
Authentication in the Taos Operating System

Edward Wobber, Martin Abadi, Michael Burrows, and Butler Lampson

Systems Research Center, Digital Equipment Corporation

Abstract

We describe a design and implementation of security

for a distributed system. In our system, applications

access security services through a narrow interface.

This interface provides a notion of identity that in-

cludes simple principals, groups, roles, and delega-

tions. A new operating system component manages

principals, credentials, and secure channels. It checks

credentials according to the formal rules of a logic

of authentication. Our implementation is efficient

enough to support a substantial user community.

1 Introduction

In this paper we present:

●

●

●

a design for a general form of distributed sys-

tem security, including both the external inter-

face and the major internal interfaces;

a careful explanation of how, in the implement a-

tion, an authentication corresponds to a proof in

a formal theory [2, 9];

a demonstration that a clean and sound design

can have an efficient implement at ion.

We use the access control model [10] of security. In

this model there are objects (files, printers, etc.), re-

quests, and principals (users, machines, etc.) that

utter requests. Each object has a guard or refer-

ence monitor that examines each request and decides
whether or not to grant it. The request must first be

authenticated to identify the principal that uttered

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and Its date appear, and notice IS given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

SIGOPS ‘93/12 /93/N. C., USA

@ 1993 ACM 0-89791-632-8/93/001 2...$1.50

it, and then authorized only if the principal has the

right to do the requested operation on the object. We

do not address either denial of service or the kind of

non-disclosure security policies that are based on an

information flow model.

The notion of compound principals [6] makes the

access control model more powerful by providing a

uniform vocabulary to denote all the principals in a

distributed system, including users, machines, pro-

grams, delegations, roles, and groups.

We assume that a distributed system is made up

of nodes connected by an insecure network. A node

is a shared-memory computer running an operating

system trusted for security local to the node.

In our system there is a component in each node

called the authentication agent which is responsible

for managing principals, credentials, and secure chan-

nels. It implements all credential exchanges and val-

idations, communicating with agents in other nodes

when necessary. It uses a certification database for

names, group memberships, and executable images.

The agent provides security services to application

programs. From the underlying system it needs only

a bidirectional secure channel to each application and

global names for the channels between the application

and the outside world.

Our design has several advantages:

●

●

e

Credentials are managed by the authentication

agent. Clients deal with authentication entirely

in terms of principals.

Compound principals denote the sources of re-
quests precisely and uniformly.

Our system is based on a logic in which the au-

thentication of a request corresponds to a proof.

The logic guided our design and aids in under-

standing the implement ation.

The main disadvantage is lack of compatibility with

other security mechanisms such as Kerberos [8] or

OSF DCE Security [12].

256

Many systems that offer distributed security do so

entirely at the level of the application, either to avoid

changing the kernel or because most operating sys-

tems do not support a coherent model of user identity

throughout the network. Our basic design can be im-

plemented in the same way, with the authentication

agent linked as a library in each application.

In fact, however, our distributed security is part of

the operating system. This has one major advantage:

the notion of identity or principal is built in at a very

low level and is represented consistently everywhere.
There is no distinction between local and remote prin-

cipals. Minor advantages are that it’s easy to provide

the necessary secure channels between the authenti-

cation agent and applications, and easy for a child

process to inherit the authority of its parent. The

trusted computing base doesn’t get any bigger, be-

cause the operating system must be trusted anyway.

The setting for this work is Taos, the operating

system for the Firefly shared-memory multiproces-

sor [17]. It is completely multi-threaded, yet also

implements a protected address-space model close

enough to that of Unix that it can run most Unix bi-

naries. Remote procedure call is the primary means

of interprocess communication. Although Taos has

been a convenient test vehicle, our only real depen-

dency on it is that we could adapt it to our needs.

The next section reviews the logic. Section 3 dis-

cusses the application programming interface (API)

to Taos security. Section 4, the heart of the paper,

describes the implementation in detail. Finally, Sec-

tion 5 discusses system performance.

2 Background

We use shared key encryption to secure short-term

node-to-node channels, All other encryption is public

key and is done only for integrity, not for secrecy. We

write K and K– 1 for the public and secret keys of a

key pair. We say that a message encrypted with K-l

is signed by K so that we need to mention only the

public key.

Authentication often relies on the use of signed

statements called certificates. These form the build-

ing blocks of credentials, which are proofs of authen-

ticity. We view certificates and credentials both as

logical formulas and, in the implementation, as data.

Time does not appear explicitly in the logic; for-

mally, assumptions and proofs concern only a given,

implicit instant. In our system, on the other hand,

a time interval qualifies each certificate. A certificate
is valid only for the specified interval. Therefore, the

conclusion of a proof is valid only for the intersection

of the intervals of all the certificates used in the proof.

Since these certificates typically originate at different

nodes, it is important that nodes have loosely syn-

chronized clocks. However, we can easily tolerate a

one-minute skew because certificates are valid for at

least a few minutes. The most obvious effect of a

large skew is that authentication becomes impossible

because the validity interval of a formula is empty

or does not include the current time. If a certificate

originates at a node whose clock is much later than

real time, or is used at a node whose clock is much

earlier, it is also possible that the certificate will be

taken as valid even though it should have expired. For

synchronization, we do not have a secure time server,

and instead rely on the clocks of individual nodes.

2.1 Some notations and rules

We write A says S to mean that principal A supports

the statement S (an assertion or a request). We write

A + B when A speaks for B, meaning that if A makes

a statement then B makes it too:

if (A + B) and (A says S)

then (B says S)

We think of A as being stronger than B. The +

relation is a partial order. It obeys many of the same

laws as implication, so we use the same symbol for it.

Principals include:

● Simple principals. Users, machines.

● Principals in roles. We write A as R for A in role

R (for example, Bob as Admin for Bob acting as

an administrator). A principal can adopt a role

in order to reduce its rights [9, Section 6]. That

is, A + (A as R).

● Channels. Network addresses, encryption keys.

C says S if S appears on channel C. In particu-

lar, K says S represents a certificate containing

S and signed by K. A channel is the only kind

of principal that can directly make a statement,

since a message can arrive only on a channel.

● Groups. Sets of principals. If A is a member of

G and A says S, then G says S, so A =+ G.

. Conjunctions of principals. The principal A A B

says S when both A and B do.

● Principals quoting principals. The principal B [A

says S when B says that A says S.

● Principals acting on behalf of others. The prin-

cipal B for A says S when B says that A says S
and in addition A has authorized B to act on its

behalf (A has delegated to B).

