
Detailed Case Analysis of Region Inconsistencies

Zhilei Xu
v-zhixu@microsoft.com

1 lklftpd sess->user dangling pointer

Type Temporary Inconsistency
Infected Application lklftpd

As in Figure 2, a sess is allocated in sess->sess pool, and sess->loop pool is
a sub region of sess->sess pool. But in Figure 1 we find that sess->user can
temporarily point to a string in sess->loop pool, which violates consistency.
The inconsistency is temporary because the following init username related fields
call will correct sess->user to point to a string duplicated in sess->sess pool.

2 lklftpd sess->data conn->data sock dangling pointer

Type Temporary Inconsistency
Infected Application lklftpd

As we can see in Figure 2, sess->data conn is allocated in sess->sess pool.
But Figure 3 shows that sess->data conn->data sock may point to some sock
allocated in sess->loop pool and thus violates consistency.

When the ftp session is in non-PASV mode, ftpdataio get port fd() is
called for each GET, STORE or LIST command. To prevent memory leak, sess->loop pool
is cleared in each command handling process, thus after this command is pro-
cessed, the sess->data conn->data sock becomes dangling pointer. But this
dangling pointer is never dereferenced, because next time lklftpd needs a data
socket, it’ll create a new one. So we classify this inconsistency into temporary
type.

3 diff position->node dangling pointer

Type Global Inconsistency
Infected Application diff, diff3, diff4

As in Figure 4, position->node in pool points to a tree node that was allocated
in tree->pool by svn diff tree insert token().

1

// worker.c:get_username_password(sess)

if(lfd_cmdio_cmd_equals(sess, "USER"))

{

user_ok = handle_user_cmd(sess);

}

......

init_username_related_fields(sess);

// cmdhandler.c:handle_user_cmd(sess)

sess->user = apr_pstrdup(sess->loop_pool, sess->ftp_arg_str);

// worker.c:init_username_related_fields(sess)

sess->user = apr_pstrdup(sess->sess_pool, sess->user);

Figure 1: Code for initializing sess->user. At first sess->user points to a
string in sess->loop pool, and the consistency has been violated. But at last
the invoking of init username related fields() will make sess->user point
to a string in sess->sess pool, which is OK.

// sess.c:lfd_sess_create(plfd_sess, thd, sock)

// *plfd_sess passes the newly-created session out

sess_pool = apr_thread_pool_get(thd);

rc = apr_pool_create(&loop_pool, sess_pool);

......

*plfd_sess = sess = apr_pcalloc(sess_pool, sizeof(struct lfd_sess));

sess->sess_pool = sess_pool;

sess->loop_pool = loop_pool;

......

sess->data_conn = apr_pcalloc(sess_pool, sizeof(struct lfd_data_sess));

Figure 2: Code for creating a session. sess is allocated in the thread-specific
global pool, and this pool is refered by sess->sess pool. sess->loop pool
is for allocating per-command data, and it’s a sub region of sess->sess pool.
sess->data conn is allocated in sess->sess pool.

2

// connection.c:ftpdataio_get_port_fd(sess, psock)

rc = get_bound_and_connected_ftp_port_sock(sess, &remote_fd);

......

init_data_sock_params(sess, remote_fd);

// get_bound_and_connected_ftp_port_sock allocate remote_fd in sess->loop_pool

// and init_data_sock_params make sess->data_conn->data_sock point to remote_fd

// connection.c:get_bound_and_connected_ftp_port_sock(sess, psock)

// *psock passes the newly-created sock out

rc = apr_socket_create(&sock, APR_INET, SOCK_STREAM, APR_PROTO_TCP, sess->loop_pool);

......

*psock = sock;

// *psock is allocated in sess->loop_pool

// connection.c:init_data_sock_params(sess, sock_fd)

sess->data_conn->data_sock = sock_fd;

// sess->data_conn->data_sock (which is in sess->sess_pool) points to sock_fd

Figure 3: ftpdataio get port fd() causes sess->data conn->data sock (in
sess->sess pool) point to a sock newly-created in sess->loop pool, which
violates consistency.

