
An Extension-Oriented Compiler
by

Russell Stensby Cox

A.B., Computer Science
Harvard College, 2001

S.M., Computer Science
Harvard University, 2001

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

Massachusetts Institute of Technology

September 2008

© 2008 Massachusetts Institute of Technology. All rights reserved.

Author
Department of Electrical Engineering and Computer Science

Certified by
M. Frans Kaashoek

Professor of Computer Science and Engineering
Thesis Supervisor

Certified by
Eddie Kohler

Associate Professor of Computer Science, UCLA
Thesis Supervisor

Accepted by
Terry P. Orlando

Chair, Department Committee on Graduate Studies

An Extension-Oriented Compiler

by

Russell Stensby Cox

Submitted to the Department of Electrical Engineering and Computer Science
on August 20, 2008, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

The thesis of this dissertation is that compilers can and should allow program-
mers to extend programming languages with new syntax, features, and restrictions by
writing extension modules that act as plugins for the compiler. We call compilers
designed around this idea extension-oriented. The central challenge in designing and
building an extension-oriented compiler is the creation of extension interfaces that are
simultaneously powerful, to allow effective extensions; convenient, to make these exten-
sions easy to write; and composable, to make it possible to use independently-written
extensions together.

This dissertation proposes and evaluates extension-oriented syntax trees (XSTs) as
a way to meet these challenges. The key interfaces to XSTs are grammar statements, a
convenient, composable interface to extend the input parser; syntax patterns, a way to
manipulate XSTs in terms of the original program syntax; canonicalizers, which put
XSTs into a canonical form to extend the reach of syntax patterns; and attributes, a
lazy computation mechanism to structure analyses on XSTs and allow extensions to
cooperate. We have implemented these interfaces in a small procedural language
called zeta. Using zeta, we have built an extension-oriented compiler for C called xoc
and then 13 extensions to C ranging in size from 16 lines to 245 lines.

To evaluate XSTs and xoc, this dissertation examines two examples in detail: a
reimplementation of the programming language Alef and a reimplementation of the
Linux kernel checker Sparse. Both of these examples consist of a handful of small ex-
tensions used in concert.

Thesis Supervisor: M. Frans Kaashoek
Title: Professor of Computer Science and Engineering

Thesis Supervisor: Eddie Kohler
Title: Associate Professor of Computer Science, UCLA

‘‘See this page of paper? It’s blank,’’ Scull said. ‘‘That, sir, is the
most frightening battlefield in the world: the blank page.
I mean to fill this paper with decent sentences, sir—this page
and hundreds like it. Let me tell you, Colonel, it’s harder than
fighting Lee. Why, it’s harder than fighting Napoleon.’’

Larry McMurtry, Comanche Moon

Contents

1 Introduction 11

2 Related Work 19

3 Extension-Oriented Syntax Trees 23

4 Compiling C with XSTs 33

5 Extensions 43

6 Performance 55

7 Discussion and Future Work 59

8 Conclusion 67

A Zeta language definition 69

B Xoc extension listings 85

References 107

Acknowledgements

I did not write this dissertation alone. I have had the good fortune
to enjoy seven years at MIT working with and learning from a
seemingly inexhaustible supply of amazing people. I cannot list them
all, but I am grateful to everyone who has crossed my path.

Frans Kaashoek and Eddie Kohler have been incredibly supportive
as thesis advisors. They pushed me and my research farther than I
thought possible. I am proud to say that much of the work described in
this dissertation was done with help from Tom Bergan and Austin
Clements, both of whom contributed immense amounts of careful
thought, hard work, and raw energy.

Frans, Eddie, Robert Morris, and John Guttag served on my thesis
committee. I am indebted to them for their efforts to make this
dissertation better.

Frans and Robert created an excellent research environment and
encouraged me to dive into a new research area that was way over my
head.

Finally, my parents and my wife, Sara O’Brien, helped keep me
afloat while I learned to swim.

I gratefully acknowledge financial support from the Fannie and
John Hertz Foundation and from Nokia Research Cambridge Center.

Thank you, everyone.

9

Introduction

This dissertation is in the area of compilers and programming languages. A good
compiler and programming language can substantially improve programmer produc-
tivity. Some languages excel at symbolic manipulation, others at numeric computation,
still others in more specific domains. Programmers often find it useful to build cus-
tom language extensions that add abstractions or checking tailored to the task at hand.

For example, Gosling’s ace preprocessor makes it easy to build specialized graphics
operators [20]. Kohler’s Click router uses a special language to describe router
configurations and module properties [35][36]. Krohn’s tame preprocessor [37] pro-
vides convenient syntax for Mazières’s libasync [39]. Engler’s Magik [17] allows user-
specified checks and code transformations. Holzmann’s Uno [30] enables user-
specified flow-sensitive checks. Torvalds’s Sparse [55] adds function and pointer anno-
tations so it can check function pairings and address space constraints.

These tools duplicate the parsing and semantic analysis required of any C com-
piler. Engler built Magik by editing the GNU C compiler; most of the other tools du-
plicate the work of a compiler without being derived from one. Both approaches—
editing an existing compiler or starting from scratch—require significant effort, so only
the highly motivated tend to write these tools. These tools would be easier to build if
the compiler had been more readily extensible and reusable.

The thesis of this dissertation is that compilers can and should allow program-
mers to extend programming languages with new syntax, features, and restrictions by
writing extension modules that act as plugins for the compiler. We call such compilers
extension-oriented. This dissertation proposes extension-oriented syntax trees (XSTs) as
a mechanism for building extension-oriented compilers and then evaluates them in the
context of an extension-oriented compiler for the C programming language.

A compiler structured around XSTs makes it possible to implement derived
languages as a collection of small, mostly independent extension modules. Thus, the
target user of an extension-oriented compiler is a would-be language implementor who
lacks the time or expertise to write a compiler from scratch. The target reader of this
dissertation, however, is a compiler writer who wants to create an extensible compiler
that the would-be language implementor can use. Extensibility via plug-in modules is
the dominant extensibility mechanism in today’s software—operating systems, web
browsers, editors, multimedia players, and even games use plug-ins—and we believe
that compilers will eventually adopt this model. This dissertation shows one possible
way to do that.

The rest of this chapter details the motivation for this work and defines what we
mean by extension-oriented compilers and also extension-oriented syntax trees. It then
gives an outline of the rest of the dissertation.

11

1.1. Motivation

Programmers are never fully satisfied with their programming languages. Once
that dissatisfaction reaches a critical level, an energetic programmer will often modify
the language or set out from scratch to create a new one. As an example, consider the
venerable C programming language [32]. C is a popular language yet it has also
spawned a large number of offspring, ranging from whole new languages like C++
[57], C# [38], Objective C [11], and Java [3] to variants adding individual features like
the ones mentioned above. These systems represent a substantial amount of effort to
adapt a popular language to make it better for one class of programmers or another.

For concreteness, consider these two extensions to C: the Alef language [69] and
the Sparse program checker [55].

1.1.1. Alef

In the 1990s at Bell Labs, Phil Winterbottom was unhappy with C as a systems
programming language and created a new language called Alef [69]. To a first approx-
imation, Alef was C with extensions for the systems programming problems faced in
the development of Plan 9 [48]. The main extensions were syntax and runtime sup-
port for multithreading, communication, exceptions, and polymorphism. Alef was used
for a few large programs in Plan 9 and many smaller ones. The 1995 release of Plan 9
contained 30,000 lines of Alef source code [49]. In 1997, Dennis Ritchie was made a
Computer History Museum Fellow; in an interview given at the time he named Alef as
his favorite programming language [8].

The most commonly used extension in Alef was its support for typed communi-
cation channels and syntax for send and receive operations on those channels. For ex-
ample, in this snippet from a real Alef program, the alt statement chooses between re-
ceiving (the <- operator) on two different channels, depending on which can proceed
[49]:

Timer *timer = timerstart(dt);
alt{
case <-(timer->c):

timerstop(timer);
break;

case mouse = <-cmouse:
task timerwaittask(timer);
break;

}

Channels in Alef are typed, so that receiving from cmouse, a chan(Mouse), evaluates
to a Mouse structure.

By 1999, Winterbottom had moved on to other projects, and the remaining Alef
users didn’t want to maintain the compiler, so they rewrote their Alef programs in C.
They used a library to provide the threading and communication functionality and
gave up the other features along with the convenient syntax. In the end, they discard-
ed a 26,000 line compiler and replaced it with a 3,000 line library and a clumsier in-
terface. The above example now reads [50]:

12

Alt alts[3];
Timer *timer = timerstart(dt);
alts[0].c = timer->c;
alts[0].v = nil;
alts[0].op = CHANRCV;
alts[1].c = cmouse;
alts[1].v = &mouse;
alts[1].op = CHANRCV;
alts[2].op = CHANEND;
switch(alt(alts)){
case 0:

timerstop(timer);
return;

case 1:
taskcreate(timerwaittask, timer, STACK);
return;

}

In addition to losing the convenient syntax, this example also lost its type safety: the
assignment to mouse is done by writing through the void* pointer alts[1].v; this is
a common source of errors among programmers new to the library.

1.1.2. Sparse

The second example begins at SOSP in 2001, where Dawson Engler’s research
group from Stanford presented work that inferred implicit conventions in the Linux
kernel source code and then identified places where the conventions were not followed
[16]. These techniques found many serious bugs in the Linux kernel and eventually
led to a company named Coverity. Coverity checked the Linux kernel for free, both as
a service to the Linux community and as good publicity [10].

The Linux developers were grateful for the bug reports, but Linus Torvalds, the
lead developer, eventually decided that stating the conventions explicitly would be
easier and more accurate than inferring them. At the time, he said that inferring the
conventions ‘‘is really manly. But it’s manly in a very stupid way’’ [53]. He added ex-
plicit annotations to the kernel source, like these:

void __iomem *in_port; /* Inbound port address */
void __iomem *out_port; /* Outbound port address */

void __user *in; /* Data to be transferred in */
void __user *out; /* Data to be transferred out */

void spin_lock(spinlock_t *lock) __acquires(lock);
void spin_unlock(spinlock_t *lock) __releases(lock);

The __iomem tags declare in_port and out_port to point at I/O memory; similarly,
in and out point at user memory. The __acquires and __releases annotations say
that spin_lock acquires lock and spin_unlock releases it. Any function that is not
explicitly tagged must have no net effect on lock, so in an untagged function, there
must be a balanced number of spin_lock and spin_unlock calls on every possible
control flow path.

Torvalds then wrote a new C checker and compiler called Sparse to check that the

13

code behaved according to the annotations. Sparse is implemented in 24,000 lines of
C [55].

1.2. Goals

In both examples, an expert programmer wanted to extend C with features
specific to his problem domain, and the best way he knew how was to write a whole
new compiler that was tens of thousands of lines of code. This sets a high bar for
language extension.

The goal of this work is to lower that bar significantly, so that language extensions
can be created by programmers who are not compiler experts and by writing only tens
or hundreds of lines of code. Equally important, this work aims to construct a frame-
work in which multiple, independently-written extensions can be used simultaneously,
so that programmers can pick and choose language extensions the same way they do
code libraries and web browser plugins. We call such a compiler an extension-oriented
compiler.

We envision that an extension-oriented compiler would be invoked by naming
one or more extensions on its command line, as in

xoc -x alef -x sparse file.c

to compile file.c after loading both the alef and sparse extensions. Even if the
two extensions were written independently by two programmers who did not coordi-
nate, it should be possible to use both together to compile file.c as long as the two
extensions do not make conflicting changes to the language (for example, redefining
the same construct to mean different things).

Extensions in an extension-oriented compiler need to be powerful, able to change
the parts of the language that programmers want to change; they must be simple, not
requiring programmers to be experts in every detail of the base compiler; and they
must be composable, so that different extensions that make compatible language
changes can be used together.

Ideally, an extension-oriented compiler would be able to determine, for any pair of
extensions, whether they make conflicting changes. In practice, if extensions are im-
plemented using a general-purpose programming language, most of these questions are
undecidable. This work is focused only on making composability of extensions possi-
ble, not on checking or guaranteeing it.

1.3. Alternate approaches

To understand the challenges in creating an extension-oriented compiler, it is use-
ful to examine approaches that have been taken in the past. This section considers
first an illustrative but imagined example, a so-called patch-oriented compiler, and then
the real example of extensible compiler toolkits.

14

1.3.1. Patch-oriented compiler

Consider the following system, a patch-oriented compiler. A patch-oriented com-
piler is a wrapper around a traditional compiler; call the traditional compiler tcc. In
the absence of patches, the patch-oriented compiler compiles an input file by running
tcc on that input file. Patches change the behavior of the patch-oriented compiler by
describing modifications to tcc’s source code: insert these lines, delete these, replace
these. When invoked with options specifying one or more patches, as in

poc -p patch1 -p patch2 file.c

the patch-oriented compiler first applies patch1 and patch2 to tcc’s source code and
recompiles tcc. Then it invokes the resulting modified tcc on the input file.c.

Patches written for the patch-oriented compiler have complete flexibility; they
have the power to change any line of code in the compiler and thus to implement any
imaginable and implementable change to the compiler’s input language. Thus patches
achieve the first goal for extensions, but they fall short of the other two. Patch writers
need to understand the entire base compiler (or at least large portions of it) in order
to write their patches, so patches are not easy to write. Also, patches may make
semantically compatible changes to the language being compiled but still not be usable
together: one patch may change the line numbers or lines depended on by a second
patch. The patch-oriented compiler would not make a good extension-oriented com-
piler: its patches are certainly powerful, but they are neither simple nor composable.

1.3.2. Extensible compilers

A real approach with similar motivation to ours is that of extensible compiler
toolkits, an old idea exemplified recently by the Polyglot compiler for Java [44] and the
xtc compiler for C [28]. The main piece in an extensible compiler toolkit is a base
compiler for a known language (let’s say C) written in an object-oriented language
(let’s say Java). To build a language variant, an extension writer creates new Java
classes that subclass and extend existing functionality; then he links them with the
base compiler to create a new compiler. Extensible compiler toolkits usually provide
convenient, simple interfaces to the core compiler functionality.

Extensible compiler toolkits make extensions powerful and simple, but they are
not composable: each extension creates a new compiler. There is no way, as in our ex-
ample above, to change the set of extensions being used at each invocation of the
compiler. In most toolkits, there is not even a clear way to combine two extensions
into a single compiler binary. Depending on the extensions, it may be more work to
combine two existing extensions than to reimplement them from scratch in a single
new extension.

Part of the reason that Polyglot and xtc have trouble handling multiple extensions
is that the act of composing multiple extensions does not fit naturally into Java’s
object-oriented type system. In response to this, Polyglot’s authors created J&, a Java
extension that adds ‘‘nested intersection types’’ to model composition of compiler ex-
tensions [45]. A J&-based Polyglot requires less work to compose two extended com-
pilers than the original Polyglot, but it still requires some manual effort. This thesis
shows how to achieve general composability using a new approach.

