
A Layered Naming Architecture for the Internet

Hari Balakrishnan,∗ Karthik Lakshminarayanan,† Sylvia Ratnasamy,‡

Scott Shenker,†§ Ion Stoica,† Michael Walfish∗

April 2004

Abstract

Currently the Internet has only one level of name res-
olution, DNS, which converts user-level domain names
into IP addresses. In this paper we borrow liberally
from the literature to argue that there should be three
levels of name resolution: from user-level descriptors to
service identifiers; from service identifiers to endpoint
identifiers; and from endpoint identifiers to IP addresses.
These additional levels of naming and resolution (1) al-
low services and data to be first class Internet objects
and (2) facilitate mobility and provide an elegant way to
integrate middleboxes into the Internet architecture. We
further argue that flat names are a natural choice for the
service and endpoint identifiers. Hence, this architecture
requires scalable resolution of flat names, a capability
that distributed hash tables (DHTs) can provide.

1 Introduction

Despite its tremendous success, the Internet architec-
ture is widely acknowledged to be far from ideal, and
the Internet’s increasing ubiquity and importance have
made its flaws all the more evident and urgent. The case
for architectural change has never been stronger, as wit-
nessed by the burgeoning set of architectural critiques
and counter-proposals emerging from the research com-
munity (e.g., [2, 5, 6, 7, 9, 37, 41, 48, 49]). Ironically, the
growth that motivated these proposals now makes their
success unlikely: the sheer size of the Internet’s installed
router infrastructure renders significant changes to IP al-
most impossible. The decade-long struggle to deploy the
relatively incremental IPv6 should give any aspiring net-
work architect pause.

Rather than attempt the Sisyphean task of modify-
ing routers, we focus on improving a more malleable
facet of the architecture: naming.1 Although this re-

∗MIT, {hari,mwalfish}@csail.mit.edu
†UC Berkeley, {karthik, istoica}@cs.berkeley.edu
‡Intel Research, Berkeley, sylvia@intel-research.net
§ICSI, shenker@icsi.berkeley.edu
1Of course, our naming proposal requires alterations to host soft-

ware and, as we discuss later, a new name resolution infrastructure.
This represents a significant deployment barrier, but not one as unyield-
ing as changing the router infrastructure. We will return to this issue in

striction in focus prevents us from addressing issues that
inherently involve routers—such as complete denial-of-
service protection, fine-grained host-control over rout-
ing, and quality-of-service—there are many issues for
which changes to IP are not only unnecessary, they are ir-
relevant; for some of these issues, naming holds the key.

Naming in the current Internet is quite primitive, as
there are only two global namespaces, DNS names and
IP addresses, both of which are tied to a pre-existing
structure (domains and network topology, respectively).
The paucity and rigidity of these namespaces are respon-
sible for a variety of architectural ills. For instance, the
Internet is now widely used to access services and data,
yet the Internet’s host-centric naming treats data and
services as second-class network citizens. Also, users
and system administrators often resort to architecturally
suspect middleboxes—such as NATs/NAPTs, firewalls
and transparent caches—because they cannot get similar
functionality within the architecture. As we argue later,
the solution to middleboxes lies in more flexible naming.

To remedy these and other architectural problems, in
this paper we propose a new layered naming system that
has four layers: DNS names and other user-level de-
scriptors, service identifiers (SIDs), endpoint identifiers
(EIDs), and IP addresses or other forwarding directives.
Our focus is on synthesis, not innovation, and so there
is little new in what we say. This naming hierarchy is
nothing more than a particular realization of Saltzer’s
taxonomy of network elements [40], in which he identi-
fied users/services (our SIDs), hosts (our EIDs), network
attachment points (IP addresses), and paths.2 More-
over, the architecture we build around these namespaces
is shamelessly scavenged from the literature. From the
Host Identification Protocol (HIP) proposal [30, 31] we
borrow the idea of decoupling the transport and network-
ing layers. From the Internet Indirection Infrastructure
(i3) work [46] we borrow the idea of host-directed indi-
rection. From the paper on Semantic-Free Referencing
(SFR) [52] we borrow the idea that the service identifiers
and endpoint identifier namespaces be flat, and from HIP

Section 6.
2Since we don’t consider aspects of the architecture that require

router involvement, we don’t address the issue of naming paths.

1



again we borrow the idea that these flat identifiers should
be used for cryptographic authentication.

Our proposal thus requires a name resolution infras-
tructure that can scalably resolve flat names. Distributed
hash tables (DHTs) represent one possible solution to
this resolution problem (see [3, 21, 36, 38, 47] for back-
ground on DHTs), and so we borrow from that literature
as well. In addition to these antecedents, there are sev-
eral other proposals, such as TRIAD [18] and IPNL [17],
that share our goals and some of our mechanisms.

Thus, this work is a pastiche of borrowed elements;
our contribution is certainly not their invention but is
instead their synthesis into a coherent architecture. We
present our three guiding design principles in Section 2
and outline the resulting architecture and its properties
in Section 3. A key aspect of the design is the use of flat
names, and we discuss the issues associated with them
in Section 4. We cover related work in Section 5, and in
Section 6 we conclude with a brief discussion.

2 Design Principles
Those are my principles, and if you don’t like
them... well, I have others.

Groucho Marx

We derive our architecture from three design princi-
ples. In what follows, we use the terms data and services
to refer, respectively, to files and processes that can be
remotely retrieved or invoked by a client.