257

The operations as, A, [, and for are monotonic with

respect to +, so for example if B + B’ then (B for

A) =+ (B’ for A). The handoff axiom represents the

transfer of authority:

if Asays B+A

then B+A

In other words, we believe that B speaks for A when

A says it. Similarly, we have a delegation axiom:

if A says (B I A) + (B for A)

then (B\ A) + (B for A)

which means that we believe A when it says that

B] A speaks for B for A, that is, that B can act as

A’s delegate,l Delegation differs from handoff in that

both parties lend authority to the composite, and B

quotes A in speaking for B for A so that it does not

exercise this authority accidentally.

There is a natural role associated with many

groups, for example the role of administrator with the

group of administrators. Hence we use group names

as roles, and adopt the general rule that if A is a prin-

cipal, G a group, and A + G then (A as G) +- G.

2.2 Logic and authentication

This section gives a simplified example of how logic

can be used to reason about authenticating com-

pound principals; there is more detail in later sec-

tions. In the example a machine Vax~ is booted with

an operating system OS. Together, Vax,/ and OS

form a node WS. A user Bob logs in to WS. We

consider the reasoning necessary to authenticate re-

quests from this login session to a file server FS.

In order to establish credentials, Vamj must possess

a secret. For example, if (K~~~4, 17~.~4) is a RSA key

pair, then K~& is a suitable secret. Let A’~a\4 be
available only to Vax4’s boot firmware, not to any

of the operating systems it can run. At boot time,

K~& is used to sign a boot certificate that transfers

authority to a newly generated key Kw~; in the logic,

this certificate reads:

We call A-W. the node key for WS. It speaks not for

170..1 but for a weaker principal WS = (KU.Z4 as

0S), that is, h’ ~~~4 in the role of the boot image.
After booting, WS gets the boot certificate and K;;,

but does not know K~&4.

1 This axiom IS not included in [9], but IS suggested in [2],

we adopt It for slmphclty.

We treat login as a specialized form of delegation.

When Bob logs in, K~\ is used to sign a delegation

certificate that transfers authority to W3

Kbob says (Kw~ I KbOb) + (Kw~ fOr Kbob) (2)

Consider now a request from the login session to a

file server FS. There must first exist a channel Cb.b

over which to issue requests. As observed by FS, a

request appears as a statement on this channel:

Cbobsays RQ

In order to back this request, WS supplies (2) and

writes a channel certificate:

(Ku, I Kbob) =W Cbob + (Km for Kbob) (3)

This represents a handoff from the node to the chan-

nel. Now, by applying the handoff axiom and the

delegation axiom to (2) and (3), FS can deduce

(Kw, for KbOb) says RQ. Given the boot certificate

(1), FS can infer, by monotonicity:

((K0.Z4 as 0S) for KbOb) says RQ

We still must prove that KV.Z4 and RbOb corre-

spond to Vax4 and Bob. To do this we must trust

some certification authorzty or CA. Trusting a CA

with known key KC. means believing that KC. speaks

for any principal. Thus, FS can use the certificates

KC. says KU.Z4 + Vax4

KC. says KbOb + Bob

the handoff axiom, and monotonicity, to deduce:

((Vax4 as 0S) for Bob) says RQ

That is, FS knows that Vax4 running OS requests

RQ on behalf of Bob. The access control algorithm

given in [9, Section 9] can now determine whether the

request should be granted.

The remainder of the paper describes how this au-

thentication logic is implemented in Taos.

3 An API for Authentication

The logic is rather complex to be presented directly

through a programming interface. Instead, Taos de-

fines a simple and consistent set of security services.

They are based on an abstract datatype Prin that

represents principals, and a subtype Auth that repre-

sents principals that processes can speak for.

Section 3.1 gives the interfaces for sending and re-

ceiving authenticated messages; that is, it explains

how a process that can speak for a principal P can

make another process believe P says S. Section 3.2

258

gives the interface for managing Auths; that is, it ex-

plains how a process can change the set of principals

that it can speak for.

For brevity we omit procedure exceptions.

3.1 Authenticating messages

We begin with a simplified version of the interface for

sending and receiving authenticated messages:

PROC Send (dest: Address; p: Auth; m: Msg) ;

PROC Receiveo: (Prin, Msg);

PROC Authenticate(p:Pri.n): TEXT;

PROC Check(acl:ACL; p:Prin): BOOL;

Send transmits thestatementp says mto the pro-

cess at address dest. Symmetrically, if Receive re-

turns (p, m), some process that speaks forp hasin-

voked Send(p, m); in other words, the receiver can

believe that p says m. The receiver can then use

Authenticate to turn p into a string name. This

string can represent a compound principal such as

Bobas cdnin, orit can be a simple name. Simple

names are convenient for existing applications. Sec-

tion 4.5 describes the somewhat ad hoc rules Taos

uses to reduce compound principals to simple names.

The ultimate goal of authentication is to tell the

authorization service the source of a request. We

therefore introduce another abstract datatype ACL to

represent access control lists, and the authorization

operation Check to determine whether acl grants ac-

cess to p. Check both hides the details of naming

and allows a convenient and efficient cache of recent

successful authorizations. There are also operations

for constructing and examining ACLS, but they are

beyond the scope of this paper.

The Authenticate and Check procedures deal only

in Prins and do not depend on how a Prin is trans-

mitted. They remain unchanged as we improve the

rest of the interface in this section.

This interface has no notion of a principal that a

process speaks for by default, Instead, the Auth ar-

gument to Send requires the process to specify explic-

itly the principal that is uttering each message. Of-

ten a process has only one Auth, and we could have

added a “working authority” to the process state and

a SetWorkingAuth procedure (by analogy with the

working directory), and dropped the Auth argument

to Send or made it optional. This is similar to what

Unix does with the effective uid. Or, to accommo-

date multi-threaded programs, we could have made

the working authority part of the thread state.
This simple design is unsatisfactory because it ties

authentication and communication too closely. To

separate them, we make explicit the relation between

a channel c and the principal p that it speaks for.

The communication system makes secure channels

on which a process can send. A channel is secure if ev-

ery message received on it is sent by that process. We

might also want messages on the channel to be secret,

that is, received only by certain processes; this is a

simple extension that we will not discuss further. An

abstract datatype Chan represents secure channels.

To transmit an authenticated message, a process

sends it on a secure channel, the receiver gets the

channel c on which the message arrives, and a new op-

eration GetPrin returns the p that the channel speaks

for. In other words, c names the principal p.

For this to work a given channel must speak for at

most one principal, so we need a cheap way to make

channels. Our way is to take a single channel c on

which a process can send securely, and then to multi-

plex many subchannels onto c, one for each principal

that the process speaks for. Sending and receiving is

done on these subchannels.

Our

PROC

PROC

PROC

PROC

PROC

The

secure

second try at an interface is thus:

GetChan(dest: Address) : Chan;

Get SubChan (c: Chan; p: Auth) : SubChan;

Send (dest: SubChan; m: Msg) ;

Receive () : (SubChan, Msg) ;

GetPrin(c: SubChan) : Prin;

sending process calls first GetChan to get a

channel c to the process at dest and then

Get SubChan (c, p) to get a subchannel that speaks

for p. The receiver calls GetPrin to recover a Prin.