15

1.4. Our approach

The challenge in building an extension-oriented compiler is to create an extension
mechanism that is powerful enough to implement the extensions people want to write,
but at the same time to keep the extension mechanism limited enough that extensions
can be written without detailed knowledge of the compiler and that multiple,
independently-written extensions can be used simultaneously. In short, the challenge is
to build an extension mechanism in which extensions are powerful, simple to write,
and composable.

To meet this challenge, this dissertation proposes the use of extension-oriented
syntax trees (XSTs). An XST is a conventional data structure—a parse tree—used via
four unconventional interfaces: extensible grammars, which define the conversions from
text to XSTs; syntax patterns, which allow manipulation of XSTs using concrete syntax;
canonicalizers, which transform XSTs into a canonical representation; and attributes,
which provide a mechanism for structuring and sequencing computations and analyses
on XSTs. Extensible grammars, syntax patterns, and canonicalizers make extensions
powerful yet simple to write. Attributes provide the connective glue that allows exten-
sions to reuse the compiler core and to cooperate with each other to carry out compu-
tations like type checking an expression that combines features from multiple exten-
sions.

The XST runtime support can be implemented by a library, but the four interfaces
require syntactic and semantic changes to the language the compiler is written in. For
example, the form of a syntax pattern depends on the language being compiled. In a
traditional compiler, if x is a parse tree node, one might write

if(x->op == ExprAdd && x->left->op == ExprMul)

to look for an addition of a multiplication expression. Syntax patterns allow one to
write instead:

if(x ~ ‘C.expr{\a*\b+\c})

Here, ~ is the pattern match operator, ‘C.expr begins a pattern for the C grammar’s
expr symbol, and \a*\b+\c is the pattern itself, a C expression with wildcard slots \a,
\b, and \c. Implementing this notation requires explicit support in the language the
compiler is written in.

1.5. Implementation

This dissertation describes three main artifacts: first, a set of language interfaces
that provide support for XSTs; second, an extension-oriented compiler for C called xoc,
implemented using XSTs; and third, a variety of extensions written using xoc, including
recreations of the functionality of Alef and Sparse. Collectively, these artifacts that
demonstrate that XSTs can be used to create an extension-oriented compiler that
meets the three goals above: extensions are powerful, simple to write, and composable.
Figure 1 illustrates these artifacts. XSTs provide the interface that connects the exten-
sions to xoc itself.

Adding XSTs to a programming language requires more than just writing a li-
brary: XST support is tightly integrated into the language itself, with its own syntax

16

and semantics, as Chapter 3 explains. For our implementation, we added the XST in-
terfaces to a simple new language we designed called zeta. Using our own small
language made it easy to experiment with and refine the ideas behind XSTs, but XSTs
are not tied to zeta: one could add support for them to any standard programming
language.

file.c
C using extensions xoc standard C gcc

XSTs

warnings and errors

extension
alef

extension
sparse

X
ST

s
X

ST
s

xoc -x alef -x sparse file.c

Figure 1. An illustration of the sample xoc command line xoc -x alef -x sparse file.c. Xoc loads
the two extensions alef and sparse before processing file.c, which contains C source code that
makes use of the changes to C introduced by the two extensions. Extension-oriented syntax trees
(XSTs) provide the interface between xoc and the extensions. The output of xoc is a set of compiler
warnings and errors along with a translation of the input file into standard C. Xoc then invokes the
GNU C compiler to translate the standard C into an object file.

1.6. Contributions

This dissertation introduces extension-oriented compilers as an approach to pro-
gramming language extension and as a research goal, and then it makes the following
contributions toward that goal. The first and primary contribution is the identification
and development of XSTs and their interfaces as a mechanism for building extension-
oriented compilers. The second contribution is zeta, xoc, and implementations of the
functionality provided by Alef and Sparse as extensions; collectively, these demonstrate
the viability of XSTs as a base for building extension-oriented compilers. The third
contribution is an evaluation of XSTs, both quantitatively, examining their performance
considerations, and qualitatively, examining the overall ease of use. We hope that the
XST interfaces described in this dissertation will influence compiler writers who want
to add support for extensions to their own compilers.

1.7. Limitations

This work attempts to create an extension mechanism powerful enough that care-
ful extension writers can, with minimal effort, create compiler extensions that can be
used together to implement language extensions. The focus is on creating powerful
extensions, not on protecting extension writers from that power. In particular, this
work attempts only to make composability possible; it does guarantee composability in

17

all cases, nor does it identify when two extensions are not composable. This work
makes no effort to check the correctness of extensions: it is possible to write an exten-
sion that causes the compiler to loop forever or to crash or to generate an incorrect
binary. Of course, programmers are not required to use a particular extension and
would likely avoid a buggy compiler extension just as they avoid buggy code libraries.

There are also limitations specific to the xoc prototype. First, the generality of
xoc comes at a cost: the xoc prototype runs significantly slower than hand-tuned tradi-
tional tools like the GNU C compiler and Sparse. Second, xoc is only a compiler front
end: it compiles its input (C with extensions) into standard C and invokes a standard
C compiler. This structure means that it cannot provide access to hardware features,
like special instructions, that the C compiler does not. Removing both of these limita-
tions would be interesting future work.

1.8. Outline

This dissertation is structured around the contributions. Chapter 2 examines pre-
vious approaches to programming language extension. Chapter 3 introduces
extension-oriented syntax trees and their interfaces, implemented in the language zeta.
Chapter 4 describes the implementation of an extension-oriented compiler for C using
XSTs. Chapter 5 describes extensions to that compiler that recreate the functionality
of Alef and Sparse as well as other extensions. Chapter 6 examines the performance of
XSTs, xoc, and the extensions, and Chapter 7 discusses qualitative aspects of the sys-
tem. Chapter 8 concludes. For completeness, two appendices give additional detail
about aspects of the system: Appendix A gives a definition of the zeta language, and
Appendix B lists the full source code for the extensions we have written.

18

Related Work

Programmers have been exploring ways to extend programming languages for as
long as they have been programming. This dissertation draws on six main threads of
language extension research: macros, extensible languages, attribute grammars, term
rewriting systems, modular compilers, and extensible compilers. This chapter describes
these areas to highlight this dissertation’s intellectual debt as well as its contributions.

2.1. Macros

Macros were perhaps the earliest programmer-controlled way to raise the level of
abstraction of a language. In 1959, McIlroy was one of the first to use macros to raise
the level of abstraction of a compiled source language [40]. Although his paper gives
an example implementation for Algol, the bulk of the text is concerned with applying a
macro system to an assembly language. This system, like most since, expanded macros
by text substitution into templates.

Lisp macros, introduced by Hart in 1963 [26], were one of the earliest non-textual
approaches. Since Lisp already had a fixed representation of programs as data—S-
expressions—Hart’s macro system simply passed a macro invocation’s arguments to the
function responsible for computing the macro expansion. Macros implemented this
way quickly became an essential part of the Lisp environment, though the exact details
of the implementations continued to be refined for the next twenty years. Steele and
Gabriel [56] give a detailed summary of the history. Quasiquotation—the use of
backquote expressions like ‘(+ ,x 1)—was developed in the mid-1970s, making mac-
ros much easier to write and understand. Many arcane details took another decade or
so to work out fully [6]. Graham’s On Lisp [21] is the canonical showpiece for the
power of Lisp macros. The success of macros in Lisp inspired adaptations in Dylan
[2], Java [4] [5], and many other languages.

The text-based and Lisp macro systems described so far suffer from the problem
of unintended capture, in which a variable referenced in a macro body happens to
share its name with an unrelated local variable defined and used around the macro in-
vocation. For example, the imagined macro:

define swap(x, y) = begin local t; t = x; x = y; y = t; end;

will not work properly if one of its arguments is named t.
Hammer [22], working in Project MAC at MIT, was interested in macro process-

ing as a method of syntax extension and suggested parsing each macro body only once
and recording the parse structure. To instantiate the macro, his system would simply
run the corresponding parse rules, without reparsing the entire token stream.
Hammer’s approach avoids the problem of unintended capture, although he does not
mention this in his paper. Indeed, it seems that in 1971 when Hammer’s work was
published, unintended capture had not yet been recognized as a problem to be solved.
For whatever reason, Hammer’s approach did not catch on, perhaps because it is so

19

tightly integrated with the parser. Even so, it is the same approach xoc takes to imple-
ment the syntax patterns described in Chapter 3. Unintended capture later became a
cause célèbre in the Scheme macro community [9][15][34].

Macro systems automate code generation—a small amount of notation can be
macro-expanded into a large amount of code—but they provide no access to the
underlying compiler, making it difficult or impossible to check the types and syntaxes
of macro arguments or even to check that the arguments make sense in the macro’s
code templates. As a result, macro systems are famous for the inscrutable error mes-
sages produced when an invalid argument passed to a macro results in an invalid code
expansion; the compiler errors complain about code far removed from the actual mis-
take. C++’s templates are a popular example of this problem [14].

Macro systems have other, lesser drawbacks as well. For example, macros cannot
affect code that does not invoke them. This makes macros unsuitable for implement-
ing restrictions or semantic changes in existing programs.

Extension-oriented compilers aim to provide the power of macros but also expose
existing compiler functionality, so that extensions can integrate well into the language
and do better checking and handling of their arguments. Syntax patterns, described in
Chapter 3, were inspired by Lisp’s quasiquotation operator.

2.2. Extensible languages

Macros demonstrated the utility of programmer-defined portions of a language,
and by the 1970s, extensible languages were a popular idea. The term ‘‘extensible’’ is
problematic: it usually means ‘‘more flexible than normal,’’ so it only has a concrete
meaning in context. For example, Algol 68 may have been responsible in part for
kick-starting interest in extensibility, but the term meant something different than what
today’s programmers would mean. Tanenbaum’s Algol 68 tutorial, published in 1976,
gives a typical explanation [59]:

Another principle, related to that of orthogonality, is the principle of ex-
tensibility. Algol 68 provides a small number of primitive data types, or
modes, as well as mechanisms for the user to extend these in a sys-
tematic way. For example, the programmer may create his own data
types and his own operators to manipulate them.

That is to say, Algol 68 had equivalents to C’s struct and union or, more accurately,
ML’s product and sum types. Extensible language research waned as new languages
with explicit support for data abstraction and defining data types gained traction: CLU,
ML, Simula, and Smalltalk, just to name a few.

The exact features being added by extensibility are less important, for our pur-
poses, than the mechanism by which they are added. The flurry of extensibility
research in the 1970s focused on linguistic approaches, building extensibility features
into the language. This dissertation argues that to go beyond the extensibility of data
abstraction and abstract data types, it is more effective to implement extensibility at
the level of the compiler, which already provides all the terms and concepts needed to
explain how to change the language.

20

2.3. Attribute grammars and term rewriting systems

Knuth introduced attribute grammars as a formalism for defining the semantics of
context-free languages; they describe computations on the parse tree [33]. More recent
systems, such as Silver [61][62] have built extensible language translators around attri-
bute grammars. Term rewriting systems are a very different formalism based on syn-
tactic substitution, like macros. They differ from macros in that rewrite rules apply
not just to the original text but also to rewritten output. The ASF+SDF [60] and Stra-
tego [64] systems are recent language translation systems based on term rewriting.

Attribute grammar systems and term rewriting systems suffer from the same limi-
tation: because both formalisms are Turing-complete, systems based on them typically
do not provide any other computation mechanism, making the systems elegantly sim-
ple for some computations and frustratingly awkward for others. Attribute grammars
easily express type checking and other local analyses. Term rewriting works best for
problems already framed as repeated rewriting, like peephole optimization [63] or
lambda calculus evaluation [13]. Neither approach is particularly convenient for non-
local program manipulations or algorithms like data flow analysis.

The work described in this dissertation adopts the idea of attributes as a mechan-
ism for allowing extensions to interact and for structuring computations like type-
checking. It also adopts and refines the convenient pattern-based syntax manipulations
of term rewriting systems. Importantly, this work does not require either as the only
computation mechanism. Instead, it relies on a general-purpose programming
language similar to C, Java, or ML for the implementation of functionality that is most
naturally expressed in such a language.

2.4. Modular compilers

Many people have built clean, modular compilers for research and teaching. One
example, targeted at research, is the SUIF compiler infrastructure [67]. SUIF was
focused primarily on modularity in the back end, to facilitate research on issues related
to code generation and performance, not on front end issues like syntax extensions or
type checking.

Another example, targeted at teaching, is Sarkar et al.’s nanopass compiler frame-
work [51]. The nanopass framework defines each translation pass using a notation
similar to Scheme’s macro patterns, along with grammars describing the input and out-
put grammars for the translation pass. Like the work described in this dissertation,
the nanopass infrastructure uses the grammars to create a parse tree that is accessed
only via pattern matching. Unlike this work, the nanopass infrastructure makes no at-
tempt at extensions or composition of extensions. The compiler writer threads the in-
dividual nanopasses together explicitly to create the overall compiler. The success of
the nanopass approach for teaching a compiler course suggests that the XST interfaces
should also be easy to use for programmers who are not compiler experts.

21

2.5. Extensible compilers and compiler toolkits

Necula’s C Intermediate Language (CIL) [43] was a step closer to a compiler with
an extensible front end. CIL provides a simple IR-like representation for C programs
and makes it easy to write new programs that use the CIL interface to transform exist-
ing C programs. CIL’s extensions can do type analyses and make semantic language
changes, but they cannot add new syntax to the language.

Nystrom’s Polyglot [44] and Grimm’s xtc [28] are extensible compiler toolkits for
Java and C, respectively. Both provide the power targeted by extension-oriented com-
pilers, but they lack composability of extensions, as discussed in Chapter 1. They are
toolkits for writing compilers rather than extensible compilers themselves. Both also
require intimate knowledge of the compiler internals, which our work avoids. For ex-
ample, both systems require extension writers to learn the Java data structure represen-
tation of the input programs, while extension-oriented syntax trees allow extension
writers to manipulate input programs in terms of the already-familiar concrete syntax.

Inspired by Polyglot’s lack of composability, Nystrom et al. created a Java variant
J& that adds a type system feature called nested intersection, which enables composa-
bility of extensions in an object-oriented type system [45]. A new version of Polyglot,
written in J&, provides composability of extensions but still requires intimate
knowledge of compiler internals, such as the form of the abstract syntax tree.

2.6. Summary

There is a rich history of work related to extension-oriented compilers, but none
of these attempt the combination of broad extension scope, simplicity of extension
writing, and composability of extensions that we want to provide. Macro systems are a
powerful code-rewriting technique, but they do not allow access to other parts of the
compiler. The extensibility provided by languages in the 1970s resulted in the data
abstraction now taken for granted in today’s languages. Attribute grammars and term
rewriting systems are both powerful tools that excel in some areas but make others
more difficult. The work described in this dissertation takes the most convenient
features and mixes them into a general-purpose language. The various extensible com-
pilers built so far require their users to be intimately familiar with the base compiler
and do not allow composability of extensions. These compilers go to great lengths to
expose their internals. In contrast, the extension-oriented compiler described in this
dissertation goes to great lengths to hide its internals, exposing instead the powerful
but restricted interfaces described in the next chapter.

