If we assume that
the average block stored on the system is 8K, we see that
the index must have roughly 1/128 the capacity of the log
disk. Although at present, such a ratio of disk to mem-
ory is obtainable with commodity components, we are not
convinced that memory will be able to maintain such a ra-
tio with hard disks in the future.

Instead, we adopt Venti’s strategy of implementing the
index as a disk-resident hash table, striped over an array of
high-speed SCSI disks. We hash 20-byte SHA-1 hashes
down to 〈index-disk-id, index-disk-offset〉 pairs. The disk
offsets point to sector-sized on-disk data structures called
buckets, which contain 15 index-entries, sorted by SHA-1
hash. index-entries, in turn map SHA-1 hashes to offsets
on the permanent data log.

The server might access the index subsystem during
PSTORE, CSTORE, and RETRIEVE. Assuming the server
has not found the requested block in the temporary log or
the block LRU cache, it will look up the block’s SHA-
1 hash in the index. If it finds the hash in the index, it
will trigger an immediate RPC response to PSTORE and
CSTORE. In the case of RETRIEVE, it will then access
the index-entry to find the block’s location on the perma-
nent log, read and then return the block to the client. If
the server does not find the hash in the index, it will, in
the case of PSTORE, write the block to the permanent log
and then update the index to reflect where the block was
stored, using quadratic hashing when index blocks over-
flow. In the case of CSTORE, the server will respond false
to the RPC. In the case of RETRIEVE, the server will reply
that the block was not found.

As the server receives CSTORE, RETRIEVE and PSTORE

RPCs from the client, it should expect a random order-
ing of SHA-1 hashes. Thus, each RPC will require one

random seek across an index disk, and a PSTORE that is
storing a block not already on the system will need two.
We use caching and striping to mitigate the effects of this
bottleneck. After the server accesses or updates an index-
entry, it will store it in an LRU cache. Furthermore, strip-
ing the index across multiple disks allows concurrency
among lookups and limits the amount of space needed on
each disk, hence shortening the range over which the in-
dex disks heads need to seek.

Unlike Venti, we do a large majority of our stores via
STORE and the temporary log; therefore, we can make a
much more efficient use of the index subsystem. Before
moving a batch of blocks from the temporary log to the
permanent log, the server sorts them by index-disk-offset.
That is, we map each block to a SHA-1 hash, each SHA-1
hash to a bucket offset, and sort. As a result, the index
disk arms can service a whole batch of index reads in one
sweep. We use the same technique for scheduling lazy-
writes to the index disk after we have written a block to the
permanent log disk. Despite the sorting of block batches,
the server ensures that blocks are stored on the log in the
order in which they arrived. Randomly reordering blocks
would be detrimental to read performance for large multi-
block files.

4.6 Crash Recovery

To recover from a crash or an unclean shutdown, the sys-
tem first assures the consistency of the permanent log and
index subsystems. Because the server updates the index
lazily after storing blocks to the permanent log, a fair
number of unwritten index entries and hence out-of-date
buckets may exist. Finally, bsrv process the temporary log
by pstoreing all its blocks to the permanent log.

4.7 Design Discussion

Our system differs from Venti mainly in our use of a tem-
porary log subsystem and our preference of STORE over
PSTORE. This architecture conveys several advantages
in our application context:

Durability. When a close command returns in our
case, the blocks of that file are on disk, albeit usually on
the temporary log.

Dereferencing. The temporary log allows our server
to dereference blocks within a minute of their creation.
Because many files are short-lived, this saves space on the
permanent log and eliminates disk accesses to both the
index disk and the permanent log disk.

Fast Log Alignment. The temporary log allows us to
write blocks continuously when copying to the permanent
log. This saves space but also time. For example, suppose
a system has 512-byte sectors and an application writes
two 1000 byte blocks. In order to achieve good packing,
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a Venti-style system would have to do two writes to the
second sector, at some cost in rotation time. Ours requires
only one.

Index Disk Arm Scheduling. Writing blocks to the
permanent log in large groups allows us to sort our ac-
cesses to the index disk thus minimizing the length of
seeks.

The net result is the semantic benefit of durability with
file-system-like throughput rates (e.g., 11MB/sec), a sig-
nificant improvement on Venti.

5 Performance

Our primary goal in testing SUNDR was to ensure that its
security benefits do not come at too high a price. In this
section, we compare SUNDR’s overall performance to
NFS. We also perform microbenchmarks to help explain
our application-level results, and to support our claims
that our block server outperforms a Venti-like architecture
in our setting.