// token.c:svn_diff__get_tokens(position_list, tree, diff_baton, vtable, datasource, pool)

// pool is the region for allocating position

SVN_ERR(svn_diff__tree_insert_token(&node, tree,

diff_baton, vtable,

hash, token));

position = apr_palloc(pool, sizeof(svn_diff__position_t));

position->next = NULL;

position->node = node;

// position is allocated in pool, and position->node accesses node

// token.c:svn_diff__tree_insert_token(node, tree, diff_baton, vtable, hash, token)

// *node passes the newly-create node out

new_node = apr_palloc(tree->pool, sizeof(*new_node));

*node = *node_ref = new_node;

// node is allocated in tree->pool

Figure 4: Code for creating position and node. position is in pool, node is
in tree->pool, and position accesses node.

3

// diff.c:svn_diff_diff(diff, diff_baton, vtable, pool)

subpool = svn_pool_create(pool);

treepool = svn_pool_create(pool);

// subpool and treepool are siblings

svn_diff__tree_create(&tree, treepool);

// pool for tree is treepool

SVN_ERR(svn_diff__get_tokens(&position_list[0],

tree,

diff_baton, vtable,

svn_diff_datasource_original,

subpool));

// pool for position is subpool

SVN_ERR(svn_diff__get_tokens(&position_list[1],

tree,

diff_baton, vtable,

svn_diff_datasource_modified,

subpool));

......

svn_pool_destroy(treepool);

......

svn_pool_destroy(subpool);

// token.c:svn_diff__tree_create(tree, pool)

*tree = apr_pcalloc(pool, sizeof(**tree));

(*tree)->pool = pool;

// tree->pool is the treepool in svn_diff_diff()

Figure 5: Main code of diff, and creation of tree. Region for holding position
is subpool, and for holding node is treepool, where subpool and treepool
are sibling regions.

But in Figure 5 we see that position is in subpool and node is in treepool,
and these are two sibling regions. In fact treepool lives shorter than subpool.
So after treepool is destroyed, position->node becomes dangling pointer.

The problem does not lead to crash because position->node is not used as
a pointer after treepool is destroyed. In fact it is used (in svn diff lcs()),
but not as an integer type instead of pointer type, so it’s not dereferenced.
The programmer seemed to make use of position->node in this way to save
memory space, but it’s error-prone anyway.

4

// log.c:run_log(adm_access, rerun, diff3_cmd, pool)

struct log_runner *loggy = apr_pcalloc(pool, sizeof(*loggy));

parser = svn_xml_make_parser(loggy, start_handler, NULL, NULL, pool);

......

loggy->parser = parser;

svn_xml_free_parser(parser);

// xml.c:svn_xml_make_parser(baton, start_handler, end_handler, data_handler, pool)

/* ### we probably don’t want this pool; or at least we should pass it

to the callbacks and clear it periodically. */

subpool = svn_pool_create(pool);

svn_parser = apr_pcalloc(subpool, sizeof(*svn_parser));

Figure 6: loggy is in pool while loggy->parser points to a xml parser created
from subpool, a sub region of pool.

4 svn loggy->parser dangling pointer

Type Permanent Inconsistency
Infected Application svn

As we can see in Figure 6, the loggy in pool access a parser in subpool,
which is a subregion of pool. loggy lives longer than parser, so after svn xml free parser()
has been called, loggy->parser becomes dangling pointer.

The code authors do realize of this problem, and they’ve mentioned it in the
comment (see the ”###” lines).

5 svn opt->x value dangling pointer

Type Temporary then Global Inconsistency
Infected Application svn

make string from option() and expand option value() are two mutually-
recursive functions, and make string from option() is the function provided
for end-user, with expand option value() as its helper function.

As we can see in Figure 7, the last parameter to these two functions, named
x pool, is usually obtained from the end-user (such as svn config get()) as
NULL, and the upmost call to make string from option() set it to tmp pool,
a newly-created temporary sub region of cfg->x pool. Then the tmp pool is
passed down as the x pool parameter to every call of expand option value()
and make string from option(). Thus opt->x value first access a string in
tmp pool (a subregion of cfg->x pool, then finally access a string in cfg->x pool.