22

Extension-Oriented Syntax Trees

This dissertation describes three main artifacts. The first is a set of language in-
terfaces that enable the creation of extension-oriented compilers. Collectively, these in-
terfaces provide access to a data structure called an extension-oriented syntax tree
(XST). The second artifact is an extension-oriented compiler for C, written using
XSTs; this compiler is called xoc. The third is a collection of extensions to xoc. This
chapter focuses on XSTs and their interfaces, which enable extension-oriented com-
pilers. This chapter uses some small fragments of xoc as concrete examples to illus-
trate the XST interfaces. Chapter 4 focuses on xoc in more detail, and Chapter 5
focuses on the extensions. Although the examples in this chapter are taken from an
extension-oriented C compiler, the XST interfaces described here are not specific to C
and should work just as well to build extension-oriented compilers for other languages.

As discussed in Chapter 1, the central challenge in creating an extension-oriented
compiler is to design and expose an extension interface that:

1. is powerful enough to implement actual extensions.
2. does not require extension writers to be compiler experts.
3. allows independently-written extensions to be used together.

A single solution to all three challenges is to structure the entire compilation process
around syntax trees that are first-class language objects with well-integrated interfaces.
These syntax trees are called extension-oriented syntax trees or XSTs. The four key in-
terfaces to XSTs are extensible grammars, which define the conversions from text to
XSTs; syntax patterns, which allow allow manipulation of XSTs using concrete syntax;
canonicalizers, which transform XSTs into a canonical representation; and attributes,
which provide a mechanism for structuring and sequencing computations and analyses
on XSTs.

We have implemented these interfaces by modifying a small language we designed
called zeta. Zeta has a small, simple implementation, making it an ideal test bed for
experimenting with XSTs. Even so, the ideas behind XSTs are in no way tied to zeta:
XSTs could be added, with perhaps more effort, to any standard programming
language.

3.1. Overview of extension-oriented syntax trees

XSTs are the central data structure in an extension-oriented compiler, used both
to represent the initial parse of a program as well as the result of any transformation
steps during compilation. This section summarizes their general semantics. Subse-
quent sections discuss the key interfaces—extensible grammars, syntax patterns, canon-
icalizers, and attributes—in detail.

Zeta programs define the structure of an XST by giving a context-free grammar
describing how to parse the corresponding input. Extensions can augment an existing
grammar, adding new grammar symbols and rules or adding new rules for existing

23

symbols. For example, an extension might define a new kind of expression, adding a
rule to a pre-existing expr symbol. After defining the grammar, a zeta program can
create an XST by asking zeta to parse a given piece of text (for example, an input file).
Zeta also uses the grammar to define a rich type system for XSTs. For example, if the
language grammar distinguishes between statements and expressions, then the XST
type system also distinguishes them as different subtypes of XST; it enables both static
type annotations and dynamic type checks.

The parser returns a pointer to an XST, but there the similarity to traditional
compilers ends. Zeta programs manipulate and examine an XST not as a traditional
data structure but in terms of the corresponding input syntax. For example, in a tradi-
tional compiler written in C, checking whether an XST denotes an addition of a multi-
plication might be written x->op == ExprAdd && x->left->op == ExprMul. Using
syntax patterns, the same check is x ~ ‘{\a*\b+\c}. Extensions create new XSTs us-
ing almost identical notation. Zeta also allows the definition of canonicalizers, which
are applied to both XSTs and syntax patterns to put syntax into a standard form before
matching. For example, in a language with infix expressions, a canonicalizer might re-
move parentheses from the syntax tree so that (1*2)+3 and 1*2+3 both match the
pattern above.

For generic traversal and transformation of XSTs, zeta provides two more tradi-
tional functions: xstsplit(x) returns a list of the children of the XST node x, and
xstjoin(x, kids) creates a copy of x but with a potentially different set of child
nodes. This example illustrates an important point about XSTs: they are immutable. It
is not possible to overwrite or edit an XST node. Instead, zeta programs create new
XSTs that reuse existing subtrees.

To structure the analysis and compilation of XSTs, zeta provides attributes. An at-
tribute is a function taking a single XST node as its argument. Often, an attribute is
specific to a certain grammar subtype. For example, an XST for an expression might
have an attribute type giving the type of the expression (int, void, float, and so on).
An attribute function is invoked by referring to the attribute value using dot notation:
if x is an XST, then the first reference to x.type invokes the function computing x’s
type attribute. Zeta caches the computed value: future references to x.type will use
the cached value instead of recomputing it. The fact that XSTs are immutable makes
caching computed attribute values reasonable.

To make it possible for an XST node to find its place in a larger XST (for exam-
ple, a variable reference x needs to locate the corresponding declaration of x), each
XST node has a built-in attribute named parent. Creating a new XST that reuses a
node from another XST would result in that node’s parent attribute being ill-defined:
the node would not have one parent, but two. Instead of allowing this situation, any
time a new XST is created using a node that is already in another XST, that node is
not used directly; instead, a complete copy (a so-called deep copy) is made, and the
copy is used in the new XST. This ensures that any XST node has a unique parent
and thus a well-defined parent attribute. It is often useful to examine the original
context of a copied XST node. The built-in attribute copiedfrom exposes this rela-
tionship to zeta programs. A naïve implementation of these copying semantics would
be quite expensive; as discussed in Chapter 5, zeta simulates such copying by making

24

XSTs copy-on-reference. Copies of XSTs start with no cached attributes: they do not
inherit any cached attributes from the original, because the attribute values might
depend on the placement of the XST in the overall program.

Not all computations on XSTs are functions of a single XST node. For example, a
compiler might need to decide whether one type can be automatically converted to
another, a decision that is a function of two XST nodes. To accommodate these cases,
zeta also provides extensible functions, which are a non-lazy generalization of attributes.

The rest of this chapter describes each of these aspects of XSTs in detail.

(a) extensible grammar C99
{

...
%left Add Shift;
%priority Add > Shift;
...

expr: name
| expr "+" expr [Add]
| expr "-" expr [Add]
| expr "<<" expr [Shift]
| expr ">>" expr [Shift]
...

}

(b) grammar Rotate extends C99
{

expr: expr "<<<" expr [Shift]
| expr ">>>" expr [Shift];

}

(c) grammar AlefIter extends C99
{

%right AlefIter;
%priority Shift > AlefIter

> Relational;
expr: expr "::" expr [AlefIter];

}

Figure 1. A grammar and two extensions: (a) a fragment of the grammar for C99 showing a few ex-
pression rules; (b) an extension adding new operators <<< and >>> as syntax for bitwise rotate; and (c)
an extension adding a new operator :: as syntax for iterator expression as in Alef. The %left, %right,
and %priority lines define operator precedences, and the [Add], [Shift], and [AlefIter] annota-
tions attach precedences to specific rules. Alef defines its iterator operator to occupy a new level
between the shift and relational operators.

3.2. Extensible grammars

Extensible grammars define the relationship between input text and XSTs. As an
example, Figure 1(a) shows a few rules concerning expressions in a grammar for the
1999 version of ANSI C. Figure 1(b) shows one possible extension, grammar rules that
an extension could use to add new <<< and >>> operators intended as bitwise rotate.
Figure 1(c) shows a second possible extension, grammar rules that add an iterator
operator :: in the style of the C-like language Alef [69].

The grammar rules define the structure of the XSTs that zeta builds. For exam-
ple, the XST for an expr node corresponding to the expr + expr rule has two chil-
dren, both exprs themselves.

The grammar rules also define a subtype hierarchy among XSTs, based on which
grammar rules are used in a particular XST. An XST tree that uses only rules from
the C99 grammar has type C99. Similarly, an XST that uses only rules from C99 and
AlefIter has type C99+AlefIter. Types are independent of the order in which exten-
sions are added to the base grammar: C99+AlefIter+Rotate and
C99+Rotate+AlefIter are the same type, describing XSTs using only rules from C99
or the two extensions AlefIter and Rotate. Since any XST using only C99 rules is also

25

an XST that uses only C99 and AlefIter, any XST of type C99 is also an XST of type
C99+AlefIter. That is, C99 is a subtype of C99+AlefIter. Similarly, C99+AlefIter
and C99+Rotate are both subtypes of C99+AlefIter+Rotate.

In an extension-oriented compiler, extensions must be prepared to handle XSTs
that use grammar rules specific to other, unknown extensions. The wildcard ? denotes
all extensions to a base grammar, including extensions not yet loaded or even written.
C99, C99+AlefIter, and C99+AlefIter+Rotate are all subtypes of C99+?. Because ?
denotes all extensions, C99+AlefIter+? is just a longer name for the type C99+?.

The particular set of grammars being used by a given XST defines one axis of the
subtype hierarchy. The particular grammar symbol the XST represents defines a
second axis. For example, a C99 XST whose root node is an expr has type C99.expr;
similarly, a stmt node has type C99.stmt. Both C99.stmt and C99.expr are subtypes
of C99, but neither is a subtype of the other. Xoc uses this grammar symbol-based
subtyping heavily. For example, the function that computes the type of an expression
is defined to accept a (C99+?).expr, not a C99+?, to statically detect mistakes like
asking for the type of a statement.

Allowing extensions to introduce new grammar rules creates the possibility that
the resulting grammar will be ambiguous for a given input: there might be multiple
ways to parse the input. For example, one extension might introduce a >>> b as syn-
tax for a bitwise right rotate, while a second might introduce the same notation for a
logical right shift (like in Java). Using both extensions together to parse a program
containing such an expression would be ambiguous. Zeta detects such situations dur-
ing parsing and reports the ambiguity.

3.3. Syntax patterns

The grammar interface defines a constructor for XSTs. Syntax patterns provide
the interface for accessing XSTs (discovering their contents and traversing them). In
traditional compilers, the abstract syntax tree is represented as a data structure in the
host language (for example, a C struct, or a Java class, or an ML record). This is
certainly a powerful interface, but it requires that extension writers learn the mapping
between input syntax and internal representation. Worse, giving extensions such low-
level access to the representation makes it difficult for an extension to manipulate syn-
tax trees created by another, unknown extension. Zeta addresses both of these by hid-
ing the low-level XST representation and providing an interface via syntax patterns.

A syntax pattern is a fragment of code in the input source language with place-
holders called slots denoted by backslashes. For example, ‘C99.expr{\a + \b} is a
syntax pattern for an expression that is itself the combination of two other expressions
using the expr: expr + expr rule. (Semantically, it is a pattern for an addition of two
other expressions.) Syntax patterns can be used for two different purposes. One is to
pattern match, and thus to traverse, existing XSTs. If x is an XST matching that pat-
tern, then x ~ ‘C99.expr{\a + \b} evaluates to true and binds the new variables a
and b to the two children of x. The second use is to create new XSTs. After the
match just considered, evaluating the expression ‘C99.expr{\b + \a} would create a
new XST like x but with its children in the opposite order. The use in the first exam-
ple is a pattern match; the use in the second example is a pattern constructor. Since

26

XSTs are immutable, pattern constructors (which create new XSTs) substitute for the
mutation of a traditional interface.

Syntax patterns are not limited to the single rule applications demonstrated by the
example just given. As a more complex example, a code snippet like

if(x ~ ‘C99.expr{\a << \b << \c})
x = ‘C99.expr{\a << (\b+\c)};

could be used to simplify shift expressions. In the most extreme case, some xoc exten-
sions use multi-line pattern constructors for code generation.

Other systems that have used syntax patterns, like ASF+SDF [60] or Weise and
Crew’s syntax macros for C [66], have required that the pattern slots be annotated with
grammar symbol information. Where zeta uses a pattern like ‘C99.expr{\a + \b},
those other systems would require a pattern more like ‘C99.expr{\a::expr +
\b::expr}. Instead, zeta tries all possible symbol types for both \a and \b. Only a
few choices will produce successful parses. From those, zeta chooses the one that
places the slots highest in the parse tree. For example, in ‘C99.expr{\a + \b}, choos-
ing to make a and b both exprs produces a successful parse, but so does making ei-
ther or both of them nums (integer constants), because there is a grammar rule expr:
num. If a is chosen to be a num, however, its slot is positioned one level deeper in the
tree than when a is an expr. Thus zeta chooses to make a (and, for the same reason,
b) an expr. The end result is that zeta chooses the simplest interpretation of the pat-
tern, which is usually the one the extension writer has in mind. If zeta and the exten-
sion writer disagree, the rich type system for XST nodes usually catches the disagree-
ment. If an extension writer expected b to be a C.num but zeta decided it was a
C.expr, later attempts to use b as a C.num (for example, passing it to a function ex-
pecting a C.num or evaluating an attribute only defined for C.nums) would produce a
type error when compiling the extension itself.

Disambiguation is needed mainly for slots in pattern matches. Slots in pattern
constructors can use type information instead of inference: if a is statically typed as
C99.expr (or even C99.num), the meaning of \a is unambiguous without any annota-
tions.

The benefit of not needing annotations is slight in these examples, but in larger
examples, especially pattern constructors, it significantly helps the readability of the
patterns not to have the input syntax littered with annotations. The search required to
infer annotations may seem expensive, but zeta implements it efficiently using a GLR
parser, as discussed in Chapter 6.

As a smaller notational savings, a pattern match can omit the type following the ‘
if the variable being matched is statically known to have that type; for example, if x
has static type C99.expr, x ~ ‘C99.expr{\a + \b} can be shortened to x ~ ‘{\a +
\b}.

27

3.4. Canonicalizers

Most programming languages provide more than one way to write certain inputs.
Canonicalizers are functions that transform an XST into a canonical form, to make
pattern matching work on equivalent but differently-written expressions. To illustrate
canonicalizers, this section considers the simple example of removing parentheses from
infix expressions: excluding slightly different handling by the parser, i+j+k and
(i+j)+k have identical meanings, but an XST for (i+j)+k would not match the syn-
tax pattern ‘C99.expr{\a+\b+\c}. To address this shortcoming in syntax patterns,
zeta introduces canonicalizers, functions that convert an XST into its ‘‘canonical’’ form.
Zeta applies canonicalizers to the result of any pattern constructor as well as to syntax
patterns used in pattern matches.

For example, a compiler could implement a canonicalizer that converted
parenthesized expressions into unparenthesized ones. With that canonicalizer in place,
the XST for (i+j)+k would be identical to the XST for i+j+k, and both would match
‘C99.expr{\a+\b+\c}. Similarly, the pattern used for matching
‘C99.expr{(\a+\b)+\c} would be identical to the pattern used for matching
‘C99.expr{\a+\b+\c}, so both patterns would match the same expressions.

Eliminating parentheses from the input is perhaps an extravagance—most expres-
sion patterns are not complicated enough to benefit from it—but canonicalization is
helpful in the treatment of C types, making it possible for the (canonicalized) XST for
the type int (*)(void) (a pointer to a function returning an int) to match the
(canonicalized) pattern ‘C99.type{\t*} (pointer to t). Chapter 4 explains this use
for canonicalizers in detail.

3.5. Generic traversal

In addition to syntax patterns, zeta provides a generic mechanism for traversing
and creating XSTs, in the form of two functions xstsplit and xstjoin.
Xstsplit(x) returns an array containing the XST nodes that are children of x, and
xstjoin(x, arr) creates a new XST using the same rule that x does, but using the
nodes listed in arr instead of x’s own children. Xstsplit and xstjoin are useful
mainly in the core of an extension-oriented compiler, for example in the base case im-
plementation for attributes. While writing extensions, we use syntax patterns almost
exclusively.