The actual Taos interface has a further refinement:

a process can utter many statements, perhaps made

by different principals, in a single message. For ex-

ample, one call could pass an array of names of files

to delete and a parallel array of principals that are

authorized to do the deletions. To make this work we

must reveal the addressing mechanism for subchan-

nels: it’s an integer called an authentication adentijier

or AID. The sender calls GetAID to learn the AID aid

for a principal and sends it as an ordinary data value

in the message. The receiver pairs the channel on

which the message arrives with aid to recover the

speaking principal. So the actual Taos interface is:

PROC GetChan(dest: Address) : Chan;

PROC GetAID(p :Auth) : AID;

PROC Send(dest :Chan; m: Msg) ;

PROC Receiveo : (Chan, Msg) ;

PROC GetPrin(c :Chan; aid: AID) : Prin;

In Taos the messages exchanged in this way are
normally the call and return messages of remote pro-

cedure calls. RP C marshals an Aut h parameter p by

259

sending the result of GetAID (p), and unmarshals aid

from channel c as the result of GetPrin(c, aid). It

also gets the channel from the RPC binding, and of

course it encapsulates the Send and Receive. The re-

sult is that the RPC client can simply use Prins and

Auths as arguments and results, and does not have

to call any of the procedures in this interface except

Authenticate and Check. This works for both calls

and returns, so mutual authentication is possible.

3.2 Managing principals

A Taos process can obtain an Auth in five ways:

. by inheritance from a parent process,

e by presenting a login secret,

. by adopting a role,

. by delegating rights, or

● by claiming delegated rights.

All but the first of these produce a new and unique

Auth. In particular, each user session on a machine

is represented by a different Auth.

The

PROC

PROC

PROC

PROC

PROC

PROC

PROC

interface for managing Auths is:

Self () : Auth;

Inheritance () : ARRAY OF Auth;

New (name, password: TEXT) : Auth;

AddRole (a: Auth; role: TEXT) : Auth;

Delegate (a: Auth; b: Prin) : Auth;

Claim (b: Auth; delegation: Prin) : Auth;

Discard (a: Auth; all: BOOL);

Self returns a default Auth for the current process.

The default is specified when the process is created.

Inheritance returns all the Auths the process inher-

its from its parent.

New is used to generate entirely new credentials.

The parameters describe a user name and a user-

specific secret sufficient to generate the cryptographic

credentials described in Section 4.3. The result is an

Auth that represents node for name, where node is the

local node. This result reflects the fact that the user
cannot make a request without involving the machine

and the operating system.

AddRole creates a weaker authority than a by ap-

plying a role. If a represents A, then the result rep-

resents A as role.

Roles are used in two ways in Taos. First, a process

can restrict its rights to what is necessary to fulfill a

part icular function by calling AddRole on one of its

existing Auths. Second, a Taos node can give some

x
❑ lzl

‘k /“4
Delegate (a, Pb)

‘k
c—-

A, A says BL4+B for A

J
Y

El-—- ‘b

II
“&,p ,_iIg

7’-–- +’=
A, A saysB!A+B forA

Figure 1: An example of delegation

of its rights to a trusted process. Taos uses secure

loading to determine whether an executable image is

certified (see Section 4.4). After loading a certified

image, Taos calls AddRole to create an Auth weaker

than its own which it hands off to the new process (for

example, AddRole (Self () , “telnet-server”) for a

login daemon). This mechanism bears some resem-

blance to Unix setuid execution. However, in Taos

there is a stronger guarantee about the loaded pro-

gram, and the program need not receive all the rights

of the node. Further, the resulting rights, like those

of the node, can be exercised over the network.

The procedures Delegate and Claim are used in

tandem to implement delegation; Figure 1 shows an

example. Suppose process X has an Auth a that rep-

resents A, process Y has an Auth b that represents El,

and X wants to give to Y an authority that represents

B for A by delegation. First, X gets from Y a Prin

Pb that represents B. Then X calls Delegate (a,

pb) to make a new Auth c that represents A but also

carries the property that A says (B IA) + (B for A).

Now X sends c to Y, which receives it as the Prin

pc. Finally Y calls Claim (b, pc) to get an Auth d

that represents B IA, and hence B for A by the del-

egation axiom. Before doing this, Y may wish to call

Authenticate (pc) to find out what principal d will

represent.

A process can make an Auth a invalid by calling

Discard. The effect is that the process can no longer

use a to speak for a’s principal (although receivers

might not find this out until their caches time out). If

all is TRUE, a also becomes invalid in all the processes

that have inherited it; this allows a process to take
an authority away from its children.

If a was the result of Delegate, invalidating it has

another effect: any Auth derived from a by Claim will

also become invalid within a fairly short time (at most

30 minutes). The same thing happens if the process
that called Delegate terminates.

The API provides no direct access to the logical

operators I and A or to the handoff rule.

260

Callbacks

101from
other
agents

Figure2: Structure of the authentication agent

4 The Authentication Agent

The authentication agent is responsible for handling

most of the complexity of authenticating requests

from compound principals. It has four parts. The

secure channel manager creates process-to-process se-

cure channels. The authority manager associates

Auths with processes and handles authentication re-

quests. The credentials manager maintains creden-

tials on behalf of local processes and validates certifi-

cates authored on other nodes. Finally, the certifi-

cation library establishes a trusted mapping between

principal names and cryptographic keys, and between

groups and their members. Figure 2 shows the struc-

ture of the authentication agent; arrows indicate call

dependencies.

Only a few changes were needed to the rest of Taos

to support the authentication agent: implementing

authority inheritance in the process manager; sup-

porting secure loading; and adding Aut h parameters

to all security-sensitive kernel calls.

4.1 The secure channel manager

The secure channel manager implements the Chan

datatype described in Section 3.1. It controls the

construction of node-to-node channels, and then uses

them to provide process-level channels to its clients.

Since the purpose of authentication is to prove that

a channel utters a request on behalf of a principal,

the secure channel manager must be able to attribute

channels to processes and thereby link channels to the
principals for which they speak. Our design does not
mandate any one technique for implementing secure

channels; such techniques are well documented [11].

4.1.1 Node-to-node channels

Given two nodes WS and WS’, it is easy to establish a

shared-key channel C between them; we use the pro-

tocol described in [9, Section 4] to exchange shared

keys. Let WS have node key KW,; then C speaks for

KWS from the point of view of WS’. When the pro-

tocol is reexecuted, (2 still speaks for KW,, so C can

be rekeyed without invalidating existing authentica-

tion state based on Ku.. Each node is responsible for

caching and timing out the keys it shares with other

nodes, and either end of a secure channel can trigger

the generation of a new shared key.