2.1 Names and Protocols

We begin with a design principle that addresses the
role of naming in protocols.

Principle #1: Names should bind protocols
only to the relevant aspects of the underlying
structure; binding protocols to irrelevant de-
tails unnecessarily limits flexibility and func-
tionality.

This seemingly innocuous principle is routinely vio-
lated in today’s architecture. When applications request a
service or data, they care only about the identity (for ser-
vice) or content (for data) of the object they requested;
the particular end-host servicing a request is immate-
rial. However, today’s DNS-based names for services
and data forces an application to resolve service and data
names down to an IP address, thereby binding the appli-
cation request to a particular location (as expressed by an
IP address). This resolution violates Principle #1 twice
over: it binds data and services to a particular end-host
and, even worse, it binds them to the network location of
that end-host. As we argue below, rectifying this double
violation requires the introduction of two (and only two)
new naming layers.

Principle #1 requires that applications be able to refer
to data and services with persistent names that aren’t tied
to the endpoint hosting the data or service. We there-
fore claim that a class of names called service identi-
fiers (SIDs) should exist that give applications exactly
this ability. Although SIDs can refer to services or data,
for convenience we use only the term service.

Similarly, transport protocols exchange data between
two endpoints, and their network locations are irrele-
vant to the basic semantics of transport. Only at the
IP layer is the IP address naturally part of the protocol
semantics, which is exactly network-address to network-
address delivery. Today, however, the semantics of IP are
wound into the transport layers. For example, hosts name
TCP connections by a quadruple that includes two IP ad-
dresses, so the connection cannot gracefully accommo-
date address changes.3 Principle #1 suggests that trans-
port protocols should be able to refer to endpoints in a
manner independent of their IP address.4 We thus pro-
pose a class of names, endpoint identifiers (EIDs),5 that
identify hosts (or, more generally, network entities) with-
out reference to their network location.

These two new naming layers which have been in-
duced by Principle #1 require two additional layers of
name resolution: from SIDs to EIDs, and from EIDs to
IP addresses. The resolution of SIDs into EIDs and of
EIDs into IP addresses should occur no sooner than re-
quired, so that the consequent bindings are accurate and
appropriate. If resolution occurs prematurely, then trans-
port cannot adjust to location changes, and applications
cannot adapt to service and data migrations.

2.2 Namespaces and Network Elements

Principle #1 concerned how names should relate to
protocols. Our second design principle discusses how
names should relate to their referent.

Principle #2: Names, if they are to be persis-
tent, should not impose arbitrary restrictions
on the elements to which they refer.

The two current global namespaces, IP addresses and
DNS names, are each closely tied to an underlying struc-
ture: scalable routing requires that IP addresses reflect
network topology, and DNS names, though more flexi-
ble, nonetheless reflect administrative structure. This ar-
rangement works well for DNS’s original purpose, nam-
ing hosts, because most machines with a given domain
name are owned by, controlled by, or otherwise related

3One can introduce a session layer that manages different transport
connections and hides address changes from the application [22, 43].

4As observed in [10], this endpoint, instead of one physical host,
could be a distributed network entity.

5Of course, the idea of endpoint identifiers and their desirability has
long been accepted Internet lore: see, for example, [28].

2



to the entity that oversees the domain’s records. Con-
sequently, changes in hosts’ addresses can easily be re-
flected in DNS records.

However, the Internet has been increasingly used to
access data and services, rather than particular hosts, and
in the absence of any other global naming scheme, DNS
names have been used for services (e.g., mail servers) or
data (e.g., URLs). As has long been noted in the URN
literature [23, 44, 45], DNS-based names for data are
inherently ephemeral. Data does not naturally conform
to domain boundaries and when data is replicated on,
or moved to, hosts outside the originating domain, the
original DNS record will typically not reflect its new lo-
cation.6 The same can be said of services, though one
might argue that services are less peripatetic than data.

Thus, no namespace currently exists that can persis-
tently name data and services. Some in the URN com-
munity have proposed introducing a new namespace and
resolution mechanism [11] for each genre (e.g., ISBN
numbers would have a canonical resolver). Partitioning
allows resolution to scale since different resolver types
can incorporate genre-specific knowledge, but then ad-
herence to Principle #2 depends on an accurate mapping
of elements to genres and on an element’s never chang-
ing genres. In contrast, the Globe project [4], Semantic-
Free Referencing [52], and Open Network Handles [34],
take an entirely different approach: they advocate a sin-
gle new flat namespace that can serve all present and fu-
ture network elements. A flat namespace has no inherent
structure and therefore does not impose any restrictions
on referenced elements, thereby ensuring universal com-
pliance with Principle #2. In this paper we adopt this
second approach, using a flat namespace for SIDs and
EIDs.

2.3 Resolution and Indirection

Our first two design principles concerned the role of
names. Our third addresses how these names are re-
solved. The typical definition of “resolving a name” is
mapping a name to its underlying “location”. In our case,
a SID’s location would be an EID—usually an (EID,
transport, port) triple—and an EID’s location would be
an IP address.7 However, we think this typical definition
is too restrictive and instead adopt the following more
general design principle.