3.6. Attributes

Grammars and syntax patterns provide the ability to create, traverse, and
transform XSTs, but to be useful, extensions need to be able to hook into the compila-
tion process. They need a way to reuse and extend individual analyses (for example,
type-checking of expressions) and compiler passes. Exposing the compiler internals to
extensions is a key part of keeping extensions simple—no duplication of effort—but it
must be done in a way that allows and encourages multiple, independently-written ex-
tensions to cooperate.

Zeta addresses these needs with attributes. An attribute is a function taking a sin-
gle XST node as its argument, referenced using dot notation. The first time an attri-

28

bute is referenced, zeta calls the function to compute the attribute value, which it then
caches for future use. For example, xoc defines an attribute type on C.expr XST
nodes. If e is a C.expr, then the first reference to e.type invokes the type attribute’s
function on e and caches the result. Future references to e.type return the cached
result.

Extensions can write zeta functions to change the behavior of existing attributes.
For example, an extension adding a bitwise left rotate operator can type-check the new
expressions using:

extend attribute
type(e: C.expr): C.type
{

if(e ~ ‘{\a <<< \b}){
if(a.type.isinteger && b.type.isinteger)

return a.type;
error(e, "non-integer rotate");
return nil;

}
return default(e);

}

The extend attribute statement replaces the function invoked to compute the given
attribute with a new implementation. Inside that new function, the special name de-
fault refers to the old implementation. Here, the new implementation checks that the
arguments to rotate are both integers; the type of the expression is the type of the
operand being rotated. If passed an expression that is not a rotate, the new implemen-
tation invokes the old implementation by calling default.

Functions computing attributes can refer to attributes on other XST nodes or to
other attributes on the same XST node. The fact that attributes are computed on
demand eliminates the need to break an extension-oriented compiler into explicit
passes. For example, the implementation of type given above refers to the type attri-
bute on e’s children a and b during the computation of e.type. A traditional com-
piler would need to arrange explicitly for the child types to have been computed be-
fore computing the type of e. As another example, evaluating e.type on an expres-
sion that is a variable name requires looking up that name in the set of active vari-
ables at that point in the program. That set is also provided by an attribute, called
namescope, so the computation of e.type refers to (and likely invokes the computa-
tion for) e.namescope. A traditional compiler would need to arrange explicitly for
namescopes to have been already computed when computing types, perhaps by put-
ting the computation of namescopes in an earlier pass than the computation of types.
The lazy evaluation of zeta’s attributes eliminates the need to declare intra-attribute or
inter-attribute dependencies explicitly. This helps keep extensions simple.

The price of not explicitly declaring attribute dependencies is that it is possible to
create dependency cycles, in which one attribute depends, perhaps indirectly, on itself.
This was a common problem for us as we developed the xoc core, but we have never
run into this while writing extensions. Zeta diagnoses cycles at run-time and provides
a stack trace showing the code involved in the cycle.

29

3.7. Extensible functions

Attributes are functions of a single variable—the XST node—and while many use-
ful computations and analyses can be phrased as attributes, some cannot. For example,
a C compiler must be able to decide, given two types, whether it is permissible to im-
plicitly convert a value of the first type into the second. Implementing this functional-
ity using attributes would be awkward, requiring a curried function as the attribute
value. To accommodate cases like this one, zeta provides extensible functions, which
are like ordinary zeta functions but they can be extended using almost the same syntax
as attributes.

Xoc implements the type conversion question as an extensible function named
canconvert. For example, canconvert(‘C.type{int}, ‘C.type{long}) is true;
canconvert(‘C.type{int*}, ‘C.type{long*}) is not. In ANSI C, a pointer to a
signed char cannot be implicitly converted into a pointer to an unsigned char. Some
compilers are less strict, allowing this without warning. An extension can implement
this behavior by extending canconvert:

extend fn
canconvert(old: C.type, new: C.type): bool
{

if(old ~ ‘{signed char*} && new ~ ‘{unsigned char*}
|| old ~ ‘{unsigned char*} && new ~ ‘{signed char*})

return true;

return default(term);
}

Extensible functions are essentially a generalization of attributes, except that results are
not cached. The caching behavior is the main reason to prefer attributes over extensi-
ble functions, to eliminate repeated computation. (In the worst case, removing caching
from attributes might produce an exponential increase in the amount of computation
done.)

Chaining attribute and extensible function implementations explicitly via default
means that it is possible to construct a pair of extensions that behave differently when
loaded in different orders: if a second extension is loaded after a first, the second
might undo some of the effects of the first. Such order dependence runs counter to
the overall goal of composability, but sometimes it is useful for one extension to refine
the changes made by another. Chapter 5’s Sparse extension takes advantage of this ca-
pability.

3.8. Summary

Extension-oriented syntax trees are the heart of an extension-oriented compiler.
It is important that the XST interfaces are powerful enough to write extensions but at
the same time limited enough that independently-written extensions can work
together. Zeta’s interfaces achieve this balance by exposing functionality but at the
same time hiding low-level details; hiding the low-level details makes it easier to write
extensions and, more importantly, makes it possible for multiple extensions to work to-
gether.

30

Grammars expose a method for defining the input program syntax but hide the
construction of XSTs and the details of parsing. This enables composition of exten-
sions: to compose extensions, simply take the union of all the rules defined by the base
compiler and extensions.

Syntax patterns expose a method for manipulating XSTs but hide their low-level
representation. This enables extensions to manipulate and pass along (but not explicit-
ly recognize) syntax created by unknown extensions. Canonicalizers provide a
mechanism for rewriting input programs to make syntax patterns more useful; Chapter
4 will use them to make syntax patterns semantically meaningful for C types.

Attributes expose and allow the modification of core compiler analyses and pro-
vide a framework for interacting with other extensions without exposing details like
pass scheduling and which other extensions are loaded. This enables extensions to
work together to process input programs that mix features introduced by multiple ex-
tensions.

These interfaces promote composability of extensions, but they do not guarantee
it. Extensions can introduce conflicting grammar rules or conflicting attribute redefini-
tions or even introduce cyclic attribute dependencies. The following chapters describe
xoc and extensions to it. In the context of that experience, Chapter 7 returns to the
question of extension composability.

31

Compiling C with XSTs

Using zeta and its extension-oriented syntax trees (described in Chapter 3), we
have designed and implemented a prototype extension-oriented C compiler called xoc.
Xoc accepts a command-line argument directing it to load extension modules, like

xoc -x alef -x sparse file.c

It loads the named extensions (alef and sparse in this example) and then reads the
input file.c, a program written in C plus any changes introduced by the extension
modules. Xoc type checks the input program and then compiles it from the
potentially-extended C to a lower-level standard (unextended) C representation that
can be handled by a traditional C back end. In addition to implementing xoc itself, we
have implemented a variety of extension modules. This chapter describes the imple-
mentation of the xoc core and the interface it presents to extensions; the next chapter
describes three significant extensions.

4.1. Overview

Xoc starts by parsing its command line and loading any specified extension
modules. Then it must read the input source. The C language is complicated by a
text-based preprocessing phase, often implemented as an external program (the so-
called C preprocessor). Xoc invokes a standard C preprocessor on the input files
named as the command line and uses that preprocessor’s output as its input. Thus, the
preprocessing phase is not extensible.

Next, xoc parses the input using its C99 grammar to produce an XST. Zeta’s ex-
plicit accommodation of ambiguity allows xoc to delay resolving the C type versus
name ambiguities. After parsing, xoc invokes a separate disambiguation phase to
resolve the C type versus name ambiguity and produce an unambiguous tree. At this
point, xoc canonicalizes the XST and begins the real work of compilation.

Xoc type checks its input and translates any features introduced by extensions
into standard C. These two phases are both implemented as attributes: the attribute
machinery schedules the computation and provides a framework that allows the xoc
core and any loaded extensions to cooperate to type check and compile the program.

Our work focuses on the extensibility of compiler front ends, so once the input
program has been type checked and translated into standard C, xoc invokes a standard
C compiler (specifically, the GNU C compiler gcc) on this standard C representation to
produce an object file.

33

4.2. Resolving the C99 type versus name ambiguity

The main challenge in parsing C is handling the type versus name ambiguity in-
troduced by C’s typedef construct. For example, the statement x * y; can be parsed
two different ways: as a multiplication of two variables x and y; or as a declaration of
a new variable y with type x*. Which choice is correct depends on whether x names a
type or a variable. Typically, C compilers avoid this ambiguity during parsing by per-
forming some semantic analysis during the parse. When the lexer reads a name like x,
it uses the computed semantic information to decide whether x is a name or a type
and return the appropriate token to the parser. This approach tightly couples the lexer
and the semantic analysis of the program, making it difficult for the compilation to
proceed as independent phases.

Because zeta’s parser can handle ambiguity during parsing, xoc can avoid the tight
coupling of traditional C compilers. Xoc uses an intentionally ambiguous grammar, al-
lowing any name to be used as either a variable name or a type name. When parsing
a statement like x * y;, zeta returns an XST that encodes both possible parses. Xoc
then invokes a disambiguator to choose the correct one. Even if neither is correct,
detecting the error in a semantic phase instead of during parsing allows xoc to give a
more specific error message.

The disambiguator traverses the XST in a single top-down pass, using xstsplit
and xstjoin to traverse non-standard syntax introduced by extensions. When it sees
a C.decl, it records that all the C.decornames introduced by that declaration are now
names of variables (or names of types, if the declaration includes the word typedef).
To handle a node with multiple parse choices, the disambiguator explores all possibili-
ties, keeping the choice with the fewest number of errors (variable names used as type
names or vice versa). If both choices have no errors, the ambiguity was not created by
the C type versus name problem, so it must have been introduced by an extension. In
this case, xoc reports an error and exits. Assuming no extension-introduced ambigui-
ties, the disambiguator returns an XST with no parse ambiguities.

Disambiguating the XST as a phase separate from parsing makes it possible to
treat a mistake like using a type name where a variable name was expected as a se-
mantic error, not a syntactic one. For example, the C program

typedef int A;
A a;
return A+1;

is not ambiguous: the return statement can only be parsed if A is taken to be variable
name, although A is a type name. A traditional C compiler would report a syntax er-
ror here. Xoc can give the more helpful error that A is being used as a variable name
but is in fact a type name.

Making the disambiguator extensible would only be useful when introducing new
ambiguities. For example, if the disambiguator were extensible, an extension could in-
troduce nicknames as another kind of identifier and then could extend the disambi-
guator to resolve the resulting type versus name versus nickname ambiguities. Creat-
ing additional ambiguities strikes us as a bad idea, so we have not made the disambi-
guator extensible.

34

4.3. Canonicalization of types

After disambiguating the input, xoc invokes any canonicalizers to transform the
tree into canonical form. The xoc core defines two canonicalizers, one for expressions
and one for types; extensions can introduce their own canonicalizers for new syntax
they introduce. Xoc’s expression canonicalizer is simple: it removes parentheses as sug-
gested in Chapter 3. The type canonicalizer is more involved and more important. In
C, the syntax of types does not reflect their semantic structure. For example, int*
denotes a pointer to an integer, and in general one might expect a pattern match like
‘C.type{\t*} to match a pointer to any type t. Without type canonicalizers, that
pattern would not match all pointers. For example, a pointer to a function returning
int is written int(*)(void), which does not have the same syntactic structure as the
pattern ‘C.type{\t*}. The type canonicalizer transforms types into a form that al-
lows pattern matching to follow type semantics, not type syntax.

Understanding the type canonicalizer requires a careful understanding of C de-
clarations. In C, a declaration is split in two pieces, a type specifier and a type de-
clarator. In a declaration like int *p, the type specifier is int and the declarator is *p.
The idea behind declarators is that declaration reflects use. Declaring int *p creates a
new variable p such that *p is an int; therefore p must be a pointer to an int. De-
claring int (*f)(void) creates a new variable f such that (*f)() is an int; therefore
f must be a pointer to a function returning an int. C constructs that take types as
arguments, like casts and one form of the sizeof operator, use as their syntax a de-
claration in which the name is dropped from the declarator to produce a so-called
abstract declarator, such as the int* and int(*)(void) used above. C’s type syntax is
simultaneously elegant and terribly confusing, especially for new programmers. The C
Infrequently Asked Questions list, which parodies answers to common questions about
C, explains that ‘‘in C, declaration reflects use, but it’s one of those weird distorted
mirrors’’ [54].

Xoc’s type canonicalizer rewrites the syntax of types so that it follows the logical
semantics of the type. It adopts the typeof type specifier from GNU C, which allows
using typeof(type) as a type specifier. Using the typeof syntax, the canonicalizer can
rewrite any type so that only one abstract declarator can be applied at a time; it also
ensures that abstract declarators are always applied to typeof types. For example, the
canonicalizer transforms int* into typeof(int)* and int(*)(void) into
typeof(typeof(int)(void))*. The canonicalized syntax makes it clear that both are
pointers: both now match the syntax pattern C.type{\t*}. Figure 1 illustrates the
transformation. Introducing typeof creates a kind of parentheses for types, so the
canonicalizer must also take care to remove unnecessary parentheses. For example, it
simplifies typeof(typeof(int)*) and typeof(typeof(int))* to typeof(int)*.

Xoc’s type canonicalizer also handles storage specifiers, type qualifiers, and GNU
C attributes. A storage specifier is a word in a declaration that is not part of the type
but rather specifies where to store a given declaration. For example, extern int *x de-
clares that x is an external variable allocated elsewhere. Typedef is also a storage
specifier: it declares that x has no storage at all but instead is a type name. Logically,
storage specifiers are separate from types, but syntactically, they are intermixed. For

35

example, most C programmers would write extern int *x, but it is equally valid, if
uncommon, to write int extern *x. A type qualifier is a word like const or vola-
tile in a type like const char* (pointer to const char) or char* volatile (volatile
pointer to char).

(a) ptr fn(): int

type

type

type

int

ptr

fn():

pointer to

function returning

int

(b) int(*)(void)

type

abdecor

abdecor

abdecor

*

typespec

int (void)

()

pointer to

function returningint

(c) typeof(typeof(int)(void))*

type

abdecor

*

typespec

typeof()type

abdecor

(void)

typespec

typeof()type

typespec

int

pointer to

function returning

int

Figure 1. The C type problem and its solution. The natural top-down semantic structure of a type like
‘‘pointer to function returning int’’ would put the ‘‘pointer’’ node at the top of the tree, as in the zeta-like
type syntax of (a). C’s type declarator syntax create a bottom-up structure as in (b). The problem is
that for a syntax pattern like ‘C.type{\t*} to match any pointer type, the type syntax needs to have
structure like (a), not like (b). Xoc’s type canonicalizer rewrites types with nested abstract declarators
like (b) into types with only single abstract declarators, adopting the GNU C typeof syntax as a kind of
parentheses for types. Xoc’s translation of (b) is shown in (c). The italic text connected by dashed ar-
rows shows how to read each type.