5.1 Experimental Setup

We carried out our experiments on three 3GHz Pen-
tium IVs running FreeBSD 4.7. All machines are
connected with 100Mbit, full-duplex, switched Ether-
net. We measured TCP throughput between clients at
11.21 MBytes/sec, and round-trip times at 0.110 msec.
All machines have 3GB of RAM and Seagate Cheetah
18GB SCSI hard drives, which spin at 15K RPM. We used
four of these drives in our block server as index disks, and
added 2 Western Digital Caviar 180GB 7200 RPM EIDE
hard drives for temporary and permanent log disks.

Our cryptographic implementations use GNU Multi-
precision Library version 4.1.2 for large integer arith-
metic.

5.2 Microbenchmarks

We perform a series of microbenchmarks on both the
SUNDR block server, the SUNDR client, and the com-
bined system.

5.2.1 SUNDR Block Server

Our SUNDR block server currently can store up to 175GB
of data, but in our experimental setup, we partitioned our
index disks so that we could comfortably accommodate
up to 2TB of data. That is, for every 8K block stored on
the server, we require approximately 64 bytes of space on
the index disks. An index entry only takes up around 32
bytes of disk space, but we would expect performance to
degrade if the index becomes more than half full. Thus,
our index array must have a capacity of 24126/213 or

Rabin Esign
1,024 bits 1,280 bits 2,048 bits 6,000 bits

Sign 3,656 6,424 169 695
Verify 27 34 120 575

Figure 8: Sign and verify times, in µsecs

16GB to meet out storage needs. Given our 4 disk index
array, we need only use 4GB of each disk to accommodate
the index.

We did not heavily tune the block server, choosing
its parameters somewhat arbitrarily. We allow SUNDR
clients to make up to 40 outstanding RPCs. This is both
for flow control and fairness. We set our dereference
window to 60 seconds, and for the purposes of the mi-
crobenchmarks, we turned off the block cache. Through-
out, we enable an index entry cache of up to 100,000 en-
tries. Our temporary log is 720MB, circularly processed,
and never filled up in the course of experiments. Over
100 Mbit Ethernet, the SUNDR block server can process
the temporary log as fast as blocks can be sent over the
network.

Figure 6 shows our measurements of the block server’s
throughput and latency. Recall that if we were to simply
use Venti’s architecture and did not have the benefit of
the temporary log, we would use PSTORE and not STORE.
These results legitimize our improvements: in terms write
throughput, STORE outperforms PSTORE by 106%. For
batches of data that can be transmitted in an amount of
time less than the dereference window, the write through-
put is limited only by the network bandwidth. For very
large block batches, the server will start to process the
temporary log while the client is still transmitting data.
The server can processes the temporary log from its in-
memory memory at 11.72 MBytes/s. However, the op-
eration places demands on the CPU, thereby reducing
the bandwidth observed by SUNDR clients. We see a
17% decrease in write throughput while the server is pro-
cessing the temporary log. Even under these conditions,
STORE still outperforms PSTORE by 72%.

In terms of write latency, STORE performs significantly
better than PSTORE, responding to RPCs in 23% of the
time it takes for a PSTORE under quiescent conditions, and
29% when simultaneously processing the temporary log.

Our block server does not perform well when asked to
RETRIEVE randomly scattered blocks. Note that the In-
dex LRU cache is of little help. The bottleneck is the IDE
log disk, which is slow to make random seeks; Venti has
a similar bottleneck. In the context of SUNDR, slow ran-
dom RETRIEVEs should not affect overall system perfor-
mance if the client aggressively caches blocks and reads
large files sequentially.
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5.2.2 Client Profiling

We next performed a high-level profile of the SUNDR
client, so as to better understand our other micro and mac-
robenchmarks. Figure 8 shows the performance of our
underlying signature scheme in comparison to the more
conventional Rabin scheme [20]. We use 2,048 bit Esign
keys in SUNDR, which can be broken with a work factor
greater than 280. In other words, an adversary with infinite
storage could more easily find a SHA1 hash collision than
break a 2,048 bit Esign key. We also provide benchmarks
for 6,000 bit keys, which can be broken with a work factor
of 2128 [11].