The secure channel manager maintains a cache of

keys shared with other nodes, indexed by node ad-

dress and used to implement GetChan and Send. An-

other cached mapping from shared keys to node keys

is used by Receive to get from the shared key that

successfully decrypts a message to a node key.

Both of these caches can be flushed as necessary.

In fact, both are flushed periodically in order to in-

validate old keys. The key-to-node-key mapping is

flushed with a period that is twice that of the address-

to-key mapping so as to prevent misses caused by

partners using older keys.

Taos does not implement hardware secure chan-

nels. The key exchange mechanism it implements is,

however, suitable for constructing them. Herbison [7]

discusses the use of encrypting network controllers

to build efficient secure channels. Our system design

is intended to operate best with encryption-capable

controllers. DES hardware for such controllers has

been shown to operate at speeds of 1 Gbit/sec [5], so

performance should not be a problem.

In our implementation, software DES is used to

sign channel certificates (see Section 4.3.4), but re-

quests are made without signature to avoid the over-

head of software encryption.

4.1.2 Process-t o-process channels

The channels offered to clients of the API are always
between two processes. These channels are formed

by multiplexing process-level data across the node-to-

node channels discussed in the previous section. The

concrete form of the Chan datatype differs depend-

ing on the secure channel implementation. However,

all channel implementations must support naming of

channels by ChanIDs:

TYPE ChanID = { nk: NodeKeyDigest;

pr: INTEGER; addr: Address };

The nk field of ChanID names the node key of the

partner, pr identifies the partner process, and addr

261

indicates the address of the partner authentication

agent. A message digest function is applied to node

keys in order to produce small values for the nk field.

In Taos we exploit the fact that most communica-

tion employs a transport protocol under our control.

We identify each process with a 32-bit integer pro-

cess tag (PTag). 2 The operating system ensures that

all transmissions are tagged with valid PTags. Thus,

the receiver of a message can name its origin with a

Chan containing the sender’s node key plus a source

pr equal to the sender’s PTag.

The secure channel manager exports the primitives:

PROC GetChanID(ch: Chan) : ChanID;

PROC PTagFromChan (c: ChanID) : PTag;

GetChanID returns a ChanID given an abstract Chan.

If PTagFromChan (c) is invoked at c’s source—where

c. nk is the local node key—it returns the PTag for

the process that controls c; otherwise it fails.

Process-level multiplexing can also be done with

standard protocol implementations such as TCP/IP

and UDP/IP that have small integer port numbers

that identify the origin and destination of messages

within a node. Port numbers would be perfect process

identifiers if they were not reuseable. One possible

workaround is to place restrictions on the reuse of

port numbers. Another is to treat process channels

as secure connections that must be explicitly opened

and closed. This requires considerable care.

4.2 The authority manager

The authority manager implements the operations on

Auths and Prins discussed in Section 3.2. The inter-

nal interface to the authority manager parallels the

API quite closely. However, for each Auth supplied

as an argument, the kernel call dispatcher appends

the PTag of the caller. This PTag argument is used

to ascertain that the caller owns each supplied Auth.

We say that a process owns an Auth if the authority

manager has given that process the right to use it.

Whenever an Auth is explicitly returned to a process

through the API, the calling process owns it.

Each new Auth is assigned a unique AID by the

authority manager. In our implementation, AIDs are

96 bits wide, so there is no need to reuse one. The
authority manager maintains a table of the Auths it

creates, indexed by AID. Each entry contains:

● credentials for an Auth,

● a list of PTags of processes that own this Auth,

‘2Do not ,-onfu~e pTags with 16-blt Umx process IDs, which
can wrap around. Our PTagsare never reused; a consequence
is that Taos can create only 232 processesper boot.

credentials for unclaimed delegations (only if this

Auth resulted from a call to Delegate), and

a source from which to refresh delegation cre-

dentials (only if this Auth resulted from a call to

Claim).

Much like Unix file descriptors, Auths can passed

by inheritance to child processes. The process man-

ager implements this inherit ante by calling:

PROC Handoff (a: Auth; ptag: PTag) ;

PROC PurgePTag (ptag: PTag) ;

Handoff adds ptag to the list of PTags of processes

that own a. It is invoked when an Auth is inherited

from a parent process. PurgePTag eliminates all in-

stances of ptag in the credentials table. It is called

when the process identified by ptag terminates.

4.2.1 Callbacks

As we have seen, AIDs and channels can be used to

represent principals in network protocols. In order to

allow this, the authority manager must be prepared

to produce credentials on behalf of any Auth it man-

ages. These credentials are obtained with callbacks.

This saves the cost of passing complex credentials

repeatedly. In fact, credentials are generated lazily,

only when needed, and AIDs may be passed before the

corresponding credentials exist. Although credentials

could easily be bundled with requests, they are large

enough (> 1 kbyte) to affect communications perfor-

mance. Since the results of authentication are cached

extensively, callbacks improve performance for nearly

all applications, even in high-latency networks.

Suppose a user-level process receives a request on

a channel ch. In this case, the API function GetPrin

returns a Prin p constructed from Get ChanID (ch)

and the AID accompanying the request. Now the

process can ask its authentication agent to resolve

p into a principal name, for example with a call

to Authenticate (p). We use the PrinID datatype

to represent Prins when passed across address-space

boundaries (for instance between user space and the

authentication agent):

TYPE PrinID = { ch:ChanID; aid: AID };

The implementation of Authent i cat e (p) asks the re-

quester’s agent (at p. ch. addr) to provide credentials

for p. This agent looks up p. aid in its credentials

table and determines whether PTagFromChan (p. ch)

specifies a process that owns the corresponding Auth.

If it does, the requester’s agent returns a channel cer-

tificate as proof that the channel speaks for the prin-

cipal that p represents. This proof consists of the

262

credentials found in p. aid’s hash-table entry and a

statement that p. ch quoting p. aid speaks for the

principal (see Section 4.3.1).

It is critical for performance that the results of

Authenticate be cached. Caching can be imple-

mented in user space, in the operating system, or

both. Our implementation caches the results of au-

thentication callback in user space with a timeout

equal to the lesser of 30 minutes and the validity in-

terval of the supplied channel certificate.

A callback also occurs when a call Claim (me, p)

activates a delegation. The delegate’s authentication

agent passes p in a callback to the delegator’s agent,

which uses p. aid to find credentials suitable for sign-

ing a delegation certificate and returns a signed cer-

tificate to the delegate’s agent. The delegation certifi-

cate need not be concealed. Any agent may request

a copy, since it is useful only to the delegate’s agent.

That agent must remember p so that it can repeat the

callback to refresh the delegation in case it expires.

4.3 The credentials manager

The credentials manager is the heart of the Taos au-

thentication system. The primary functions of the

credentials manager are to build, to check, and to

store credentials. We explain the form of credentials

and their logical meaning in the first two subsections.