Principle #3: A network entity should be able
to direct resolutions of its name not only to its

6Of course, the problems of using hostname/pathname URLs for
naming data go far deeper than this; see [44, 45, 52] and citations
therein for a more complete discussion.

7Resolving a SID can also return metadata (such as a pathname on a
Web server) in addition to the “location”, thereby allowing data (in this
case a Web page) to be named by a SID. For simplicity, our examples
here illustrate only SIDs abstracting services, not data.

own location, but also to the location of chosen
delegates.

In any logical network connection, the initiator (at any
level, e.g., a human requesting a Web page or an endpoint
initiating a transport connection) intends to connect with
a destination entity. In our case, for example, applica-
tions connect with SIDs. However, the destination entity
may not want to handle the connection directly, prefer-
ring instead to direct the connection to a chosen delegate.
This kind of indirection does not alter essential trust re-
lationships (if you trust an entity, you trust its delegates)
nor does it interfere with established protocol semantics,
as we will see when we describe the details of such dele-
gation in Section 3. One can view delegation as a simple,
special case of the kind of distributed network element
envisioned in [10]; that is, the destination and its dele-
gate are part of the same logical element even if they are
physically distinct.

While Principle #3 might seem esoteric at first, it is
crucial to the overall architecture. This form of indirec-
tion, when an entity delegates a connection to another
entity, provides much flexibility. As we describe next,
indirection allows the architecture to gracefully incorpo-
rate intermediaries, which we define as cleaner and more
flexible versions of middleboxes. Delegated indirection
also allows a small degree of protection against denial-
of-service attacks and a primitive form of route selection.

3 Architecture

3.1 Overview

Principle #1 led us to claim that applications should
bind to SIDs and transport protocols should bind to
EIDs. Thus, there must be a layer between applications
and transport that translates between SIDs and EIDs.
Similarly, there must be a layer between transport and IP
that translates between EIDs and IP addresses. We will
call these resolution layers (though they do more than
simply resolve identifiers).8 This results in the following
layered architecture:

Application
SID resolution
Transport
EID resolution
IP

We start by describing how this architecture works
in the generic case. Later we will complicate the story
somewhat but, because of space limitations, this descrip-
tion will be quite superficial.

8Here we focus on how these layers fit into an overall architecture;
in the next section we discuss how the actual resolution might be done.

3



Consider an application a on a given host that wishes
to access a service represented by the SID s. It hands
s to the SID resolution layer, which contacts the res-
olution infrastructure (one realization of which we de-
scribe in Section 4) and is handed back one or more
(EID,transport,port) triples, where each triple represents
an instance of the desired service. The SID resolution
layer then invokes the desired transport protocol, using
the EIDs of a and the resolution of s as the source and
destination in the transport protocol. If the EID becomes
unreachable, the SID resolution layer can attempt to con-
tact another EID triple if more than one was returned. If
all fail, the SID resolution layer re-resolves the SID to
check for new triples.

The transport protocol prepares one or more packets to
send, which it passes down to the EID resolution layer.
The EID resolution layer resolves the destination EID
into one or more IP addresses (the multiplicity reflect-
ing multihomed or cloned hosts).9 The EID resolution
layer uses one of these IP addresses in calling IP (the
source IP address is the IP address of the sending host).
If the host is unreachable, another IP address can be used
if more than one is returned.10 If none of the previ-
ously returned IP addresses works, the EID resolution
layer re-resolves the EID in case the corresponding IP
addresses have changed.

The architecture’s most obvious property is that it pro-
vides automatic and seamless rebinding for both services
and hosts. (Other proposals are explicitly designed for
this rebinding too, including HIP, TRIAD [18], UIP [14],
FARA [9] and IPNL [17]; with the exception of TRIAD
and FARA, which we discuss in detail in Section 5, none
of the proposals incorporates a notion of rebinding for
services.) If a service migrates from one host to another,
the SID resolution layer will re-resolve the SID. Simi-
larly, if an endpoint changes its IP address, then the EID
resolution layer will re-resolve the EID to find the new IP
address. This re-resolution could conceivably occur on
each packet but more likely will be invoked only when
a failure is detected. As explained in [30, 31, 32], re-
binding at the EID layer enables continuous operation
in the presence of mobile or renumbered hosts and pro-
vides smooth failover for multihomed hosts; we direct
the reader to these references for more details.

The other important property, delegated binding, isn’t
explicit in the generic case above. We now explain how
this property enables intermediaries and why they might
be useful.

9Our architecture also allows for an EID to resolve to another EID
thus requiring multiple rounds of resolution before the EID is resolved
down to an IP address. Likewise, the resolution of a SID to another
SID is also possible.

10We envision, as in HIP, using explicit end-to-end signaling for ex-
pected address changes and using EID resolution layer keepalives to
detect unexpected address changes or other failures.

3.2 Delegated Bindings and Intermediaries

As above, we start with a basic case and then discuss
complications. Delegation at the SID layer would be
when a service s, running on a host h, rather than list-
ing the EID of h in the resolution service, instead lists
the EID of some other endpoint o. s would have to es-
tablish state (through some protocol that is outside the
scope of our discussion) at o so that o knows how to
handle packets destined for s. o could be, for example,
an application-level gateway. Hosts trying to contact s
will have their transport connections terminated at host
o. This gateway can inspect the payload, and then de-
cide to forward it or not depending on its contents. Note
that this use requires a logical SID header that can carry
the destination SID (and a source SID—the purpose of
which we explain below); this field can be used by the
receiving end-host, o, to demultiplex the request and as-
sociate it with the forwarding state. We will call hosts
such as o application-level intermediaries.