But as we can see in Figure 8, opt resides in cfg->pool, which is a parent
region of cfg->x pool. So opt->x value accesing a string from tmp pool (sub-
sub region of cfg->pool) and cfg->x pool (sub region of cfg->pool) both

5

// config.c:svn_config_get(cfg, valuep, section, option, default_value)

make_string_from_option(valuep, cfg, sec, opt, NULL);

// config.c:make_string_from_option(valuep, cfg, section, opt, x_pool)

// *valuep passes the created (and manipulated) string out

if (!opt->expanded)

{

apr_pool_t *tmp_pool = (x_pool ? x_pool : svn_pool_create(cfg->x_pool));

expand_option_value(cfg, section, opt->value, &opt->x_value, tmp_pool);

// calling expand_option_value make opt->x_value point to a string in tmp_pool

opt->expanded = TRUE;

if (!x_pool)

{

if (opt->x_value)

opt->x_value = apr_pstrmemdup(cfg->x_pool, opt->x_value,

strlen(opt->x_value));

// the string in tmp_pool is duplicated in cfg->x_pool

// then opt->x_value points to a string in cfg->x_pool

svn_pool_destroy(tmp_pool);

}

}

if (opt->x_value)

*valuep = opt->x_value;

else

*valuep = opt->value;

// config.c:expand_option_value(cfg, section, opt_value, opt_x_valuep, x_pool)

// opt_x_valuep passes the manipulated string out

......

make_string_from_option(&cstring, cfg, section, x_opt, x_pool);

len = name_start - FMT_START_LEN - copy_from;

if (buf == NULL)

{

buf = svn_stringbuf_ncreate(copy_from, len, x_pool);

cfg->x_values = TRUE;

}

else

svn_stringbuf_appendbytes(buf, copy_from, len);

// string is allocated and appended in the x_pool, which is exactly the tmp_pool

......

if (buf != NULL)

{

svn_stringbuf_appendcstr(buf, copy_from);

*opt_x_valuep = buf->data;

// the string in buf (which is in x_pool) is passed out

}

Figure 7: A complex process of option string manipulation. opt->x value
points to a string in tmp pool, a sub region of cfg->x pool, then to a string in
cfg->x pool 6

// config.c:svn_config_set(cfg, section, option, value)

opt = apr_palloc(cfg->pool, sizeof(*opt));

......

opt->x_value = NULL;

// opt is allocated in cfg->pool

// config.c:svn_config_read(cfgp, file, must_exist, pool)

// *cfgp passes the newly-created cfg out

svn_config_t *cfg = apr_palloc(pool, sizeof(*cfg));

......

cfg->pool = pool;

cfg->x_pool = svn_pool_create(pool);

// cfg->x_pool is a subregion of cfg->pool

Figure 8: opt is allocated in cfg->pool, and cfg->x pool is a subregion of
cfg->pool

violates consistency, and the formal one is temporary, while the latter global.
Note that svn doesn’t delete cfg->pool or cfg->x pool at all, so we consider
them both global region.

6 svn hash iterator hi->ht dangling pointer and
memory leak

Type Permanent Inconsistency
Infected Application svn

As we can see in Figure 9, the iterator hi is created in pool, but it can access
ht, which is created in subpool, a subregion of pool. subpool is deleted before
pool, then hi->ht becomes dangling pointer.

This usage of hash table and its iterator is controversial: Anyway, an iterator
is useful only if its associating hash table is valid. If the hi is used after ht is
destroyed, the dangling pointer may cause a crash; if it is not used, then the
memory space it occupies cannot be reclaimed as the user does to ht, thus leads
to a potential memory leak. This usage is even dangerous because the end-user
may think that all the memory occupied by things related to a hash table is
destroyed with the deallocation of the hash table itself, thus put the iterator
allocation/using in some unbounded loop (even an infinite event serving loop),
that will finally consume all the memory. A better usage of iterator is to put it
in a subregion of the region that holds hash table.

7

// xml.c:svn_xml_make_open_tag_v(str, pool, style, tagname, ap)

apr_pool_t *subpool = svn_pool_create(pool);

apr_hash_t *ht = svn_xml_ap_to_hash(ap, subpool);

// ht is created in subpool

svn_xml_make_open_tag_hash(str, pool, style, tagname, ht);

svn_pool_destroy(subpool);

// xml.c:svn_xml_make_open_tag_hash(str, pool, style, tagname, attributes)

for (hi = apr_hash_first(pool, attributes); hi; hi = apr_hash_next(hi))

{

......

}

// hi is created in pool

// apr_hash.c:apr_hash_first(pool, ht)

if (p)

hi = apr_palloc(p, sizeof(*hi));

else

hi = &ht->iterator;

hi->ht = ht;

// hi accesses ht

Figure 9: hi is created in pool, while hi->ht points to ht, which is allocated
in subpool.

8