Then we give the interface to the credentials manager

and discuss techniques for avoiding signatures.

4.3.1 Credentials

We understand credentials as having logical mean-

ings. A credential is evidence that one principal Q

speaks for another principal P. If the credential were

written as a formula ill, its recipient would want to

check that Al implies Q + P.

Taos encodes credentials as S-expressions. The en-

coding is designed to make straightforward the proof

of the theorem that A4 implies Q + P. If an S-

expression is a well-formed credential, then the cor-

responding proof that M implies Q ~ P can easily

be constructed from the S-expression. If in addition

all signatures in the S-expression are recent and cor-

rect, then the S-expression is said to be valid; the

S-expression is interpreted as Al only if it is valid.

Thus, deriving Q =+ P is reduced to parsing a cre-

dential and checking signatures.

In this section we define our S-expression gram-

mar for credentials. In Section 4.3.2 we give a table

of correspondences between S-expressions and logi-

cal formulas, effectively recovering the logical form
of a credential from the S-expression encoding. This

channel = ((channel’ prin prinID sig)
boot = (‘boot’ k-as key sig)
login = (‘logln’ k-as session sig)
session = (‘session’ key boot sig)
delegation = ((for) delegator delegate sig)

pas = (‘as

k.-as = (‘as

primary = (key

prin = boot

prin role)

k-as role) I primary

name)

login I delegation I p-as

delegator = delegate = prin

role = name

Table 1: Grammar for credentials

logical form is used only in explaining our implemen-

tation; the implementation does not manipulate for-

mulas. We also describe how to check whether a cre-

dential is valid.

Table 1 gives the grammar for credentials. Names,

keys, PrinIDs, and signatures are terminals. The

main production is the one for channel, because re-

quests always arrive on channels. Primary names are

only hints, used to simplify the mapping of keys into

names. We say that a credential y is embedded in a

credential x if y is a subexpression of x.

The signature in a certificate includes the inter-

val of time for which it is valid plus an unforgeable

value identifying the signer. This value is a digest of

the certificate, encrypted by a RSA secret key. The

digest is computed over the entire certificate, exclud-

ing embedded signatures, by a one-way function that

reduces its input to a size small enough to sign conve-

niently; it is one-way in the sense that it is computa-

tionally hard to find a different input with the same

digest. Taos uses MD4 [14] as a digest function.

We now discuss specific credentials in some detail.

For each type of signed credential, we discuss an ex-

ample, borrowing context from Section 2.2.

Boot certificates. A boot certificate describes a

handoff from a machine key to a node key. In our

example, the meaning M of the boot certificate is:

(h’uaz4 as 0S) says Kw, + (Kvaz4 as 0S)

From M and the handoff axiom, we obtain:

Ku. ~ (KVCZ4 as 0S)

which is the formula Q + P in this case. The boot

certificate is encoded as:

(boot (as (KV.C4 Vaz~) 0S) Kw. ,szgl)

263

Login and session certificates. A logm certzjicate

is a special form of delegation certificate. It denotes

a delegation from a user’s key to the conjunction of

a node key with a temporary session key. The user’s

key should be in memory for the shortest possible

time, to reduce the chance that the key will be dis-

covered by an attacker. In Taos, it is present just long

enough to sign the login certificate. This certificate is

of long duration, on the order of days. More sophis-

ticated login protocols could be used, since they can

produce an equivalent certificate [I].

The temporary session key ensures that the login

certificate becomes invalid when the user logs off, to

make up for the longevity of the login certificate. The

node key and the session key are combined in a ses-

sion certificate, which represents a handoff from the

temporary session key to the node key. A session cer-

tificate has a short timeout and is refreshed as needed
until the end of the session. When the session ends,

the temporary key is discarded so that the session

certificate can no longer be refreshed.

In our example, Bob, with key Kb.b, logs in to WS.

We still have the boot certificate, so:

(KV.Z4 as OSj says K., + (KV.Z4 as OS)

Let ~. be the session key; the session certificate adds:

K, says (KV.Z4 as 0S) + K.

and the login certificate adds:

KbOb SayS (~~ IK~Ob) =+ (~~ fOr K~Ob)

where PI is ((KW.Z4 as 0S) A K.). From the conjunc-

tion of these formulas we can derive:

(KW~ I KbOb) + (Pl for K~Ob)

In the notation introduced above, the conjunction is

M, and the principals KW~ I KbOb and PI for KbOb are

Q and P, respectively.

In our encoding the session certificate is embedded

inside the login certificate, and the boot certificate

inside the session certificate:

(login

(KbO~ Bob)

(session
K,

(boot (as (KV.Z4 Vaz4) OS) KW~ szgl)

Slgz)

Szgs)

The embedded certificates identify the machine, the

node, and the session key, and give credentials for

them.

General delegation certificates. The general

form of delegation involves transfer of rights between

principals. Suppose that Bob on WS delegates to a

node Vaz5 as OS with key KW~I. In our example, the

formula that corresponds to this delegation is:

(&, [Kb~b) says (P3 I P2) * (P3 for P2)

where 1’2 is (Pl for hzbob) and P3 is (KV.Z5 as 0~.

Conjoining this formula with those for Bob’s login,

we can prove:

(~~s’ IK~~ \Kb~b) + (P3 for P2)

In our encoding the entire delegation certificate is:

(for

(login ... sigs)

(boot (as (KV.Z5 Vaz5) OS) KW~I stg4)

Slgs)

The login certificate given above is nested here in its

entirety (abbreviated with an ellipsis) and used as

the source of a delegation. The delegate is the boot

certificate for Vax5 as OS.

Channel certificates. Ultimately, channels are

the only principals that make requests directly. A

request on a channel is attributed to a principal that

has handed off some of its rights to the channel. A

channel certificate represents a handoff to a channel.

In our system, each certificate authenticates a channel

multiplexed on a node-to-node key. More precisely,

the channel is a node-to-node channel quoting a pro-

cess quoting an AID. Its encoding is a textual repre-

sentation of the PrinID datatype from Section 4.2.

In our example, a channel certificate means:

(KW. [K~Ob) says

CbOb + (((KV.Z4 as 01$) A K,) fOr KbOb)

Conjoining this formula with those for Bob’s login,

we can prove:

cb~b + (((KV.Z4 as 0$ A K.) fOr KbOb)

When cb.b is the channel keyi 71ptag13 I aid42, this
certificate is encoded as:

(channel

(login . . sigs)

keyi7 ptag13 azd42

Szgl)

Because channels are typically short-lived, a chan-

nel certificate normally has a short validity interval.