GNU C attributes, which have nothing to do with zeta’s concept of attribute, are a
generalization of storage specifiers and type qualifiers. Instead of defining new
reserved words like extern and const, GNU C defines a special syntax
__attribute__((list)) that can be used anywhere a type qualifier can. The advan-
tages of this bizarre syntax are that new attributes can be created without reserving

36

new words and that preprocessor macros can be used to make the __attribute__
clauses disappear from the view of non-GNU C compilers. For example, in GNU C,
annotating a function with __attribute__((noreturn)) tells the compiler that the
function does not return. This use does not preclude the use of noreturn in other
contexts as a variable name.

Xoc’s type canonicalizer removes storage specifiers, type qualifiers, and GNU C at-
tributes from the explicit XST syntax and instead attaches them to the tree as pre-
initialized attributes. For example, the expression ‘C.type{const int
__attribute__((red))} canonicalizes to a ‘C.type{int} with its attrs attribute set
to list [‘C.attr{const}, ‘C.attr{red}]. (Any ordinary type qualifier is also a
GNU C attribute; for simplicity, xoc chooses the GNU C attribute form as the canoni-
cal representation.) Similarly, a declaration like ‘C.decl{extern int x;} canonical-
izes to a ‘C.decl{int x;} with its storage attribute set to ‘C.storage{extern}.

Zeta’s semantics are that attributes are not automatically copied when nodes are,
because an attribute value may depend on the node’s placement in the parse tree; to
make copies inherit the attrs and storage, the default definitions consult
copiedfrom:

attribute attrs(t: C.type): list C.attr
{

if(t.copiedfrom)
return t.copiedfrom.attrs;

return nil;
}

(The attribute will be non-nil only if it has been pre-initialized, as the canonicalizer
does.)

Canonicalizers perform syntactic transformations. The type canonicalizer is ela-
borate but purely syntactic: it does not require examining the context in which a type
appears, which would fall under type checking’s jurisdiction. For example, type canon-
icalization does not expand typedefs. Similarly, expression canonicalization cannot
perform constant evaluation, because it cannot interpolate named constants from enum
declarations.

4.4. Type checking

Once the input XST has been disambiguated and canonicalized, xoc can type
check it. Xoc implements type checking using three attributes:

attribute typecheck(C);
attribute type(C.expr): C.type;
attribute type(C.type): C.type;

The typecheck attribute applies to multiple kinds of XST nodes, like top-level declara-
tions, function definitions, statements, and statement blocks. If x is an XST node, the
first reference to x.typecheck type checks x. The attribute has no value; it is evaluat-
ed only for the side effect of printing type errors.

The type attribute on C.expr XSTs evaluates to the type of the expression, like
‘C.type{int} for ‘C.expr{1+2} or for ‘C.expr{x} when x is an integer variable or
an integer constant. Type-checking a name like x requires name resolution, discussed

37

in the next section.
The type attribute on C.type XSTs evaluates to the type denoted by that XST.

The need for this attribute surprised us, since compiler texts rarely talk explicitly about
type-checking types. The attribute is necessary to handle expansion of type names in-
troduced by typedef, so that, for example, ‘C.type{x} can be replaced by
‘C.type{int}. The type attribute also resolves a type like ‘C.type{struct foo} to
its current definition. (Like type names, struct tags can refer to different structures at
different points in the program.) Both of these expansions also require name resolu-
tion.

4.5. Scopes for name resolution

When xoc encounters a name like x during type checking, xoc must resolve the
name, to find the declaration that x refers to. Traditional imperative compilers imple-
ment name resolution using a mutable symbol table in a compiler-directed recursive
walk of the input tree. During the walks, the compiler adds and removes symbols
from the table. The set of names available at a given point in the program is the set
of names in the table when the traversal reaches that point. That set is not saved,
though: once the traversal has moved on, the set of possible names is no longer avail-
able [1][24].

int x;
int y = x;

decl[] [x]

type[] []

int
name[] []

x

decl[x] [y,x]

type[x] [x]

int
name[x] [x]

y
expr[x] [x]

name[x] [x]

x

decl*[] [y,x]

Figure 2. An illustration of the computation of the entrynamescope and namescope attributes on the
simplified parse tree for a pair of declarations. The bracketed list on the left of each node is the scope
on entry to that node; the list on the right is the scope on exit. Dashed arrows denote data flow
between attributes: an arrow from one list to a second means that the first list is used to compute the
second. The attribute grammar literature refers to such attributes as ‘‘threaded attributes,’’ because of the
way they the data flow is threaded through the entire tree [65]. Declarations augment the default
threading behavior by adding new names to their exit scopes.

Xoc needs a solution that fits into the attribute-directed input processing, which
may look up names in any order. The set of all symbols that can be referred to at a
particular XST node is called the scope at that node. Xoc implements two attributes
entrynamescope and namescope that evaluate to the scope on entry to and exit from
a particular XST node. In the absence of declarations, the scope on entry to an XST
node x is either the scope on exit from x’s left sibling or, if x has no left sibling, the
scope on entry to x’s parent. Similarly, the scope on exit from an XST node x is either
the scope on exit from x’s rightmost child or, if x has no children, simply x’s en-

38

trynamescope. These rules correspond to a pre+post-order traversal of the input tree
that visits each node twice, once before traversing the children and once after travers-
ing the children. The first visit sets the entrynamescope, and the second sets the exit
namescope. Declarations add to the exit namescope before passing it along to the
next visit in the traversal. Figure 2 illustrates the name scopes for a pair of declara-
tions.

Xoc would like to ensure that, by default, reusing an expression in a new XST
does not change its meaning. Specifically, names in the copy should refer to the same
symbols as the names in the original. To implement this, the namesym attribute, which
looks up the symbol corresponding to a name, looks for the name in the original
scope when invoked on a copied node:

attribute namesym(n: C.expr): Sym
{

if(n.copiedfrom)
return n.copiedfrom.namesym;

...
}

(The type Sym is the xoc data structure representing symbols.)
This discussion of scopes has assumed that, like in C, names only refer to declara-

tions that occur earlier in the program. C++, Java, and other languages allow refer-
ences (in some cases) to names that occur later in the program. Bergan’s thesis [7]
demonstrates that this kind of attribute framework is general enough to accommodate
such languages.

4.6. Compilation

Once the input is type checked, xoc can compile it. Xoc only has to translate the
input program (written in C plus any loaded extensions) to standard C, and then it in-
vokes a standard C compiler to translate the program to machine code. Xoc refers to
the translation from C plus extensions to standard C as compilation.

The bulk of the compilation work is implemented as a collection of compiled at-
tributes defined on statements, expressions, declarations, types, and most other C
grammar symbols. The attributes are defined on XSTs of type C (aka C99+?), but they
return XSTs of type COutput, defined as C99+StmtExpr (for convenience when com-
piling expressions, the output is allowed to contain the GNU C ‘‘statement expression’’
construct):

attribute compiled(C.stmt): COutput.stmt;
attribute compiled(C.expr): COutput.expr;
attribute compiled(C.decl): list COutput.stmt;
attribute compiled(C.type): COutput.type;
attribute compiled(C.block): COutput.block;
...

The compiled form of a statement is a statement, and the compiled form of an expres-
sion is an expression. The compiled form of a declaration is a sequence of initializa-
tion statements. Xoc’s C printer prints declarations for variables as needed, which
makes it easy to use new temporary variables in the compiled form. Thus the only ex-
plicit semantics needed from a declaration is the potential initialization of the declared

39

variables. Translating declarations into statement sequences also allows new kinds of
initializers to be introduced and translated.

The fact that types need to be compiled was a surprise, but in retrospect it makes
sense: if an extension introduces a new type, that type has to be translated into a stan-
dard C type when compiling to object code.

The compiled attribute for blocks and other symbol types is not particularly in-
teresting: the default implementation just compiles the children and then constructs a
new XST node with those children.

4.7. Data flow analysis

By default, xoc does not perform any sophisticated analyses on input programs,
but extensions may need to. To accommodate them, xoc implements a simple data
flow library that operates on COutput (non-extensible) XSTs. Extensions that wish to
invoke data flow checks do so by extending the implementation of the typecheck at-
tribute on function definitions. They compile the body of the function and then apply
the analysis to the standard C form. Running the data flow analysis on the compiled
form rather than the original form makes it possible to analyze code that uses exten-
sions.

Data flow library clients start by creating a control flow graph from the compiled
form; they can pass in a filter function to remove uninteresting nodes from the graph.
Once the control flow graph has been constructed, clients can invoke a full data flow
analysis using their own transfer and join functions [27]. The node and edge values
used in these functions are of an arbitrary, client-specified type. The library lets the
clients focus on the details of a specific analysis, not the general data flow machinery.

4.8. Extension interface

Xoc’s extension interface is the C99 grammar and collection of attributes that it
defines. This chapter has already discussed the three most important attributes:
typecheck, type, and compiled. An xoc extension is a zeta module that is loaded by
the xoc core in response to the command-line option -x. Extensions typically define a
couple of new grammar rules and then appropriate type-checking and compilation to
handle those rules. For example, Figure 3 shows a small extension that introduces a
new bitwise rotate operator a <<< b similar to the C shift operators. The extension
adds a single new grammar rule for expr, extends the type attribute on C.exprs to
handle the new expression, and then extends the compiled attribute to compile the
new expression down to standard C. The next chapter examines more substantial ex-
tensions.

4.9. Summary

The C programming language presents a number of thorny challenges to the
extension-oriented compiler designer. The type versus name ambiguity threatens to
couple parsing tightly to semantic analysis. Type declarations threaten to require an
alternate type representation. This chapter has described how XSTs gracefully handle
both of these problems.

The demand-driven execution of XST attributes does not fit well with the usual

40

imperative name resolution pass of traditional compilers. This chapter has also
described how to implement name resolution cleanly using attributes. In the case of
name resolution, the attribute-based solution is not obviously cleaner than the tradi-
tional solution, but the important part is that it can be accommodated, making the at-
tribute framework the only interface extensions need to understand. Put another way,
the xoc core’s implementation of name resolution may be slightly more complicated
using XST attributes than it would be otherwise; this is an acceptable tradeoff if, in re-
turn, extensions will be simpler to write and more composable. The next chapter ex-
amines the extensions written using xoc.

from xoc import *;

extend grammar C99
{

expr: expr "<<<" expr [Shift]
}

extend attribute
type(term: C.expr): C.type
{

switch(term){
case ‘{\a <<< \b}:

if(a.type.isinteger
&& b.type.isinteger)

return a.type;
errorast(term,

"non-integer rotate");
return ‘C.type{int};

}
return default(term);

}

extend attribute
compiled(term: C.expr): COutput.expr
{

if(term ~ ‘{\a <<< \b}){
n := a.type.sizeof * 8;
term = ‘C.expr{

({
\(a.type.unsigned) x = \a;
\(b.type) y = \b;
(x << y) | (x >> (\n-y));

})
};
return term.compiled;

}
return default(term);

}

Figure 3. A simple xoc extension implementing a bitwise rotate operator a <<< b. The extend gram-

mar clause introduces the new grammar rule for the operator. The extend attribute type definition
implements the type-checking rule for the expression, passing all other expressions to the original attri-
bute definition via the call default(term). The extend attribute compiled definition implements
the expression’s behavior by rewriting it using only standard C and a GNU statement expression (the ({

... }) construct) and then invoking the compiled attribute on the rewritten version. (Like the exten-
sion of attribute type, it passes all other expressions to the original attribute definition via the call
default(term).)

41

Extensions

Chapter 4 described the xoc compiler core. We envision two main ways that ex-
tensions might choose to extend xoc. First, an extension might add custom support
for a particular runtime library. For example, an extension could create a yacc-like in-
terface [31] to a parsing library with a plain C function call interface. Second, an ex-
tension might introduce additional checks to an error-prone interface. For example,
the C library qsort function takes two arguments: the data to be sorted and a com-
parison function that accepts two void* arguments to compare two elements. It is im-
portant that the data being sorted matches the type expected by the comparison func-
tion, but the implicit conversion to void* keeps the C compiler from checking this
condition. A qsort-specific extension could check the conversions to make sure that
the comparison function matches the data being sorted. There are also extensions that
xoc cannot support. Since xoc is only a front end, extensions that require changes to
code generation—for example, segmented stacks, garbage collection, exceptions, or use
of special hardware instructions—cannot be implemented.

This chapter describes two large collections of extensions built atop xoc. The first
collection falls into the first category above. It implements the types and syntax sup-
ported by the Alef programming language by translating them into calls to the C li-
brary that replaced Alef. As mentioned in Chapter 1, Alef was a promising new
language that was abandoned due to the cost of maintaining an entire compiler. The
xoc implementation of Alef features does not need to implement an entire compiler—it
reuses the xoc core’s handling of standard C—making it much shorter than the origi-
nal Alef implementation.

The second collection falls into the second category above. It implements the
checking functionality of the Sparse program checker used by Linux kernel developers.
Those checks involve new pointer attributes, function attributes, and data flow
analyses.

Both of these examples are extension collections, not single extensions. The ease
with which xoc combines multiple extensions encourages modularity, making it natural
to split a large language change into a set of cooperating, small extensions. Figure 1
shows the line counts of the extensions we have written for xoc. In addition to the
Alef and Sparse suites, we have also implemented two features introduced by GNU C.

This chapter presents only the essential code from each extension along with line
counts. Appendix B gives the full source code for each extension.

5.1. Alef

The first extension collection recreates the types and syntax of Alef as an interface
to libthread, the C library that replaced it. The main functionality provided by the li-
brary is the channel types, send and receive expressions, the alt statement, and thread
creation. As an additional illustration, this section also considers one of Alef ’s lesser-

43

used features, the iterator expression.

5.1.1. Channel types

In Alef, threads communicate over typed, unidirectional communication ports
called channels, following Pike’s Newsqueak [47], which in turn was inspired by
Hoare’s CSP [29]. Messages on channels are typed, first-class objects: a chan(int) car-
ries only ints, while a chan(chan(int)) carries only channels that carry ints. In
libthread, channels are intended to be used for only a single message type—in particu-
lar, the size of the message is fixed at channel creation—but the type system does not
enforce this: all channels have type Channel*. The first Alef extension introduces
typed channels, which compile into libthread’s untyped channels. The extension is
twelve lines, four to introduce the new type, and seven to compile that type down to
the libthread Channel*:

Name Lines Description

alef_alloc 39 Alef channel allocation

alef_alt 106 Alef alt statement

alef_chan 20 Alef channel type

alef_iter 103 Alef iterator expressions

alef_sendrecv 56 Alef channel send, receive operators

alef_task 98 Alef task (thread creation) statement

422 total Alef

sparse_addrspace 68 Sparse address space attribute

sparse_context 245 Sparse flow-sensitive context checking

sparse_force 29 Sparse force attribute

sparse_grammar 16 Sparse attribute syntax

sparse_noderef 33 Sparse noderef attribute

391 total Sparse

gnu_cond 26 GNU a ?: b binary conditional expression

gnu_typeof 44 GNU typeof(expr) type specifier

883 total, all extensions

Figure 1. Line counts for xoc extensions. Most extensions are under a hundred lines of code. The
largest extension, the context checking part of Sparse, is only 245 lines.