Delegation at the EID layer works similarly; a host
with EID e can insert the IP address of a different host
in the resolution infrastructure. As a result, when a third
host establishes a transport connection to e, its packets
actually go to the delegated host. The host identified
by e must establish state at the delegated host, so that
when packets arrive at the delegated host they can be for-
warded. As with SIDs, this scheme requires that packets
carry a logical EID header including the destination EID.
The intermediary uses this information to make a for-
warding decision. This type of intermediary is network-
level; it forwards packets but does not inspect the layers
above the EID.

The mechanism described above is sufficient
to support standard network-level intermediaries
(NATs/NAPTs, VPNs, and firewalls) cleanly and co-
herently. For example, depending on the scenario and
the security assumptions, such an intermediary may be
configured for no access control if it is only doing NAT,
for some access control if it acts as a firewall that allows
only certain ports, or for much more stringent access
control if it acts as a VPN box, logically interposed
between a private network and the global Internet and
only accepting packets from prespecified EIDs. Other
VPN scenarios exist; we do not cover them here.

While one obviously does not need our architecture
to implement the types of intermediaries we have de-
scribed (indeed, these intermediaries exist today), our ar-
chitecture offers three key benefits relative to the status
quo. First, the intermediaries do not violate protocol se-
mantics; they only terminate transport connections or in-
spect packet payloads explicitly addressed to them. Sec-
ond, they are explicitly invoked by endpoints (at the net-
work level) or services (at the application level); no end-
point is forced to send its traffic through intermediaries.

4



(Of course, some may still deploy architecturally suspect
middleboxes that impose their will on endpoints. Our
point here is that these middleboxes are no longer neces-
sary to achieve much of the same functionality.) Third,
because intermediaries are explicitly requested and glob-
ally addressed, they need not lie on the natural network
path of the connection. Under this design, for example,
all hosts belonging to an institution could logically reside
behind its network-level firewall; each such host would
list the firewall’s EID in the resolution infrastructure, and
then would send to the firewall their own EID (and pos-
sibly IP address and security information allowing the
firewall and the host to authenticate each other), so that
the firewall would know where to forward packets.

One could also use this form of indirection to provide
a (small) degree of protection against denial-of-service
(DoS) attacks. A server can shield itself from attack-
ers by placing a forwarding intermediary between itself
and untrusted clients. This allows the server to hide
its IP address from these untrusted clients and to con-
trol its incoming traffic by installing traffic filters at the
forwarding intermediary. This approach is identical in
spirit to the overlay DoS protection schemes proposed
in SOS [25], Mayday [1], and by Lakshminarayanan et
al. [26]; our point here is merely to illustrate how their
basic techniques can be implemented within our archi-
tecture. Of course, if attackers discover a server’s IP ad-
dress, they can launch a direct DoS attack, which our ar-
chitecture can’t prevent since it does not change current
routers. However, having all incoming packets directed
through intermediaries would make router-level packet
filtering much easier.

Application-level multicast is another example of a
service that, similar to DoS protection, requires setting
up an infrastructure of forwarding intermediaries, though
in this case between a source and multiple receivers.
However, for multicast, when a destination EID resolves
to multiple IP addresses, the intermediary forwards the
packet to all of them; this requires a multicast option as-
sociated with the resolution of EIDs.11

As described so far, our delegated binding mechanism
allows for simple forms of indirect forwarding. With one
modification, this mechanism can support source rout-
ing at the SID or EID layers.12 Such host control over
routing is useful for hosts who wish to specify interme-
diaries on the return path, e.g., a handheld PDA (or its
network provider) that needs its Web replies sent first to
a machine that transforms HTML from Web servers into

11Note that if IP Multicast were ubiquitously deployed, our architec-
ture would trivially support it; an EID would merely resolve to the IP
Multicast group address.

12Note that this level of route control is much coarser than the AS-
level control in NIRA [53]. Our mechanism only enables the equivalent
of loose source routing through a set of intermediaries.

a pared-down version suitable for the PDA’s browser.
Our modification, as in i3, is to use stacks of SID (or

EID) identifiers to encode a path at the SID (or EID)
level, and then to use these stacks of identifiers as the
source and destination fields in the logical packet header.
A source host can thus control its outbound path by plac-
ing a stack of identifiers in the SID (or EID) destination
field. Similarly, it can control its inbound path (i.e., the
path back from the remote endpoint) by placing an iden-
tifier stack in the SID (or EID) source field sent to the
remote service (or endpoint); the destination uses the
source field as the destination field in the return packet
thereby allowing the source to control its return path.
Moreover, intermediaries can push SIDs (EIDs) onto the
destination stack; doing so has the semantics of permit-
ting an intermediary to say “send this here before it goes
there”. We note that, in analogy with transport-level
ports today, a host application may use an ephemeral SID
for its own identifier.