.264

x s(x) T(x) P(x) Q(x)

boot Q(x.k-as) x.key P($.k-as) x.key

session (s) x.key P(z.boot) x.key Q(x.boot)

login Q(z.k-as) (p(x.s.boot) A P(x.s)) (p(x.s.boot) A P(x.s)) Q(x.s.boot)

IP(x.k_as) for P(z.k_as) I Q(z.k.as)

delegation Q(x.delegator) P(x.delegate) p(x.delegate) Q(x.delegate)

I ~(x.delegator) for p(z.delegator) lQ(z.delegator)

channel Q(z.prin) x.prinID P(s.prin) x.prinID

p_as P(x.prin) as x.role Q(x.prin) as x.role

k-as P(x.k.-as) as x.role Q(z.k.as) as z.role

or P(z.primary) or Q(x.primary)

primary x.key x.key

The immediate meaning 1(x) of a credential z is S(x) says T(x) + P(z) when S(x) is defined, and true

otherwise. The meaning A4 (z) of a credential z is the conjunction of 1(x) with the immediate meanings of any

credentials embedded in Z. In all cases, A4(x) implies Q(x) + P(x). We abbreviate session by s.

Table 2: The logical meaning of credentials

4.3.2 The meanings of credentials

As the previous examples suggest, each valid creden-

tial z in the grammar has a logical meaning Al(x).

Now we define M in general. Since M is a function,

the mapping from S-expressions to formulas is clearly

unambiguous. We define validity later in this section.

It is convenient to use several auxiliary functions.

A function I gives us the immediate meaning of a

credential. Then M(x) is defined to be 1(x) con-

joined with I(y) for every credential ~ embedded in

z. Thus, the interpretation of a credential is its im-

mediate meaning, plus the meaning of any embedded

credentials. In the cases of primary, p_as, and k-as

credentials, which bear no signatures, 1(x) is simply

true. In the other cases, 1(x) is the assertion made

by the top-level signature; it does not refer to other

signatures or their timestamps, and has the form

S(x) says T(x) + P(x)

where P(z) and T(z) are principals and S(x) is the

speaker, the principal that issues the credential. In

particular, when S(x) is a key, it is the key that

should be used in the credential’s signature.

In each case, the purpose of a credential x is to

establish that Q(x) speaks for F’(x). More precisely,

the formula M(z) should imply Q(x) + P(x). For

example, a boot certificate x of the form

(boot (~.a=~ VaZJ) ~W5 s~g)

is intended to mean KVGZJ says KWS * ~Vaz4; this
formula is M(x). Let Q(x) be K..ZJ and P(z) be

KW.; by the handoff axiom, M(z) implies Q(x) +

P(z). In general, in order to derive Q(x) + P(x)

from M(x) for a certificate x, it suffices to obtain:

1. Q(x) + T(x), and

2. if S(x) says T(z) + P(z) then T(x) + P(x).

In all cases (1) will follow from the meanings of em-

bedded credentials. To obtain (2), we may use either

● S(Z) + P(z), and then the handoff axiom ap-

plies; or

● P(z) is B for A and T(x) is B I A for some A and

B such that S(Z) + A, and then the delegation

axiom applies.

The definitions listed in Table 2 satisfy these proper-

ties. We obtain that M(z) implies Q(z) + P(z) for

every x, by induction on the structure of credentials.

This theorem guarantees that validating z suffices to

show that Q(z) + P(x): if x is valid, then it is inter-

preted as M(z) and then the theorem applies.

A credential is valid if all the signatures it contains

are well-formed, timely, and were performed with the
proper key. The proper key h- for signing a certificate

z is defined from S(x), with a clause for each of the

possible forms of S(x):

● The proper key for a principal of the form A as R

or A IA’ is the proper key for A, since it is A that

must apply the signature.

265

. The proper key for a key is the key itself.

In general, K is the key that the principal S(Z) uses.

If x is valid, then it has recently been signed with

S(x)’s key K, so we can interpret z as a formula l(x)

of the form S(Z) says T(T) + P(z). This is the jus-

tification for our logical reading of valid credentials.

An obvious generalization of this definition of valid-

ity allows the key that signs to be any key that speaks

for H. This generalization is used in Section 4.3.4 to

allow channel certificates to be signed with DES keys.

4.3.3 The Credentials interface

The credentials manager exports the Credentials

interface to the authority manager. This interface

defines an abstract type CredT that represents sets

of credentials, as well as procedures for constructing

CredTs and for signing and validating channel certifi-

cates. A CredT defines a principal P that can make

requests, and contains an expression in the credentials

grammar sufficient to prove that some other principal

can speak for P.

The credentials manager holds a CredT represent-

ing the credentials for the node. Although the Firefly

lacks the firmware necessary to generate a node key

securely, Taos imitates secure booting by generating a

boot certificate and node key at system-startup time.

The node’s CredT contains this certificate and key.

The operations on credentials are:

TYPE Cred = TEXT;

PROC New (name, password: TEXT) : CredT;

PROC AddRole (t : CredT; role: TEXT) : CredT;

PROC Sign(t :CredT; p :PrinID) : Cred;

PROC Validate(cr :Cred; p :Pri.nID) : TEXT;

PROC Extract (cr: Cred) : Cred;

PROC Si.gnDlg(t: CredT; cr: Cred) : Cred;

PROC ClaimDlg(t: CredT; cr: Cred) : CredT;

New produces a CredT containing a login certificate

and a session key. The CredT returned by AddRole

contains credentials for t as role.

Each value of the Cred datatype contains a tex-

tual representation of credentials according to the

grammar of Table 1. The authority manager uses

Sign to produce channel certificates in response to

authentication callbacks. Similarly, it uses Validate

to check the results of authentication callbacks and

return principal names. Extract strips off an outer-

level channel certificate, and returns the credentials

of the principal for which the channel speaks.

The delegator’s authority manager implements

Delegate by finding and validating a channel cer-

tificate for the delegate. It then calls Extract to

get the delegate’s credentials, and stores the result.

The delegate’s authority manager implements Claim

by asking the delegator’s agent for a delegation cer-

tificate (produced with SignDlg) and using it to

call Clai.mDlg. The result is a CredT representing

delegate for delegator.

4.3.4 Signature techniques

We use three techniques to minimize the number of

public key encryptions required to sign certificates:

●

e

●

4.4

As described in Section 4.1, we can establish

a shared key K between two nodes WS (with

key KW~) and WS’ so that WS’ believes that K

speaks for Kw,. Therefore, WS can sign certifi-

cates about channels to WS’ by encrypting with

K instead of KW.. Only WS’ need believe these

certificates. DES encryption (under K) is much

faster than RSA encryption (under KW,).

When one process delegates to another on the

same node, it is possible to avoid one signature.

The delegation certificate structure remains the

same, but no cryptographic signature is needed.

If an off-node delegation follows, the signature of

the outer certificate e implies validity for the inner

one. Both use the same key.

When refreshing nested certificates, care must be

taken not to invalidate higher-level signatures.