Figure 7 provides a representation of how SUNDR’s
RPCs and signatures correspond with Unix system calls.
The three cases shown correspond to file phases of the
LFS small file benchmark [23]. The timings were col-
lected by inserting gettimeofday system calls in the code,
and thus reflect a small amount of time dilation from mea-
surement overhead.

The create phase calls the open, write and close system
calls. This figure verifies that close can only return once
its STORE call to the block server has returned—hence
the importance of minimizing the latency of RPC STORE

calls. The write call does not involve any remote RPCs or
cryptographic operations; for this reason it is not shown
in Figure 7.

The read phase makes open, read and close calls. In
this experiment, almost all of the expensive operations are
handled in the open call. Since xfs does not currently sup-
port chunked file retrieves, SUNDR fetches the entirety of
the file at the open call. However, our experiments assume
a warm client-side cache, so no RETRIEVE calls actually
went through to the server. Finally, the unlink phase con-
sists only of a system call to unlink.

Figure 7 shows our prototype’s efforts to interleave
RPCs and to delay those not on the critical path until after
returning to the user-level caller. We see that system calls
do not wait for COMMIT RPCs to return. Moreover, even
in small writes, the client sends data blocks to the block
store concurrently, and waits for them to return only in
the case of close and fsync. This increases concurrency
without compromising our consistency guarantees.

5.2.3 LFS Small File Benchmark

Next, we ran our system using the LFS small file bench-
mark and measured end-to-end performance. Before do-
ing so, we made a slight adjustment to the benchmark
suite, and randomized the contents of the files written to
disk. To write identical files would give SUNDR’s block
store architecture an unfair advantage, as only one unique
file data block would ever need to be stored. In this and
other benchmarks, we compare SUNDR to NFSv2 and
NFSv3. Indeed, NFSv3 offers better performance, but
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Figure 9: LFS Small File Benchmark. 1000 operations on
files with 1K of random content.

NFSv2’s semantics guarantee that a client’s data has been
written to stable storage on close. Since SUNDR offers
the same guarantee, we believe a comparison to NFSv2 is
a fairer one; we include results for NFSv3 regardless.

Figure 9 details our results. SUNDR significantly out-
performs NFSv2 in the create and unlink stages of the
experiment—by 30% and 18% respectively. SUNDR is
noticeably slower in the read phase, primarily because of
latency introduced by the consistency protocol. In partic-
ular, open must wait for UPDATE to return before returning
to the caller.

5.3 Application-Level Benchmarks

Figure 10 shows SUNDR’s performance in copying,
uncompressing, untarring, configuring, compiling, in-
stalling, and removing the Apache webserver distribution
(apache 1.3.27.tar.gz). We first note that during the
experiment, bsrv processed 16,872 8K data blocks, of
which 8,023 (48%) were dereferenced before they could
be committed to the permanent log. The configure, com-
pile and untar operations in particular involve many tem-
porary files and sequential changes to filesystem meta-
data. Thus, in these benchmarks, clients frequently DE-
CREF blocks within milliseconds of STOREing them.

SUNDR is competitive with NFSv2 in copying the
source archive from local disk to the SUNDR partition; it
completes this operation in 110 msecs, while NFSv2 does
the same in 87 msecs. NFSv3 actually performs slower at
this stage, completing the cp in 199 msecs. SUNDR’s per-
formance is similar to NFSv2’s in the unzip, untar, com-
pile and cleanup portions of the build process. The config
and install segments clearly present a problem for us. We
see several explanations for this. Most intuitively, many
operations in these procedures reference the file system
three times: once to load an executable shell script in the
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Figure 10: Installation procedure for apache 1.3.27.tar.gz.

build directory, once to read an input file, and once to store
to an output file. At the very least, we are experiencing a
two-fold magnification of the read bottleneck seen in the
LFS small file benchmark. Moreover, our current imple-
mentation of SUNDR does not handle concurrent xfs up-
calls optimally. Our prototype sometimes serializes these
requests for convenience.

In sum, we are encouraged by these results. Our exper-
iments have shown SUNDR to be almost as fast as totally
insecure network file systems when writing large amounts
of data and files to the file system. We believe that our ap-
proach is fundamentally sound, and that future optimiza-
tions and design improvements will make SUNDR more
competitive in all of these benchmarks.