1 extend grammar C99
2 {
3 typespec: "chan" "(" type ")";
4 }
5
6 extend attribute
7 compiled(t: C.type): COutput.type
8 {
9 if(t ~ ‘{chan(_)})
10 return ‘COutput.type{Channel*};
11 return default(t);
12 }

The if statement (line 9) translates a channel type into the C type Channel* as the
compiled form.

44

5.1.2. Channel operations

Alef provides special syntax for send and receive operations on channels. The
operator <- receives a message from a channel, as in x = <-c, and the operator <-=
sends a message to a channel, as in c <-= x. These operators are typed, so that, for
example, it is a compile-time error to send a pointer on a channel expecting an integer.

The code to introduce the syntax is the following five lines:

1 extend grammar C99
2 {
3 expr: "<-" expr
4 | expr "<-=" expr;
5 }

The code to type-check the operators is another twenty-seven. The fragment
handling the receive operator is:

1 if(term ~ ‘{<-\e}){
2 if(e.type != nil){
3 if(e.type ~ ‘{chan(\t)})
4 return t;
5 errorast(term, "receive from non-channel");
6 }
7 return nil;
8 }

int
add(chan(int) c1, chan(int) c2)
{

return <-c1 + <-c2;
}

int
add(Channel *c1, Channel *c2)
{

int tmp1, tmp2;

return (chanrecv(c, &tmp1), tmp1) +
(chanrecv(c, &tmp2), tmp2);

}

Figure 2. A short Alef program (left) and its translation into standard C using the libthread library
(right). The alef_channel and alef_sendrecv extensions implement this translation.

It recognizes the receive operator (line 1), checks that the expression being received
from is itself a channel (line 3), and returns the channel’s message type as the type of
the expression (line 4). The check of e.type against nil (line 2) is not strictly neces-
sary, but avoids an extra error message if e fails to type check.

The fragment handling the send operator is similar, but must check that the mes-
sage being sent is an acceptable type:

1 if(term ~ ‘{\e <-= \v}){
2 if(e.type && v.type){
3 if(e.type ~ ‘{chan(\t)}){
4 if(canconvert(v.type, t))
5 return t;
6 errorast(term, "cannot send "+v.type.fmt+
7 " on chan of "+t.fmt);

45

8 }
9 errorast(term, "send on non-channel");

10 }
11 return nil;
12 }

The code recognizes the send operator (line 1), checks that e and v have both type
checked (line 2), and then checks that e is a channel (line 3) and that v can be con-
verted to e’s message type (line 4).

The code to compile a receive operator is as follows:

1 if(term ~ ‘{<-\e} && e.type ~ ‘{chan(\t)}){
2 tmp := mktmp(t);
3 return ‘C.expr{(chanrecv(\e, &\tmp), \tmp)}.compiled;
4 }

The code looks for a receive expression and determines the channel message type (line
1) and allocates a temporary variable to hold the message (line 2). Then it creates a C
code fragment that first calls libthread’s chanrecv function to receive into the tem-
porary variable and then evaluates to the value of the temporary variable (line 3). Fi-
nally, it returns the compiled form of that C expression. If the extension writer forgot
the .compiled on line 3, the extension would not type check (as a valid zeta pro-
gram): it would be returning a C.expr from a function expected to return a C99.expr.
The type system thus ensures that the eventual compiled form uses no extensions.
The compilation of the send operator is similar; it is given in Appendix B.

5.1.3. Alt statements

The final channel operation is the alt statement, which blocks waiting for any of
its channel operations to become ready and then executes one. Libthread provides an
alt function implementing the core operation; the extension only implements the syn-
tax.

First, the extension must introduce the syntax:

1 extend grammar C99
2 {
3 stmt: /alt/a "{" altclause* "}";
4 altclause: "case" expr ":" stmt*;
5 }

Writing /alt/a instead of "alt" uses a regular expression pattern instead of a literal
string. The /a suffix specifies that the pattern can be ambiguous, meaning if another
regular expression also matches, the lexer should return both. This allows the use of
alt to introduce the alt statement without precluding the use of alt as an ordinary
identifier elsewhere in the program. In contrast, writing alt would make alt a
reserved word like while or switch.

The grammar rules given above are somewhat lax: in fact, the case expressions for
alt statements must be one of the three forms <-c, e = <-c, or c <-= e. Using just expr
postpones the syntax check to type checking, which is more work but can give more
precise error messages. Another benefit of using expr is that the expressions can be
type-checked (though not compiled) as ordinary channel expressions.

46

alt {
case <-c1:

print("receive c1\n");
case c2 <-= e:

print("send e on c2\n");
}

Alt alts[3];

alts[0].op = CHANRCV;
alts[0].c = c1;
alts[0].v = NULL;

alts[1].op = CHANSND;
alts[1].c = c2;
alts[1].v = &e;

alts[2].op = CHANEND;

switch(alt(alts)){
case 0:

print("receive c1\n");
break;

case 1:
print("send e on c2\n");
break;

}

Figure 3. A short Alef alt statement (left) and its translation into standard C using the libthread library
(right). The alef_alt extension implements this translation.

The alt extension does more code generation than the previous extensions. Figure
3 shows a simple alt statement and its translation into C. To generate the code for the
alt statement, the alt extension iterates over the clauses, creating two lists of statements,
one containing initializers and one containing switch body statements. Appendix B
gives the full source code; here is the snippet that creates the new initializer and body
for a send:

1 case ‘{\chan <-= \val}:
2 assert chan.type ~ ‘{chan(\t)};
3 tmp := mktmp(t);
4 inits = ‘C.stmt{{
5 \tmp = \val;
6 \alts[\i].op = CHANSND;
7 \alts[\i].v = \tmp;
8 \alts[\i].c = \chan;
9 }} :: inits;
10 body = ‘C.stmt{{
11 case \i:
12 \b
13 break;
14 }} :: body;

The inits list is the initializers; the body list is the switch body. Once the clauses
have been processed, constructing the final C code is simple:

47

1 return ‘C.stmt{{
2 \inits
3 switch(alt(\alts))
4 \body
5 }}.compiled;

int print(char *msg);

task print("hello\n");

int print(char *msg);

struct fnargs {
int (*f)(char*);
char *a0;

};

void
tramp1(void *v)
{

struct fnargs cl;

cl = *(struct fnargs*)v;
free(v);
cl.f(cl.a0);

}

struct fnargs *cl;
cl = malloc(sizeof *cl);
cl->f = print;
cl->a0 = "hello\n";
taskcreate(tramp1, cl);

Figure 4. An Alef task (thread creation) statement and its translation into C using the libthread library
(right). The alef_task extension implements this translation.

5.1.4. Thread creation

After channel syntax, the most missed feature of Alef was its convenient syntax
for creating new threads. The statement

task f(x, y, z);

created a new Alef task (thread) executing the function call f(x, y, z). Libthread,
like most C thread libraries, instead provides the clunkier

void taskcreate(void (*f)(void), void *a)

which creates a new task running f(a). Starting a task with a function that requires
more than a single void pointer argument requires extra effort. The extension auto-
mates that effort, creating a new argument structure type to hold the values f, x, y,
and z as well as a new trampoline function that, passed a structure containing those
values, executes f(x, y, z). Then it expands the task statement above into code that
allocates and initializes a new argument structure and passes it and the trampoline
function to taskcreate.

This extension is interesting because it creates a new C structure type to hold the

48

function pointer and its arguments. The number of elements in the structure and
their types depend on the exact expression used in the task statement. To create the
new type, the extension loops over the arguments making a list of structure member
declarations:

1 decls := list [‘C.sudecl{\(f.type)* f;}];
2 for(a in args){
3 name := "a"+string(i++);
4 decls = ‘C.sudecl{\(a.type) \name;} :: decls;
5 }

In the structure, the function pointer is named f and the arguments are named a0, a1,
and so on. Once the member declaration list is constructed, creating the type is easy:

1 t := ‘C.type{ struct { \decls } };

The creation of the trampoline function is similar, building up a list of statements
and using them to create the function definition. Appendix B gives the full code.

5.1.5. Iterator expressions

The previous sections recreated the most popular features of Alef. An extension-
oriented compiler should make writing extensions easy enough that even unpopular
features can be implemented, as long as they are important to at least one
programmer. This section describes one such feature, Alef ’s iterator expressions.

In Alef, an iterator expression is an expression lo::hi. It evaluates to every value
from lo up to hi, causing the statement in which it appears to be executed multiple
times. For example, the single statement

b->print("%.2x", digest[0::16]);

prints a 16-byte array by printing each byte as a two-digit hexadecimal number. The
iterator expression makes that single statement equivalent to the loop:

for(i=0; i<16; i++)
b->print("%.2x", digest[i]);

It is not clear, in retrospect, what the compelling use cases for iterator expressions
were. The Alef tutorial gives example code multiplying two 4x4 matrices, calling it
‘‘elegantly obscure’’ [18]:

typedef float Matrix[4][4];
void mul(Matrix r, Matrix a, Matrix b){

int i, j, k;

r[0::4][0::4] = 0;
r[i=0::4][j=0::4] += a[i][k=0::4]*b[k][j];

}

Whatever the intended use, iterator expressions did not catch on in publicly released
Alef code. In the 30,000 lines of Alef source code in the second edition release of
Plan 9, there is exactly one instance of an iterator expression, the b->print line given
above.

The fact that iterators did not catch on makes them a good example of the ad-
vantages of an extension-oriented compiler. Clearly someone thought iterators were

49

worth the trouble to write a hundred or so lines of code to implement them in the
Alef compiler and about two pages of documentation in the Alef manuals. Yet today
they are just a forgotten, unused feature that is easier to leave alone than to remove.

The Alef iterator extension is 103 lines of code, about the same length as the
iterator support in the Alef compiler. Instead of burdening a language core with itera-
tor support, an extension-oriented compiler encourages the implementation of iterators
as an extension, allowing users who need them to have them, but without burdening
other users with needing to learn about them.

5.2. Sparse

The Alef extensions add new syntax to C. Now our focus shifts to adding new
analyses and type restrictions to the compiler. The Sparse program checker, described
in Chapter 1, provides two new kinds of analyses. First, it adds new pointer qualifiers
and checks, to ensure that kernel pointers and user pointers are not accidentally
misused inside an operating system kernel. Second, it adds a path-sensitive context-
tracking mechanism, to catch instances where, for example, one path through a func-
tion acquires a lock but forgets to release it.

#define kernel __attribute__((address_space(0))
#define user __attribute__((address_space(1), noderef))

void copy_from_user(void kernel*, void user*);

char user *u;
char kernel *k;

copy_from_user(k, u);
copy_from_user(k, k); // type error!
copy_from_user(u, k); // type error!
copy_from_user(u, u); // type error!

x = *k;
x = *u; // dereference of no-deref!
x = u[1]; // dereference of no-deref!

Figure 5. A program demonstrating the additional type checking introduced by Sparse. The listing
defines kernel as a synonym for address space 0 and user as a synonym for address space 1 with no
dereferencing allowed. Sparse checks that these tags are enforced, so that all but the first
copy_from_user call would be reported as incorrect, as would the attempts to dereference the user
pointer u.

5.2.1. Pointer qualifiers

Sparse adds two new pointer qualifiers, phrased as GNU C attributes. The attri-
bute address_space(n) marks a pointer as pointing at address space n, where n is an
integer constant. If a pointer has no address space tag, it is assumed to be in address
space 0. The Linux kernel uses three address spaces: 0 for kernel memory, 1 for user
memory, and 2 for memory-mapped I/O. The second attribute, noderef, marks a
pointer as one that cannot be dereferenced. If p is a noderef pointer, expressions like

50

p[i] and *p are invalid, though address and size calculations like &p[i] and
sizeof(*p) are still valid.

The first step for the extension is to add the attributes to the grammar. The base
xoc grammar already accepts unadorned names (like noderef) attributes, but
address_space takes an argument and thus needs to be added separately:

1 extend grammar C99 {
2 attr: /address_space/a "(" expr ")";
3 }

The address space extension extends both canconvert and cancast to enforce the
rule that it is not allowed to change the address space of a pointer, implicitly or expli-
citly. The extension-defined attribute address_space returns the address space
number for a given type. With that attribute, it is easy to implement the rule:

1 extend fn
2 cancast(old: C.type, new: C.type): C.type
3 {
4 if(old ~ ‘{\told*} && new ~ ‘{\tnew*}){
5 if(told.address_space != tnew.address_space){
6 sys.werrstr("address space mismatch");
7 return nil;
8 }
9 }
10 return default(old, new);
11 }

The implementation looks for the case of casting one pointer to another (line 4) and
checks that the two address spaces match (line 5). If they don’t, it returns nil to signal
an error, but first writes the system error string, which xoc will use in its error message
to provide more detail (line 6). The implementation of canconvert is similar.

Sparse does provide a way around the checks: the force attribute to a cast will
allow changing address spaces. In the xoc implementation, force is implemented in a
separate extension. It implements a helper attribute without_force that removes the
force attribute from a type. With that helper, it is easy to extend cancast once again,
this time to allow casts between pointers when the cast specifies force:

1 extend fn
2 cancast(old: C.type, new: C.type): C.type
3 {
4 if(old ~ ‘{\told*}
5 && new ~ ‘{\tnew*}
6 && hasattr(tnew, ‘C.attr{force}))
7 return ‘C.type{\(tnew.without_force)*};
8 return default(old, new);
9 }

The extension looks for the case of casting from one pointer to another (lines 4-5). If
the cast specifies the force attribute (line 6), then the cast succeeds, but the result type
does not keep the force attribute (line 7). When force is present, this extension to
cancast does not call the previous one (default). This overrides any restrictive
checks that already existed, like the address space check above.

The combination of the address space and force extension illustrates that some-

51

times, the order in which extensions are loaded matters. The two extensions of can-
cast above both handle some pointer conversions without calling default to consult
extensions loaded earlier. In particular, a force cast that changes address spaces will
match the if conditions in both. If the address space extension is loaded last, its im-
plementation of cancast will be the first one called, and it will reject the cast. If the
force extension is loaded last, it will get called first, and it will accept the cast. Thus,
to mimic Sparse’s semantics, it is important that the force extension be loaded after the
address space extension. In our implementation, a wrapper extension called sparse
loads the individual pieces in the correct order. Its full implementation is:

1 import sparse_grammar;
2 import sparse_addrspace;
3 import sparse_noderef;
4 import sparse_force; // must load after addrspace and noderef
5 import sparse_context;

start

lock

work

unlock

done

end

0

0

1

1

1

1

0

?

?

?

void lock(void) __attribute__((context(1)));
void unlock(void) __attribute__((context(-1)));

void
mistake(int n)
{

lock();
if(n == 0)

goto out;
while(n-- > 0)

work(n);
unlock();

out:
done();

}

Figure 6. A program demonstrating the use of Sparse’s context function attribute to detect locking in-
consistencies. The context attribute declares the effect of the functions lock and unlock on the ‘‘con-
text,’’ an imaginary flow-sensitive variable that propagates through the function’s control flow graph. The
listing declares lock to add 1 to the context, while unlock subtracts 1. The graph shows the function
mistake’s flow graph. The context propagates along control flow edges from one node’s exit to another
node’s entry. The boxes on each node show the context at entry to and exit from that node. Most
nodes do not change their context; the calls to lock and unlock do change the context, as directed by
the annotations. The node calling done can be reached along two different paths with different
contexts: arriving immediately from lock (when the if is true) brings a context of 1, while arriving
from unlock brings a context of 0. Sparse diagnoses this context mismatch as a locking inconsistency:
is the lock held or not at the call to done?