It is sufficient to omit nested signatures from

the certificate digests. For example, when a ses-

sion certificate is refreshed, its validity times are

changed. An enclosing login certificate can avoid

refresh only if its digest omits the nested sig-

nature. This omission is safe since there is no

mention of nested signatures in the immediate

meaning of credentials.

The certification library

If ACLS contained public keys instead of human-

sensible names, network security would be consider-

ably less complex. Unfortunately, keys are big num-

bers that are too unwieldy for human users to manip-

ulate. Moreover, at the highest level, computer secu-
rity applies to names for people and resources. At

some point there needs to be a mapping from keys to

the principal names they represent.

The task of the certification library is to produce

human-sensible names from keys. We also use it to re-

cover keys from stable storage given passwords short

enough for people to remember. Our certification

authority (see Section 2.2) is a simple program that

manages the database underlying these services. This

266

CA is off-line in the sense that clients need not com-

municate with it in order to trust its statements. A

CA that could function without any network connec-

tions might be an interesting addition to our work.

We could easily extend our system to incorporate a

hierarchy of CAS [9, Section 5].

Bootstrapping trust. A practical system of any

size must base trust on shared knowledge of a trusted

CA. In Taos, this information takes the form of a

CA public key. Certificates signed with this key are

trusted. It is crucial to protect the corresponding

secret key.

A user learns its own secret key and the public key

of its trusted CA by decrypting a user-specific string

stored in the name server. This string contains the

user’s private data encrypted under a DES secret de-

rived from the user’s password. We keep analogous

strings for nodes. These strings would not be neces-

sary if users carried public key smart-cards [1, 13].

Name certificates. Our system uses name certifi-

cates to describe the mapping from keys to names.

These certificates are signed by a CA trusted for this

purpose, much like CCITT X.509 certificates [4]. The

logical form of a certificate that maps KU to U is:

KC. says KU + U

A simple extension of the grammar described in the

previous section is used to express these statements.

Since certificates are statements signed off-line,

they can be believed even if retrieved from untrusted

storage. In Taos, we use a replicated, highly available

name service [3] to store name certificates. Certifi-

cates are indexed by name in this store. The replica-

tion makes a denial of service attack more difficult.

We may now continue the example of Section 4.3.1.

Given valid name certificates that map K~ob to Bob

and KV.Z4 to Vax~, we obtain:

CbOb + ((Vax~ as 0S) for Bob)

Therefore, when a request appears on the channel

CbOb, it is attributed to (Vaxd as 0S) for Bob.

Membership certificates. The certification li-

brary also manages and validates membership cer-

tificates stating that a principal U speaks for (is a

member of) a group G:

KC. says U > G

Membership certificates are used in Taos ACL check-

ing, and also in role processing and secure loading.

Image certificates. A third form of certificate

managed by the certification library is the ~mage cer-

tificate, used in secure loading to verify the executable

image of a recently loaded program and to name the

role under which that program should run. The cer-

tificate says that a given image digest 1 speaks for a

role name R:

(Ku I R-owner) says I + R

Image certificates are not signed by the CA. Instead,

the CA permits a user U to write an image certificate

for R:

h“.. says (U [R-owner) %- R

This says that U can quote R-owner in order to speak

for R, and hence U can release new versions of R by

issuing the given image certificate.

Image digests can be computed using any secure

one-way function. Taos stores image certificates as a

file property on certain executable files.

4.4.1 The CertLib interface

The certification library exports the procedures:

PROC CheckKey (name: TEXT; k: Key) : BOOL;

PROC IsMember (name, group: TEXT) : BOOL;

PROC CheckImage (d: Digest; pg, cert: TEXT) ;

The credentials manager calls CheckKey to find

and validate a name certificate that states that k

speaks for name, The I sMember procedure ascertains

whether name is a member of group. CheckImage

supports secure loading. It checks that the certificate

cert states that the image digest d speaks for the

program pg, and that cert is signed by a principal

with control of images for pg.

4.5 Simplifying compound names

An authentication result in Taos is more often than

not a compound principal. The principals that result

from credential validations have the form:

principal = name

I (principal for principal)

[(principal as role)

where name and role are strings. Existing applica-

tions often deal only with simple names. The follow-

ing function reduces a principal to a simple name:

. If the principal has a simple name, return it.

● If the principal is B for A, apply this function
recursively to A. (Checks can easily be added to

guarantee that B is trustworthy.)

267

●

For

Ws

If the principal is A as R, then apply this func-

tion recursively to A. Take the resulting simple

name, and find a membership certificate stating

that it speaks for R. If successful, then return

R, otherwise fail,

example, WS for Bob evaluates to Bob, and

for (Bob as Admin) evaluates to Admin if

Bob + Admin (that is, if Bob is a member of Admin).

4.6 Gateways

We built a gateway G between ordinary NFS clients

and our system. It uses standard methods to deter-

mine the principal p making an NFS request and then

forwards the request to the Taos file system as com-

ing from G[p. Either this principal appears on ACLS,

or there is a certificate K,c says (G Ip) + q.

This approach can be applied to accept messages

authenticated by any other protocol. The tricky part

is finding a place to put the gateway where it can

intercept and t~anslate the authentication protocol,

which is often application-specific.

Togo in the other direction and translate one of our

authenticated messages p says m into another proto-

col, say Kerberos, the gateway would have to be able

to authenticate itself as p in Kerberos. To achieve

this, it would either need to have the user’s password

for long enough to obtain a Kerberos ticket-granting

ticket, or to act itself as a Kerberos authentication

server. We have not tried to implement this.

5 Performance

The authentication system described in this paper

was in daily use for a year by a community of nearly

80 researchers and administrative personnel. The

most commonly used authenticated application was

Echo [3], a distributed file system used extensively

within Taos. The Echo environment exercised all the

Taos security features described in this paper except

general delegation. In addition to authenticating the

file system operations of normal users, Echo made use

of role adoption and secure loading, both of which

proved useful for system administration.

The performance of our system depends on the
costs of the cryptographic operations:

RSA sign I RSA verify DES MD4

248 ms 16 ms 15 ms 6 ms/kbyte

Our RSA implementation [16] is coded in C and as-

sembler. We use a 512-bit modulus and a public key

RSA sign

RSA verify

DES

MD4

S-expr

RPC

Total

Measured

Auth Delegate Auth

logm delegation

1 x 248 ms —

3x16ms 10 x 16 ms 7x16ms

2x15ms 2x15ms 2x15ms

6 ms 18 ms 12 ms

46 ms 165 ms 91 ms

2x5ms 3x5ms 2x5ms

140 ms 636 ms 255 ms

143 ms 671 ms 276 ms

Table 3: Authentication test timings

exponent of 3. The Firefly has 4 CWax processors,

each running at about 2.5 MIPS. Our multiprocessor

implementation of RSA signatures gains nearly a fac-

tor of two in speed. With only a single processor, it

takes 472 ms to compute a RSA signature; this com-

pares with 68 ms on a DECstation 5000, which runs

at 20 MIPS. We use public-domain implementations

of MD4 and DES (in C); much faster ones are possi-

ble [9, Section 4]. The DES number assumes that a

different key is used for each 8-byte encryption.