This section described, superficially, how our archi-
tecture can be used to provide simple and dynamic re-
binding, indirect forwarding through intermediaries, and
end-host-controlled source routing over an infrastructure
of forwarding intermediaries. We leave many fine points
unresolved: examples include the details of the signal-
ing protocols required to set up state at intermediaries,
details of the software and API to interpret and create
stacks of identifiers, and the implications of this layering
for host software. One question that particularly interests
us is how congestion control fits in this layering scheme;
since congestion control is typically associated with a
path, and paths change when IP addresses change, will
the seamless rebinding make congestion control much
harder to manage? We have not addressed security in
this paper, but it is addressed in HIP [30, 31], and we can
inherit many of the mechanisms therein.

Putting aside these questions, we now turn an issue
we’ve ignored until now: how can one effectively handle
a flat namespace?

4 Coping with Flat Names

As we argued in Section 2, flat names are uniquely
able to provide persistence for all uses. However, flat
names also pose significant problems. Several systems
have been designed to meet these challenges, such as
the Globe project [4], Open Network Handles [34], and
SFR [52]. Here we discuss only two particularly trou-
bling aspects of flat names: they are hard to resolve and
they aren’t human-readable.

4.1 Resolution

DNS achieves scalability through hierarchy. It has
been an assumption, often implicit, that such structure
was necessary for scalable resolution. As a result, most

5



architectural proposals shied away from requiring new
global namespaces. The advent of distributed hash tables
(DHTs) suggests that flat namespaces can indeed be scal-
ably resolved with a resilient, self-organizing, and exten-
sible distributed infrastructure. The literature on DHTs is
large and rapidly growing, so we don’t review the techni-
cal details here. However, we note the following points.

DHTs arose in the context of peer-to-peer (P2P) sys-
tems, but an unmanaged and untrusted P2P system would
not be suitable for a crucial piece of the Internet in-
frastructure. Instead, we envision a well-managed dis-
tributed collection of machines providing the name reso-
lution service using a DHT or other flat namespace res-
olution algorithm. Also, DNS’s hierarchical delegation
naturally ensures each name is unique and controlled
by the relevant authority. With flat names, these goals
are harder to achieve but certainly not impossible. Sev-
eral mechanisms exist for global uniqueness (see [29, 39]
for example) and also for achieving administrative local-
ity [24, 29, 52]. Data integrity (i.e., ensuring that no one
else can change the resolution of an entity’s name) is also
challenging but possible (see, e.g. [51, 52]).

DHTs’ typical resolution time—O(log n) for an n
node system—would be unacceptable for most name
resolutions particularly since DNS often returns results
from a local name server. This latency issue can be ad-
dressed on two levels. First, many DHT-style routing
algorithms, either by design or through caching, have
far better than O(log n) performance; see, for exam-
ple, [19, 20]. Second, a DHT-based resolution infras-
tructure can be designed using local proxies [52], local
replication [24] or two-layered resolvers [29] that enable
entries written within the local network to be accessed
with local hops; these schemes also provide fate-sharing
in that if an organization is disconnected from the rest of
the Internet it can still access the entries written locally.
See [29, 52] for a detailed explanation of these issues.

One advantage of the DNS infrastructure is that it has a
built-in economic and trust model: domains provide their
own name servers. The central facilities required (the
root servers) are minimal and inexpensive. In contrast,
our resolution infrastructure does not have the “pay-for-
your-own” model, as names are stored at essentially ran-
dom nodes. Our model raises the questions of who will
pay and why should users trust the infrastructure.

It would be foolhardy to predict the eventual economic
model of such an infrastructure, but one could easily
envision a future in which resolution service providers
(RSPs) form a competitive yet cooperating commer-
cial market much like current ISPs. Customers pay for
lookups and for storing, likely a flat fee for a reason-
able number of accesses. The various RSPs would have
mutual “peering” relationships whereby they exchange
updates, much as the tier-1 ISPs all interconnect to-

day. Since each RSP would be judged by how well they
served their clients, they would have incentives to pro-
cess requests honestly. Moreover, one could use propos-
als like [8] to achieve a greater level of trust.

4.2 Living in an Opaque World

More troubling than the performance and economic is-
sues is the lack of semantics in the names themselves. A
flat namespace is highly versatile but provides no user-
readable hints. Although this fact poses little challenge
for EIDs, which are replacing almost equally opaque IP
addresses, difficulty arises when dealing with data and
services for which the human-readability of URLs has
been crucial. This issue is addressed at length (in some-
what different ways) in the various proposals mentioned
above, so here we only make two comments. The first re-
lates to how users obtain an SID. Users often find URLs
through search engines rather than directly typing them
into a browser; search engines could continue to per-
form the same function were services and data identi-
fied with SIDs. Moreover, third-parties could offer direc-
tory services mapping human-readable canonical names
to SIDs. The advantage of these canonical names is that
they are not part of the infrastructure and can be offered
by many competing entities.

Our second comment is that users need some assur-
ance that the SID they have in hand points to the intended
target. A URL like http://www.nytimes.com provides
hints (sometimes false) about its target but an opaque bit-
string gives no such assurance. Here, bitstrings could be
accompanied by metadata which includes cryptographic
statements like “Authority A says that this SID points to
the newspaper New York Times.” Again, these authori-
ties would not be part of the infrastructure but part of a
competitive market of SID authenticators.

In addition, as in HIP, the SIDs and EIDs could be
cryptographically strong; e.g., they could derived by
hashing a public key, making authentication of services
and endpoints more convenient.