5.2.2. Context analysis

In addition to adding new syntax and creating new pointer types, xoc can be used
to implement new analyses. Sparse implements a simple flow-sensitive type system
that can be used to catch instances where functions are not paired properly. Sparse’s
type checker creates an imaginary variable called the ‘‘context’’ that propagates through
the function. At entry to the function, it has value zero. Calls to functions marked

52

with a context(delta) attribute add the integer constant delta to the context. For ex-
ample, the Linux kernel uses contexts by declaring that acquiring a lock has context 1
and releasing a lock has context –1. If any point in a function can be reached along
two different paths with different contexts, Sparse prints a warning, because it is
undefined whether the lock is held or not at that point in the program. Figure 6 gives
an example.

At 245 lines, the extension implementing the Sparse context checking functionality
for xoc is the longest extension we have written, but even 245 lines is much shorter
than a new compiler (like Sparse). The extension reuses the flow analysis provided by
xoc. Specifically, the extension implements simple transfer and join functions (about
ten lines each) that plug into the generic xoc core flow analysis library, runs the data
flow analysis, and interprets the results. Appendix B lists the full extension source
code.

5.3. Summary

The extensions described in this chapter extend xoc in many different directions:
they add new data types, new syntax, new control flow, and new analyses. The variety
of possible extensions demonstrate that xoc’s interfaces can accommodate many kinds
of language changes. The Alef and Sparse extension collections recreate existing tools,
demonstrating that xoc can be used in real-world settings. Finally, the extensions are
short—they range in size from tens to hundreds of lines—demonstrating that writing
xoc extensions is significantly less work than writing a new compiler or program
analysis tool from scratch. Further, xoc makes it convenient to build complex new
behaviors, like Alef and Sparse, as a collection of cooperating, smaller extensions.

53

Performance

The descriptions of zeta and xoc in Chapters 3 and 4 focused on functionality;
this chapter focuses on implementing that functionality efficiently.

As a simple benchmark, consider running the Sparse extension to type check the
Linux source file init/do_mounts.c, the first substantial file compiled during the
Linux kernel build. Before preprocessing, the file is 449 lines (9,661 bytes); after, it is
15,520 lines (605,390 bytes), many of which contain long macro expansions. The
GNU C compiler compiles this file in 0.4 seconds, even with expensive optimizations
(-O3) enabled. The (not xoc-based) Sparse checks it in 0.1 seconds. Xoc with the
Sparse extension described in Chapter 5 checks it in 4.7 seconds. By this rough com-
parison, then, xoc is about fifty times slower than a traditional compiler. Even so,
making xoc and the Sparse extension run in as little as 4.7 seconds required effort. A
few seconds to check a single file may not sound like much, but the Linux kernel tree
has over 4,000 source files: Sparse takes minutes to check the entire tree, while xoc
with the Sparse extension takes hours. This chapter describes the optimizations we
have made to zeta so far.

6.1. Compiling zeta

The first implementation of xoc and zeta was an interpreter; it took most of a
second just to start and load xoc, and then 16 seconds to check do_mounts.c after
careful tuning. Profiling showed that at least 30% of the its time was spent in the byte
code instruction decoding and dispatch loop.

To reduce the byte code interpreter overhead, we reimplemented zeta as a com-
piled language. The zeta described in this dissertation is based on a compiler that
translates zeta source modules to C code. The compiler invokes a standard C compiler
to generate a dynamic library that can be loaded into the zeta runtime. The compiled
dynamic libraries are cached, with metadata about the compilation, alongside the origi-
nal zeta files. If the zeta sources have not changed, subsequent uses will load the
cached dynamic libraries without recompiling. Changing to a compiler reduced the
time to start xoc from 0.6 seconds to 0.1 seconds and reduce the time to check
do_mounts.c from 16 seconds to 4.7 seconds.

Figure 1 shows the amount of time spent in each phase for the two implementa-
tions. The comparison is not exact: the zeta language has evolved since we wrote the
compiler, and the interpreter is not up to date. For example, we added XST canonical-
ization after creating the compiler. Thus, the interpreted version has no canonicaliza-
tion pass; it runs an earlier version of xoc that used other mechanisms.

55

6.2. Parsing

After zeta loads xoc, xoc’s first step is to parse the input. Zeta must provide a
parser that can efficiently handle changes to the grammar: the exact set of grammar
rules depends on which extensions are loaded. Zeta’s parser must also handle
ambiguity—multiple parses for a given input—by recording all possible parses and
making them available. To provide this functionality efficiently, zeta uses a generalized
LR (GLR) parser. Specifically, it uses a right-nulled GLR (RNGLR) parser [52]. Zeta
originally used a more traditional GLR parser, following a technical report by McPeak
[41], but the GLR parser McPeak describes does not handle empty productions
correctly in all cases; the advantage of RNGLR is that it always handles empty produc-
tions correctly. Aside from the handling of empty productions, the differences between
the two are slight. In the rest of this section, we use the term GLR to mean either
GLR or RNGLR.

Because zeta’s grammars may change when new extensions are loaded, zeta does
not precompile the LR(1) parsing tables like tools like yacc [31]. Instead, it computes
the tables and the underlying finite automaton on the fly, expanding the transition
graph as needed.

interpreted compiled

zeta zeta sparse gcc gcc -O3

start 0.6 0.1

parse 2.3 0.8

disambiguate 2.8 0.4

canonicalize - 0.3

typecheck 10.3 3.1

total 16.0 4.7 0.1 0.3 0.4

Figure 1. The performance of zeta, xoc, and the Sparse extension checking Linux 2.6.20’s
init/do_mounts.c, compared with the actual Sparse implementation, the GNU C compiler with no op-
timizations, and the GNU C compiler with optimizations enabled. Despite tuning, xoc is still fifty times
slower than Sparse and twelve times slower than an optimizing compiler. The two zeta columns com-
pare an early interpreted implementation of zeta against the current compiled implementation, showing
the amount of time spent in each phase. All times are seconds on a 3 GHz Intel Pentium 4.

We experimented with using LR(0) tables instead of LR(1), reasoning that the
construction was simpler and the GLR parser would be able to handle the resulting
ambiguities. That approach worked correctly and may have saved a small amount of
time during table construction, but it took 100 times as long to parse the input due to
the additional ambiguity. GLR parsers run fastest when operating in unambiguous
sections of input: LR(0) tables have many more shift/reduce conflicts than LR(1)
tables, causing temporarily ambiguous parses that the GLR parser executes more slow-
ly. It is best when ambiguity is the exception rather than the rule.

Another important case involving ambiguity arose in the implementation of zeta.
Zeta provides the shorthand expr[,]+ as a grammar symbol for a comma-separated
list of expr symbols. This symbol destructures into a zeta list containing C.expr XST

56

nodes. Internally, zeta must generate grammar rules to implement expr[,]+. It can
choose the left-recursive version:

expr[,]+: expr[,]+ "," expr
| expr;

or the right-recursive version:

expr[,]+: expr "," expr[,]+
| expr;

The left-recursive version is the one suggested when using parser generators, because it
operates in a fixed amount of parser stack; the right-recursive version requires parse
stack proportional in size to the number of elements in the sequence, but it fits more
naturally with zeta’s right-recursive representation of linked lists, as a head element fol-
lowed by a tail list. Since our GLR implementation has no fixed stack size limit, we
initially chose the right-recursive rules. Unfortunately, the right-recursive rules intro-
duce significant ambiguity in some cases. For example, C allows a trailing comma
after a list of expressions in an initializer. The following grammar rules capture the
essence of the problem:

init: "{" expr[,]+ comma? "}"
comma: ","

These rules create an ambiguity: when the parser sees an expr followed by a comma,
it doesn’t know whether to expect the comma to be followed by another expr or by
the closing brace. The right-recursive rules push the entire expr sequence onto the
parse stack before applying any grammar rules; entertaining the possibility of collaps-
ing the stack to a single expr[,]+ at each comma incurs overhead linear in the
number of expressions on the stack, making the overall parse time at least quadratic.
For a typical Linux kernel source file, there is no runtime difference between the left-
recursive and right-recursive rules, but the Linux kernel also contains machine-
generated C files containing byte arrays representing binary data such as firmware im-
ages. The file that exposed the difference contains a 4,696-element array initializer.
Parsing that file, including 230 kilobytes of included header text, takes under half a
second using the left-recursive rules. Using the right-recursive rules, it would take
over an hour.

6.3. XST copying

In order to ensure that every XST node has a well-defined parent, the description
in Chapter 3 specifies that zeta must make copies of subtrees when reusing them to
create new XSTs. Such copying would be quite expensive and might not be necessary:
if the tree is going to be copied again but not traversed, the copy is unnecessary. To
reduce the number of times XST nodes are copied, zeta implements copying using a
variant of copy-on-reference. Specifically, each XST node contains a pointer back to its
parent. Two different XST nodes might point at the same child, but the child node
contains a parent field recording which is the actual parent. The other node needs to
make a copy of the child the first time it traverses the child pointer. Zeta initializes
the parent field in new XST nodes with a special value NoParentYet. When travers-
ing a child pointer, if the child’s parent is NoParentYet, then the current parent can

57

adopt the child, rather than copying it, by changing the parent field.

6.4. Name lookup

Name lookup is a common operation in a compiler, making the representation of
name scopes important. Because an explicit scope is computed for every node in an
XST, it is important that scopes share storage. Considering only storage, implementing
scopes as a linked lists is ideal: an XST with n nodes and d declarations would require
only O(d) storage, not O(n) or O(dn). Unfortunately, name lookup in a scope imple-
mented as a linked list could require O(dk) time for k lookups. Following a suggestion
by Appel [1] and an implementation by Okasaki [46], zeta provides a functional (also
called persistent or immutable) map type based on red-black trees, which xoc uses to
implement scopes. These require O(d log d) space but only O(k log d) time for k
lookups.

In the current zeta implementation, using functional maps instead of linked lists
more than halves the overall run time of checking do_mounts.c.

6.5. Summary

Zeta and xoc need to work correctly, but they also need to work quickly. We have
found some ways to make them run faster than they did originally, but they still run
about fifty times slower than the actual Sparse tool and about twelve times slower than
an optimizing compiler. This chapter detailed the opportunities we have found for
speeding up zeta and xoc. More work will be required in the future to match the
speed of traditional compilers. CPU time profiling shows no obvious ‘‘hot spots’’ in the
current implementation. We believe improvements are likely to be algorithmic, reduc-
ing either the number of nodes in the XST or the number of times they are copied.

58

Discussion and Future Work

The extensions presented in Chapter 5 and the performance presented in Chapter
6 are both evaluations of the extension-oriented syntax tree interface described in
Chapter 3. This chapter continues the evaluation qualitatively. It considers each of the
goals set out for extension-oriented compilers and how well the work meets them.
Then it considers each of the XST interfaces and how well each worked. Finally, it ad-
dresses some common questions about the work. These discussions also provide op-
portunities to discuss future work.

7.1. Extension-oriented compiler goals

Chapter 1 laid out the goals for an extension-oriented compiler, that extensions be
powerful enough to write real-world extensions; that they be simple to write, not re-
quiring detailed knowledge of the compiler; and that they be composable, so that
independently-written extensions can be used together. This section examines how
well xoc and its extensions meet each of these goals.

7.1.1. Power

The first goal for an extension-oriented compiler is that the extensions be power-
ful. An extension-oriented compiler is useless if it does not support the languages
people use and the kinds of extensions people want to write. Chapter 4 demonstrated
that XSTs can be used to create a C compiler. Chapter 5 showed how to recreate two
existing extensions to C, extensions that were important enough to expert program-
mers that they wrote tens of thousands of lines of code to implement them. Those ex-
tensions are the Alef programming language and the Sparse program checker. They
add new syntax, new data types, new type restrictions, and new analyses to C. We be-
lieve these categories span most of the kinds of extensions that people would want to
add to C.

There is, however, one important limitation to what xoc can implement. Because
xoc is only a compiler front end and invokes a standard C compiler as its back end,
we cannot use xoc to implement extensions that change the behavior of the back end,
like most implementations of exceptions or garbage collection. We believe an
extension-oriented back end is an interesting topic for future research, as discussed
below.

7.1.2. Simplicity

The second goal for an extension-oriented compiler is that the extensions be sim-
ple to write, meaning both that they are short and that they don’t require detailed
knowledge of the compiler. Qualitatively, grammars make it easy to add new syntax,
syntax patterns and canonicalizers allow manipulation of input programs in terms of
input syntax, and attributes provide a simple interface to compiler functionality. All of

59

these reduce the amount that extension writers need to know about the compiler
internals. Quantitatively, the thirteen extensions listed in Chapter 5, Figure 1 range
from 16 to 245 lines, totaling 883 lines. They use only five distinct grammar symbols
(attr, expr, stmt, type, and typespec). They use or extend only seven distinct attri-
butes and seven distinct extensible functions. These statistics demonstrate that writing
extensions requires knowing only a small amount of detail about the underlying com-
piler.

7.1.3. Composability

The third goal for an extension-oriented compiler is that the extensions be com-
posable, meaning that extensions should be usable together unless they make conflict-
ing changes to the language. This goal is the hardest of the three to quantify or even
to define precisely. In the absence of a formal definition of ‘‘conflicting changes,’’ let us
consider a few examples.

First, two extensions have a syntactic conflict if they both introduce the same new
syntax. For example, if one extension introduces >>> as a bitwise rotate operator while
a second extension introduces the same syntax as an unsigned right shift (like in Java),
the two extensions cannot be used together: an input file using the >>> operator will
have two different parses, so zeta’s parser will report an ambiguity. Extensions that
add different new operators or that add different kinds of syntax (for example, one that
adds a new kind of statement and another that adds a new kind of expression) are ex-
pected to work together: most likely, one would override the other.

Extensions that make orthogonal semantic changes should also work together.
For example, the Alef channel extension introduces a new data type, while the Alef
iterator extension introduces new control flow. These should definitely be composable
(and they are). Extensions that make related semantic changes should also work to-
gether, unless the changes are at odds with each other. For example, the Alef channel
extension and the Sparse pointer qualifier extension both make changes to the type
system. The former introduces a new data type, and the latter introduces a new
pointer qualifier. These should be (and are) composable, so that a program can use
chan(void user*) for a channel carrying user pointers. On the other hand, an (ima-
gined) extension allowing implicit conversions between pointers and integers weakens
the type system. Such an extension would be at odds with an extension like Sparse,
which strengthens the type system. We do not expect that these two extensions to
work well together.

Most of xoc’s composability of extensions arises naturally from its use of attri-
butes. For example, two extensions that introduce different, new kinds of expressions
cooperate to type-check an expression using both new syntaxes because both exten-
sions extend the type attribute and only handle the cases that they recognize.