In Table 3 we show the results of measuring three

basic authentication operations. The numbers as-

sume an” existing node-to-node secure channel and a

loaded name certificate cache. We show how time

is divided between cryptographic functions and other

parts of the system. We estimate that RPC with

non-trivial arguments takes on the order of 5 ms [15].

The line labelled “S-expr” indicates the cost of pars-

ing and writing S-expressions. This cost was about

one-third of the total, but it could easily be reduced.

The first column of the table (Auth-togin) shows

the time required for the first authenticated RPC—

subsequent calls to the same server using the same

credentials will get cache hits. The caller’s creden-

tials are those for a simple login session. This test

includes a callback to the caller’s agent and a subse-

quent channel-certificate validation. We expect this

cost to be incurred infrequently: for example, when

the user’s machine first contacts a file server, and

whenever the credentials need refreshing thereafter

(every 30 minutes).

The second test (Delegate) measures the time taken

for a logged-in user to delegate to a logged-in user on

another node. Delegation requires a hidden authen-

tication, and hence three RPCS rather than two.

The final test (Auth-deleguzhon) is similar to the

first, except that the caller’s credentials involve an

additional delegation. Once again, the costs shown
are incurred only on the first use of the credentials

268

and each time the cache is refreshed.

There are two important facts to be gleaned from

Table 3. First, the cost of using credentials to make

requests is considerably less than that of delegation.

This is good, since delegations occur much less fre-

quently than requests. Second, almost all of the com-

ponent costs of authentication are compute-intensive.

Moving to a faster processor should improve the ac-

tual performance linearly. The Auth-/ogin test should

take less than 25 ms on a DECstation 5000.

Even with faster processors, it is clear that caching

at several levels is essential to system performance.

The cache used to implement Authenticate prevents

repeated authentication callbacks, It has a timeout of

roughly 30 minutes, so there are at most two authen-

tication callbacks to an Echo client in a 30 minute

interval, regardless of the number of file system op-

erations performed. The shared key cache in the se-

cure channel manager prevents unnecessary key ex-

changes. The keys stored there expire with a much

longer period (6 hours). The certification library also

maintains a cache that saves the results of name cer-

tificate validations. There a cached result can remain

valid until the certificate expires, although we flush

results more frequently to speed up revocation. Fur-

ther caching is clearly possible. For example, the

meanings of common embedded credentials (such as

boot certificates) might be cached.

6 Conclusion

We have described a framework for security in dis-

tributed systems that is based on logic. The logic

takes shape in an operating system that was in daily

use by a substantial community. Our system employs

compound credentials to express the complex rela-

tionships among users, machines, and programs, yet

little of this complexity shows through to users and

programmers. Moreover, the careful optimizations

that surround our use of public key cryptography en-

sure that it does not hurt performance. Although

our implementation was not used on a large scale,

the technique of off-line certification with minimal re-

liance on on-line services is well suited to large naming

hierarchies [9]. Our design can accommodate fast re-

vocation of name certificates and auditing along the

lines discussed elsewhere [2, 9], but we have not im-

plemented these features.

We have explained our system in logical terms, and

in particular obtained a theorem that relates concrete
credentials and their logical meanings. It would be
interesting to obtain further theorems to prove the

correctness of our implementation. Even st sting the

proper results remains a challenge.

The need for well-founded and expressive dis-

tributed security systems will grow with the speed

of processors and networks, the number of intercon-

nected entities, and the complexity of applications.

Our work shows how to design practical systems that

meet this need and offers evidence that such systems

can be built and can perform well.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Abadi, M. Burrows, C. Kaufman, and B Lampson.

Authentication and delegation with smart-cards. To ap-

pear in Sctence of Computer Programming, 1993.

M. Abadi, M. Burrows, B. Lampson, and G. Plotkin, A

calculus for access control in distributed systems. ACM

Trans. Prog. Lang. and Sys. 15, 4, Ott 1993.

A. Birrell, A. Hisgen, C. Jerian, T. Mann, and G Swart,

The Echo distributed file system, Report 111, Systems

Research Center, Digital Equipment Corp., Aug. 1993.

CCITT. Information processing systems - Open systems

interconnection - The directory authentication frame-

work. CCITT 1988 Recommendation X.509.

H. Eberle and C. Thacker. A 1 Gbit/second GaAs DES

chip. PTOC. IEEE Custom Integrated G’zmuit L’onf., 1992,

M. Gasser, A. Goldstein, C. Kaufman, and B. Lamp-

son The Digital distributed system security architec-

ture. PTOC. I,%h Natzonal Computer Secumty Conference,

NIST/NCSC, 1989, 305-319,

B, Herbison, Low cost outboard cryptographic support

for SILS and SP4. Proc. 13th National Compute? Secu-

rzty Conference, NIST/NCSC, 1990, 286–295,

J. Kohl, C Neuman, and J, Steiner, The Kerberos net-

work authentication service. Version 5, draft 3, Project

Athena, MIT, Oct. 1990.

B. Lampson, M Abadi, M. Burrows, and E. Wobber. Au-

thentication in distributed systems, Theory and practice.

ACM Trams. Comp. Sys. 10, 4, Nov. 1992, 265–310.

B. Lampson. Protection, ACM Operatzng Systems Re-

mew 8, 1, Jan. 1974, 18–24.

Roger Needham. Cryptography and Secure Channels.

Distributed Systems, 2nd Ed., S. Mullender (editor),

ACM Press, 1993, 231-241.

Open Software Foundation. Introduction t. OSF DCE,

Revision 1.0, Dec 1992.

J -J. Quisquater, D, de Waleffe, J.-P. Bournas Corsair:

a chip card with fast RSA capability. Smart Card 2000,

D. Chaum (ed,tor), Elsevier, 1991, 199-206.

R Rivest. The MD4 message digest algorlthm. Advances

in Cryptology: Crypto ’90, Springer-Verlag LNCS, 1991,

303-311.

M. Schroeder and M. Burrows Performance of Fmefly

RPC. ACM Trans. Comp. Sys. 8, 1, Feb. 1990, 1-17.

M Shand and J. Vudlemin. Fast Implementations of RSA

cryptography 1 Ith Symposzum on Computer Arithmetic,

IEEE Computer Society, June 1993.

C Thacker, L Stewart, and E Satterthwaite. Firefly: A

multiprocessor workstation, IEEE Trans. Computers 37,

8, Aug. 1988, 909–920.

269