5 Related Work

As noted in the Introduction, our work borrows most
heavily from three projects—HIP, SFR, and i3—and can
be seen as synthesizing these works, each of which has a
narrower goal, into a larger whole. However, many other
works describe related ideas. So many, in fact, that here
we can only present the most superficial of overviews.

Saltzer [40] was one among many [16, 28, 42] who
made fine distinctions between network elements; the
most common, and least practiced, of these distinctions
is between a host’s identifier and its address (see [27]
for a comprehensive discussion of this topic). This dis-
tinction has been embedded in two more recent propos-
als: UIP [14] and Peernet [13]. Both use overlays with

6



DHT-inspired routing algorithms: Peernet serves mobile
networks, and UIP seeks to interconnect heterogeneous
networks, using all nodes in the network as routers.

Creating location-independent, persistent names, and
an accompanying infrastructure for resolution, has long
been the goal of the URN literature [23, 44, 45]. In addi-
tion, the Open Network Handles work [33, 34] argues for
flat, unfriendly domain names for Web sites. The Globe
project [4, 51] envisions a single infrastructure for map-
ping from (possibly human-unfriendly) persistent object
identifiers to current locations.

There are an increasing number of proposals for rad-
ically new network architectures. These include ear-
lier proposals like PIP [15], IPv6 [12], Dynamic Net-
works [35], Active Networks [48], Nimrod [7], and
more recent proposals like Smart Packets [41], Network
Pointers [49], Role-Based Network Architecture [5], and
Ephemeral State Processing [6]. Each of these proposals
shares at least some of our goals here, but they are all
ab initio designs that would (in their full glory) require
significant modifications to all network elements. More
importantly, these proposals have substantially different
goals than we do here.

Four other proposals deserve special mention. The au-
thors of TRIAD [18] share nearly all of our motivations.
They observe that data should be first-class objects in the
modern Internet, capable of being addressed, and they,
like many others, create location-independent end-host
identifiers. The technical details of TRIAD’s solution
and our own are quite different: in TRIAD, the resolution
step and the routing step are conflated, thereby improv-
ing latency, and at the shim layer between IP and trans-
port, they use forward and reverse tokens that record the
path taken, instead of stacks. However, the main differ-
ence between our proposals is that identifiers in TRIAD,
both of hosts and data, are derived from domain names,
and indeed, the TRIAD approach relies on the seman-
tics and hierarchy of domain names to aggregate routes
to content names. As we hold the conviction that persis-
tent names ought to be flat, and as we have two layers of
such names, our technical problems differ from those of
TRIAD (and vice-versa).

IPNL also shares many of our motivations. IPNL is in-
tended to make renumbering easier, create separate end-
host identifiers, and leave the core IPv4 routing infras-
tructure untouched. Under IPNL, the end-host identifiers
are domain names, though the authors acknowledge that
a flat, cryptographically strong identifier, as in HIP, may
be preferable for security reasons.

FARA [9] presents a novel organization of network ar-
chitecture concepts. While many of its goals are similar
to ours, one directly conflicts: FARA deliberately avoids
creating new global namespaces whereas we strongly ad-
vocate creating one new flat global namespace. A de-

tailed comparison of our approaches is outside the scope
of this paper but merits further consideration.

P6P [50, 54] proposes a DHT-based infrastructure as
a way to deploy IPv6: sites send IPv6 packets to their
gateway DHT node, which treats the IPv6 destination ad-
dress as a flat identifier, uses this identifier to look up the
IPv4 address of a counterpart DHT gateway, and then
sends the packet over traditional IPv4 to this counterpart,
where the encapsulation is inverted and the packet is de-
livered to its destination. P6P shares many of our moti-
vations, but does not give hosts persistent names (if a site
changes ISPs, all of the identifiers at the site change).

6 Discussion

This paper proclaims three design principles and de-
rives from them a layered naming architecture that alle-
viates some of the Internet’s current problems. Services
and data could be named persistently yet flexibly, elevat-
ing them to first-class network elements. Middleboxes,
long the bane of network architects, would be virtuously
reincarnated as either application-level or network-level
intermediaries. Mobility would be seamless, and there
would be modest, but by no means complete, protection
against denial-of-service attacks and host route control.

While we believe in our proposal, the details are less
important than two deeper messages we now emphasize.
The first is that DHTs allow us, for the first time, to con-
template using flat namespaces in an architecture. While
the transition to such namespaces is hardly painless, the
payoff is profound. Once a flat namespace is established,
it can be used to name anything. No longer will our old
namespaces, DNS names and IP addresses, encumber
network elements with their underlying structure. New
applications will no longer face a Devil’s choice between
accepting the strictures of an existing but inappropriate
namespace or bearing the overhead of creating a new
one; instead, with a flat namespace all new network ele-
ments can be effortlessly incorporated.

The second message is that these extra naming lay-
ers will shield applications from the underlying routers.
One of the great frustrations of network architects is how
quickly the Internet went from a flexible academic play-
ground to an ossified commercial infrastructure. It feels,
to many, as if a work-in-progress has been prematurely
but permanently frozen in time. Perhaps one day sig-
nificant changes will come to this infrastructure, or a
general-purpose overlay will render it irrelevant. In the
meantime, however, it seems crucial to insulate applica-
tions and protocols from this underlying infrastructure.
Our layered naming architecture binds to IP addresses
only at the lowest logical layer, thereby minimizing the
extent to which the routing infrastructure constrains the
protocols and applications above.