6 Related Work

Recently, there has been growing interest in peer-to-peer
storage systems comprised of potentially untrusted nodes.
Farsite [2] investigated the possibility of spreading such a
file system across people’s unreliable desktop machines.
Several new distributed hash tables such as Chord [26]
and Pastry [24] show the potential to scale to millions
of separately administered volunteer nodes, with CFS [5]
layering a read-only file system on top of such a highly
distributed architecture. These systems could potentially
replace the SUNDR block server, provide automated off-
site backup, or be used to coordinate cooperative caching
amongst mutually distrustful clients.

A number of file systems in the past have used cryp-
tographic storage to keep data secret in the event of a
server compromise. The swallow [21] distributed file sys-
tem used client-side cryptography to enforce access con-
trol. Clients encrypted files before writing them to the
server. Any client could read any file, but could only de-
crypt the file given the appropriate key. Unfortunately,
one could not grant read-only access to a file. An attacker

with read access could, by controlling the network or file
server, substitute arbitrary data for any version of a file.

CFS [1] allows users to keep directories of files that get
transparently encrypted before being written to disk. CFS
does not allow sharing of files between users, nor does
it guarantee freshness or integrity of data. It is intended
for users to protect their most sensitive files from prying
eyes, not as a general-purpose file system. Cepheus [8]
adds integrity and file sharing to a CFS-like file system,
but trusts the server for the integrity of read-shared data.
SNAD [16] can use digital signatures for integrity, but
does not guarantee freshness. PFS [25] is an elegant
scheme for checking the integrity of a file system stored
on an untrusted disk. With minor modifications, PFS
could make strong freshness guarantees. However, PFS is
really a local file system designed to reside on untrusted,
potentially remote disks. Users on multiple clients cannot
simultaneously access the same file system. Plutus [12]
is secure file sharing system for untrusted storage which
focuses primarily on data secrecy. The authors vaguely
mention some ideas for protecting integrity, but have not
implemented them and do not have a proof of security. We
suspect their system cannot provide consistency.

The Byzantine fault-tolerant file system, BFS [3], uses
replication to ensure the integrity of a network file sys-
tem. As long as more than 2/3 of a server’s replicas are
uncompromised, any data read from the file system will
have been written by a legitimate user. SUNDR, in con-
trast, does not require any replication or place any trust
in machines other than a user’s client. If data is repli-
cated in SUNDR, only one replica need be honest for the
file system to function properly. However, SUNDR pro-
vides weaker freshness guarantees than BFS, because of
the possibility that a malicious SUNDR server can fork
the file system state if users have no other evidence of
each other’s on-line activity.

Pond [22] is a prototype of the OceanStore system, a
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large-scale data store that offers certain consistency and
privacy guarantees. Pond trusts an “inner core” of Byzan-
tine fault-tolerant servers to reliably order user file op-
erations. Pond uses “heartbeat” messages, distributed
throughout a peer-to-peer network of “secondary repli-
cas,” to convey a loose notion of file freshness to its
clients. If a client desires a stronger assurance of a
file’s freshness, it must ask the inner core of servers to
sign a cryptographic nonce. Like BFS, this provides
stronger freshness than SUNDR can achieve without on-
line trusted parties. However, signatures are very ex-
pensive for the servers in OceanStore, considering they
must generate a threshold signature, which the authors
report consumes an order of magnitude more computa-
tional time than a conventional signature. Pond cannot
very well increase the number of core servers to distribute
load amongst more servers, as this will only make mat-
ters worse: the complexity of its consistency protocol is
quadratic in the number of primary servers. In SUNDR,
by contrast, the consistency server only verifies signa-
tures. File consistency is provably guaranteed by the
clients, who sign with a standard and computationally
practical signature scheme.

SUNDR uses hash trees, introduced in [15], to verify a
file block’s integrity without touching the entire file sys-
tem. Duchamp [6], BFS[3], SFSRO [9] and TDB [13]
have all made use of hash trees for comparing data or
checking the integrity of part of a larger collection of data.

7 Conclusions

SUNDR is a general-purpose, multi-user network file sys-
tem that never presents applications with incorrect file
system state, even when data is stored on an untrusted
server. SUNDR’s protocol provably guarantees data in-
tegrity and consistency without assuming any on-line
trusted parties. By reducing the amount of trust required
for file servers, SUNDR both increases people’s options
for managing data and improves their file security. Per-
formance measurements of our implementation show that
while SUNDR’s security comes at a cost, the protocol is
still practical. Our prototype implementation gives perfor-
mances within a reasonable factor of NFS and will most
likely improve significantly as we implement proposed
optimizations.
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