Of course, our proposal also faces serious hurdles. In-

7



corporating these new naming layers requires significant
changes to host software, both applications and proto-
cols. Resolving these flat names requires a new resolu-
tion infrastructure. We do not underestimate the diffi-
culty of making these changes; they are indeed massive
challenges. However, both changes can occur incremen-
tally. DHTs can be incrementally scaled, so in the begin-
ning, when clients are few, the resolution infrastructure
can be small; as demand grows, so can the size of the
DHT. The host software can also be incrementally de-
ployed; early adopters get a significant benefit, but they
can remain (at least for a very long time) backward com-
patible with the old architecture. While this is all good
news, we don’t mean to imply that deployment will be
easy, only that it won’t be impossible. This, unfortu-
nately, is all one can hope for.

References
[1] D. G. Andersen. Mayday: Distributed filtering for Internet Services. In

4rd USENIX Symposium on Internet Technologies and Systems (USITS
’03), Seattle, WA, 2003.

[2] T. Anderson, T. Roscoe, and D. Wetherall. Preventing Internet
denial-of-service with capabilities. In 2nd ACM Workshop on Hot Topics
in Networks, Cambridge, MA, Nov. 2003.

[3] H. Balakrishnan, M. F. Kaashoek, D. Karger, and R. Morris. Looking up
data in P2P systems. Communications of the ACM, 46(2):43–48, Feb.
2003.

[4] G. Ballintijn, M. van Steen, and A. S. Tanenbaum. Scalable user-friendly
resource names. IEEE Internet Computing, 5(5):20–27, 2001.

[5] R. Braden, T. Faber, and M. Handley. From protocol stack to protocol
heap – role-based architecture. In 1st ACM Workshop on Hot Topics in
Networks, Princeton, NJ, Oct. 2002.

[6] K. L. Calvert, J. Griffioen, and S. Wen. Lightweight network support for
scalable end-to-end services. In ACM SIGCOMM, Pittsburgh, PA, Aug.
2002.

[7] I. Castineyra, N. Chiappa, and M. Steenstrup. The Nimrod routing
architecture, Aug 1996. RFC 1992.

[8] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach.
Security for structured peer-to-peer overlay networks. In 5th USENIX
Symposium on Operating Systems Design and Implementation (OSDI ’02),
Boston, MA, 2002.

[9] D. Clark, R. Braden, A. Falk, and V. Pingali. FARA: Reorganizing the
addressing architecture. In ACM SIGCOMM Workshop on Future
Directions in Network Architecture, Karlsruhe, Germany, Aug. 2003.

[10] D. Clark, K. Sollins, J. Wroclawski, and T. Faber. Addressing reality: An
architectural response to demands on the evolving Internet. In ACM
SIGCOMM Workshop on Future Directions in Network Architecture,
Karlsruhe, Germany, Aug. 2003.

[11] L. Daigle, D. van Gulik, R. Iannella, and P. Faltstrom. URN namespace
definition mechanisms, June 1999. RFC 2611.

[12] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6), Dec. 1998.
RFC 2460.

[13] J. Eriksson, M. Faloutsos, and S. Krishnamurthy. PeerNet: Pushing
peer-to-peer down the stack. In 2nd International Workshop on
Peer-to-Peer Systems, Berkeley, CA, Mar. 2003.

[14] B. Ford. Unmanaged Internet protocol: taming the edge network
management crisis. In 2nd ACM Workshop on Hot Topics in Networks,
Cambridge, MA, Nov. 2003.

[15] P. Francis. A near-term architecture for deploying PIP. IEEE Network,
7(6):30–27, 1993.

[16] P. Francis. Addressing in Internetwork Protocols. PhD thesis, University
College London, UK, 1994.

[17] P. Francis and R. Gummadi. IPNL: A NAT-extended Internet architecture.
In ACM SIGCOMM, San Diego, CA, Aug. 2001.

[18] M. Gritter and D. R. Cheriton. TRIAD: A new next-generation Internet
architecture. http://www-dsg.stanford.edu/triad/, 2000.

[19] A. Gupta, B. Liskov, and R. Rodrigues. Efficient routing for peer-to-peer
overlays. In 1st USENIX/ACM Symposium on Networked Systems Design
and Implementation (NSDI ’04), San Francisco, CA, 2004.

[20] I. Gupta, K. Birman, P. Linka, A. Demers, and R. van Renesse. Building
an efficient and stable P2P DHT through increased memory and

background overhead. In 2nd International Workshop on Peer-to-Peer
Systems, Berkeley, CA, Feb. 2003.

[21] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao. Distributed object
location in a dynamic network. In 14th ACM Symposium on Parallel
Algorithms and Architectures, Aug. 2002.

[22] C. Huitema. Multi-homed TCP. Internet Draft, May 1995. (expired).
[23] International DOI Foundation. http://www.doi.org/.
[24] J. Kubiatowicz et al. Oceanstore: An architecture for global-scale

persistent storage. In 9th ASPLOS, Cambridge, MA, Nov. 2000.
[25] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure overlay

services. In ACM SIGCOMM, Pittsburgh, PA, Aug. 2002.
[26] K. Lakshminarayanan, D. Adkins, A. Perrig, and I. Stoica. Taming IP

packet flooding attacks. In 2nd ACM Workshop on Hot Topics in
Networks, Cambridge, MA, Nov. 2003.

[27] E. Lear and R. Droms. What’s in a name: Thoughts from the NSRG,
2003. draft-irtf-nsrg-report-10, IETF draft (Work in Progress).

[28] C. Lynn. Endpoint Identifier Destination Option. Internet Draft, Nov.
1995. (expired).

[29] A. Mislove and P. Druschel. Providing administrative control and
autonomy in peer-to-peer overlays. In 3rd International Workshop on
Peer-to-Peer Systems, San Diego, CA, Feb. 2004.

[30] R. Moskowitz and P. Nikander. Host identity protocol architecture, Sep
2003. draft-moskowitz-hip-arch-05, IETF draft (Work in Progress).

[31] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson. Host identity
protocol, Oct 2003. draft-moskowitz-hip-08, IETF draft (Work in
Progress).

[32] P. Nikander, J. Ylitalo, and J. Wall. Integrating security, mobility, and
multi-homing in a HIP way. In Network and Distributed Systems Security
Symposium (NDSS ’03), pages 87–99, San Diego, CA, Feb 2003.

[33] M. O’Donnell. Open network handles implemented in DNS, Sep. 2002.
Internet Draft, draft-odonnell-onhs-imp-dns-00.txt.

[34] M. O’Donnell. A proposal to separate Internet handles from names.
http://people.cs.uchicago.edu/˜odonnell/Citizen/
Network_Identifiers/, Feb 2003. submitted for publication.

[35] S. W. O’Malley and L. L. Peterson. A dynamic network architecture.
ACM Transactions on Computer Systems, 10(2):110–143, May 1992.

[36] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable
content-addressable network. In ACM SIGCOMM, pages 161–172, San
Diego, CA, August 2001.

[37] T. Roscoe, S. Hand, R. Isaacs, R. Mortier, and P. Jardetzky. Predicate
routing: Enabling controlled networking. In 1st ACM Workshop on Hot
Topics in Networks, Princeton, NJ, Oct. 2002.

[38] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems. In Proceedings of the
18th IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware 2001), Nov. 2001.

[39] A. Rowstron and P. Druschel. Storage management and caching in PAST,
a large-scale, persistent peer-to-peer storage utility. In 18th ACM
Symposium on Operating Systems Principles, Banff, Canada, Oct. 2001.

[40] J. Saltzer. On the naming and binding of network destinations. In P.
Ravasio et al., editor, Local Computer Networks, pages 311–317.
North-Holland Publishing Company, Amsterdam, 1982. Reprinted as RFC
1498, August 1993.

[41] B. Schwartz, A. W. Jackson, W. T. Strayer, W. Zhou, R. D. Rockwell, and
C. Partridge. Smart packets: applying active networks to network
management. ACM Transactions on Computer Systems, 18(1):67–88, Feb.
2000.

[42] J. F. Shoch. Inter-network naming, addressing, and routing. In 17th IEEE
Computer Society Conference (COMPCON ’78), pages 72–79,
Washington, DC, 1978.

[43] A. C. Snoeren. A Session-Based Architecture for Internet Mobility. PhD
thesis, Massachusetts Institute of Technology, Dec. 2002.

[44] K. Sollins. Architectural principles of uniform resource name resolution,
Jan 1998. RFC 2276.

[45] K. Sollins and L. Masinter. Functional requirements for Uniform
Resource Names, Dec 1994. RFC 1737.

[46] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet
indirection infrastructure. In ACM SIGCOMM, Pittsburgh, PA, Aug. 2002.

[47] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup
protocol for Internet applications. IEEE/ACM Transactions on
Networking, 11(1):17–32, Feb. 2003.

[48] D. L. Tennenhouse, J. M. Smith, D. Sincoskie, D. J. Wetherall, and G. J.
Minden. A Survey of Active Network Research. IEEE Communications
Magazine, 35(1):80–86, 1997.

[49] C. Tschudin and R. Gold. Network Pointers. In 1st ACM Workshop on Hot
Topics in Networks, Princeton, NJ, Oct. 2002.

[50] R. van Renesse and L. Zhou. P6P: A peer-to-peer approach to Internet
infrastructure. In 3rd International Workshop on Peer-to-Peer Systems,
San Diego, CA, Mar. 2004.

[51] M. van Steen, F. J. Hauck, P. Homburg, and A. S. Tanenbaum. Locating

8



objects in wide-area systems. IEEE Communications Magazine,
36(1):104–109, Jan. 1998.

[52] M. Walfish, H. Balakrishnan, and S. Shenker. Untangling the Web from
DNS. In 1st USENIX/ACM Symposium on Networked Systems Design and
Implementation (NSDI ’04), San Francisco, CA, 2004.

[53] X. Yang. NIRA: A new Internet routing architecture. In ACM SIGCOMM
Workshop on Future Directions in Network Architecture, Karlsruhe,
Germany, Aug. 2003.

[54] L. Zhou, R. van Renesse, and M. Marsh. Implementing IPv6 as a
peer-to-peer overlay network. In Workshop on Reliable Peer-to-Peer
Distributed Systems, 21st IEEE Symposium on Reliable Distributed
Systems (SRDS ’02), Suita, Japan, Oct. 2002.

9