Some of the composability required extra planning. For example, an extension
that introduces new control flow, like the Alef iterator, should ideally compose with an
extension that analyzes control flow, like the Sparse context checker. These two exten-
sions do compose, but making that happen required a small amount of planning. As
described in section 4.7, the control flow graph module in the xoc core applies only to
the COutput syntax type. Extensions that use it for flow analysis must pass in the

60

compiled form of the tree, in which all extensions have been translated to standard C.
Thus the Sparse context checker does handle Alef iterator expressions, because it sees
the equivalent C code instead.

Xoc does not guarantee composability, nor does it detect semantic conflicts
between extensions. For example, if one extension restricts the type system, nothing
stops a second extension from overriding the restriction. Sometimes, this is even
desired: the sparse_addrspace extension rejects all pointer casts that change the address
space, and the sparse_force extension adds a new cast keyword force that overrides
the address space restriction. Being able to modify the effects of other extensions
might sometimes be a mistake, but as this example shows, it can also be useful.

We believe that a type system or some other precise characterization of extensions
that could guarantee composability (or perhaps at least non-interference) is interesting
future work.

7.2. Extension-oriented syntax tree interfaces

Chapter 2 described four key interfaces to extension-oriented syntax trees: exten-
sible grammars, syntax patterns, canonicalization, and attributes. This section exam-
ines how well each of these worked in building xoc and its extensions.

7.2.1. Extensible grammars

Extensible grammars allow the use of any context-free grammar, in contrast to
tools, such as yacc, that limit themselves to LR(1) or LALR(1) grammars. Being able
to handle any context-free grammar is important for composability, because the class
of general context free grammars is closed under union, but subclasses like LR(1) and
LALR(1) are not. Restricting the entire grammar to be in one of these subclasses
could lead to unfortunate composability problems, in which two modules worked fine
in isolation but could not be used together due to creating a non-LR(1) grammar.

Because they handle ambiguity cleanly, extensible grammars also make it possible
to solve old problems in new, cleaner ways. The best example of this is xoc’s handling
of the C type versus name ambiguity, described in Chapter 4. Most compilers take it
as a given that they will need to tightly couple the lexer and the semantic analysis in
order to parse C; using a GLR parser makes it possible to cut the two apart.

Extensible grammars, because they are extensible, make it natural to split a
language into modular pieces. For example, even in the xoc core, the GNU C built-ins
are isolated in a separate file and implemented as an (always-loaded) extension.

7.2.2. Syntax patterns

After years of working with yacc and other parser generators, the combination of
syntax patterns and extensible grammars has been one of the nicest parts about using
zeta and xoc. Not needing to write explicit parsing actions and not needing to define
a separate abstract syntax tree data structure makes it easy to experiment with and
prototype new syntax.

In addition to being easier to use than a traditional data structure interface, syn-
tax patterns hide the XST effectively. As an example of effective XST hiding, Chapter
6 described changing the implementation of expr[,]+ from being right-recursive to

61

left-recursive, for performance reasons. We made this change after implementing all of
xoc, but changing that detail required no changes to xoc. The syntax pattern interface
to XSTs completely hid that detail, creating flexibility in the choice of implementation.

7.2.3. Canonicalization

Canonicalization is an important addition to syntax patterns. Without canonicali-
zation, there is no good way to manipulate C types using XSTs. An earlier implemen-
tation of xoc written before canonicalization had a separate grammar describing type
semantics and required explicit conversions from the C form to the alternate form. In
that system, introducing a new type, like Alef ’s channels, required making changes to
two grammars and extending the functions that converted between the two. Automat-
ic canonicalization of the C form makes it possible to manipulate C types as C types,
eliminating the extra grammar and conversions. Eliminating these reduces the amount
extension writers need to learn.

7.2.4. Attributes

Attributes are the glue that holds the extension-oriented compiler together and
also binds the extensions to the compiler core. As a connective mechanism, they work
well: writing extensions by extending the typecheck, type, and compiled attributes
has seemed straightforward and natural. As an interface to the compiler core, they
also work well: for example, using the type attribute to access the type checking of su-
bexpressions also seems natural. More important than seeming easy to use, the ex-
tend attribute mechanism successfully provides a way for extensions to cooperate to
make compiler changes. For example, when using the Alef and Sparse extensions to-
gether, a type like chan(void user*) has a well-defined meaning only because attri-
butes make it possible for the two extensions to cooperate to define the semantics of
the type. Thus, as an extension mechanism and extension interface, attributes are a
success.

Implementing the xoc core using attributes required fitting computations that are
traditionally imperative into the attribute-driven evaluation model. The best example
of this is the computation of name scopes, described in Chapter 4. The final result is
elegant, but the path there was not obvious. Programmers familiar with a functional
language (especially a lazy functional language like Haskell) are likely to find attributes
more comfortable than programmers used to imperative languages.

7.3. Common questions

When discussing extension-oriented compilers with other researchers, some ques-
tions arise repeatedly. This section examines each of these common questions.

7.3.1. Why compile C?

One common question is why we chose C as the input language. The simple
answer is that we wanted to build a system that we would use, and we tend to write
programs in C and C++. C certainly has some rough edges (see Chapter 4), but it is
far simpler than C++. Also, those rough edges turned out to be good demonstrations
for the power of XSTs.

62

7.3.2. Why use zeta? Why not write xoc using itself?

Another common question is: now that you can extend C, why not write xoc in
extended C rather than zeta? This would be an interesting exercise, but our focus has
been on the extension mechanisms themselves (XSTs in particular), not the language
they are embedded in. We believe that XSTs could be added to any existing compiler
language, though they might fit better into some than others. For example, the XSTs
work nicely with zeta’s built-in data types, specifically lists and functional maps, and
syntax patterns fit well into zeta’s pattern matching syntax. These suggest that, for ex-
ample, the XST interfaces might fit better in ML [42] than in C.

Xoc started out being written in itself, before XSTs as they are today, before exten-
sible grammars, before syntax patterns, and before attributes. We successfully added
extensible grammars, syntax pattern constructors, and extensible functions to that ver-
sion of xoc, but since it didn’t have syntax pattern matches, it required explicit parsing
actions to be specified alongside the grammar rules. When we realized we could re-
place the explicit data structure representation with syntax pattern matches, it was
difficult to plan a bootstrapping path. In the end, we abandoned the C implementa-
tion and added the XST support to a simple interpreted language we had lying around
to produce zeta. Zeta turned out to be a fruitful platform for experimenting with new
ideas. The details of syntax patterns changed a couple times, and we tried multiple
iterations on the general idea of attributes before we settled on the version used in this
dissertation. Zeta also served as a pliable base for Tom Bergan to explore a custom
language for describing type checking rules [7].

In short, we believe XSTs could be added to any language with some effort, but
zeta made it easy for us to experiment to decide exactly how XSTs should work.

7.3.3. Why context-free grammars? Why not PEGs and a packrat
parser?

As mentioned above, the most important reason to use a GLR parser instead of
an LALR(1) parser as in yacc is that the class of context free grammars (valid GLR in-
puts) is closed under union, while the class of LALR(1) grammars is not. Packrat
parsers [19] accept parsing expression grammars (PEGs), which are also closed under
union, so a natural question is: why not use PEGs instead of GLR?

PEGs replace the unordered choice (alternation) operator of context free gram-
mars with an ordered choice operator. Doing so eliminates any possibility of ambigui-
ty in the grammar: if an input can be parsed using two different rules, the order can
be consulted to determine which rule is the correct one.

In our work, we have found that being explicit about ambiguity is useful. The
fact that the GLR parser returns all possible parses makes it possible to solve the
type-versus-name ambiguity while keeping the parser and semantic analysis separate.
The fact that the GLR parser returns all possible parses also makes it possible to infer
the symbols for most slots in syntax pattern matches. Finally, the fact that the GLR
parser returns all possible parses makes it possible to detect ambiguity created when
multiple extensions create multiple ways to parse the same input syntax; xoc can then
report the situation as an extension conflict.

63

7.3.4. What about an extension-oriented compiler back end?

Our work has focused exclusively on the compiler front end. One reason is that
many more programmers are interested in creating new language features (i.e., extend-
ing the front end) than optimizing the compiler output (i.e., extending the back end).
Some front end extensions could benefit from tighter coupling with the back end. For
example, the fact that xoc must translate extensions to standard C precludes (or at
least makes difficult) the implementation of extensions that depend on changes to code
generation, like exceptions and garbage collection.

We believe that a fully extension-oriented compiler would be an interesting ave-
nue for future research. In particular, being able to extend the back end could make it
possible for users to take advantage of new hardware instructions.

7.3.5. What guarantees can be made about composability of exten-
sions?

Composability of extensions is the main feature that sets extension-oriented com-
pilers like xoc apart from extensible compiler toolkits like Polyglot and xtc. Thus a
natural question is what guarantees can be made about composability. The system
described in this thesis makes no formal guarantees. We have focused on creating a
system in which composability is possible and common, but have no methods for
guaranteeing it or analyzing two extensions to see whether they compose.

It would be interesting to study whether an extension-oriented compiler could
restrict extensions in a way that would not affect actual uses but could guarantee com-
posability. It would also be interesting to study more expressive type systems for ex-
tensions that might be able to check that a particular extensions composes. However,
until we have more experience with the kinds of extensions programmers want to
write, it seems premature to restrict them.

7.3.6. Will anyone but the xoc developers be able to write extensions?

We don’t know. Like many research projects, we have no users outside our own
developers. We believe that writing an xoc extension is simpler than writing a Polyglot
or xtc extension, though, and both of those systems have external users.

7.3.7. Won’t xoc make programs harder to debug?

There are two issues: debugging extensions themselves and then debugging pro-
grams that use extensions.

If an extension is incorrect, that manifests to an extension user as a compiler bug:
the source code using the extension is correct, but the generated executable binary is
not. These are some of the most frustrating bugs to track down, so it is important
that extensions are correct. Since only the xoc developers have written extensions, we
have no evidence about how error-prone writing an extension would be for an exten-
sion writer just learning the system. However, our experience has been that while we
made and debugged many hard-to-find mistakes in the xoc core, all the mistakes we
made writing extensions presented themselves immediately. The mistakes we made in
the xoc core were design mistakes, not implementation errors. In particular, it took

64

multiple tries to design a namescope attribute that was correct and did not cause attri-
bute cycles. Extension writers are not typically exposed to these issues, because they
are extending one or two well-known attributes, not designing the attributes.

Once the extensions are correct, debugging programs that use extensions requires
making the debuggers aware of the language changes. For extensions that are mainly
syntactic sugar, xoc already does the work of generating line number annotations in
the C translation that point back to the original source file. Thus, source listings and
line-by-line stepping in the debugger already work. Extensions that make semantic
changes to the language would benefit from being able to extend the debugger. For
example, an extension that adds new types might extend the debugger to display values
of those types in a convenient format. Extensible debuggers already exist (for example,
acid [68] and deet [25]) and would complement an extension-oriented compiler nicely.

7.3.8. Won’t xoc create a ‘‘Tower of Babel’’ problem?

The most common question others have asked is this: if extension-oriented com-
pilers allow programmers to create their own language adaptations, won’t it lead to a
world in which each programmer writes in his own language and no one can read
each other’s programs?

The first answer to this question is glib: if that situation came to pass, what suc-
cess it would imply for our work! What influence it would imply for our ideas! We
can only hope to be so lucky.

A more considered answer is that programmers today already work in different
dialects: each code library introduces new functions, assigning special meanings to new
words. And yet programmers understand each other’s code, because programmers
working together take the time to establish a shared vocabulary and understanding. In
fact, an extension-oriented compiler might make it easier to learn a new library, by
providing a simpler or more type-safe interface, like the Alef extension in Chapter 5
does for libthread. Even Bjarne Stroustroup, the creator of C++, has argued for the
ability to make library-specific language adaptations [58]. A large project might re-
quire some restraint to keep all programmers using only a fixed set of extensions, but
this is no different than keeping programmers using only a fixed set of libraries. In
both cases the solution is social, not technological.

7.3.9. What is the expected influence of this work?

As mentioned in the introduction, most of today’s software can be extended via
plug-in modules. Mainstream compilers have not yet followed suit, but we believe
that, in time, they will. When they do, we hope they will adopt the approach
described in this dissertation. However, this approach is such a large departure from
the typical structure of a mainstream compiler that it is unlikely that such a compiler
would adopt it all at once. Instead, we hope that mainstream compiler authors can
learn from our work and perhaps find ways to take apply pieces of our approach to
their own compilers. Most importantly, we hope that when mainstream compilers do
adopt plug-in extensibility, they strive as we have to make the extensions as easy as
possible to write and to compose.

65

Conclusion

Compilers can and should allow programmers to extend programming languages
with new syntax, features, and restrictions by writing extension modules that act as
plugins for the compiler. In such a system, which we have named an extension-
oriented compiler, the extension mechanism must be powerful enough to implement
the extensions programmers want. At the same time, it must be simple enough that
extensions are short and do not require detailed knowledge of the base compiler. Fi-
nally, extensions need to be composable, so that a programmer can use multiple,
independently-written extensions together in a single program.

This dissertation introduced extension-oriented syntax trees (XSTs) as a mechan-
ism for building extension-oriented compilers. The key interfaces to XSTs are extensi-
ble grammars, which allow piecewise definition of grammar rules and define the parser
and the form of XSTs; syntax patterns, which allow the manipulation of XSTs using
concrete input syntax; canonicalizers, which allow transformation of the XST into a
convenient, standard form; and attributes, which provide both a mechanism for expos-
ing core functionality and a framework in which multiple extensions work together to
implement new functionality.

This dissertation also described xoc, an extension-oriented compiler for C built
using XSTs. Then it described two suites of extensions built using xoc; the extension
suites recreated functionality from Alef, a C-like language developed at Bell Labs in the
1990s, and Sparse, a program checker used by Linux kernel developers. These demon-
strate that xoc extensions can meet our goals: they are simultaneously powerful,
simple, and composable.

We hope that the work described in this dissertation inspires future exploration of
extension-oriented compilation by others, and we look forward to the day when these
ideas will be incorporated into mainstream compilers.

67

 A

Zeta language definition

Zeta’s most important feature is its support for extension-oriented syntax trees, as
described in Chapter 3. This appendix defines the syntax and semantics of the rest of
the language.

A.1. Names and scopes

In a zeta program, a name like x might refer to a module, a variable, a function,
or a type depending on context. Names can only refer to declarations that occur ear-
lier in the source file in the current scope or in an enclosing one. Scopes can be
managed explicitly using the { } statement block construct. The { starts a new scope,
and the } ends the scope. Any names introduced between the braces are not available
after the braces close. Because names can be declared by both statements and expres-
sions, statements and expressions that involve control flow typically introduce their
own scopes. These are noted below.

As an example, the small zeta program:

{
typedef x: int;
a: x;
b := a + 1;

}

defines three names: x is an alias for the type int, a is a variable of type int, and b is
also a variable of type int. All three names go out of scope at the closing brace.

A.2. Modules

Zeta programs are made out of units called modules. A module is defined by a
single zeta source file; its name is the base name of the file: typecheck.zeta defines a
module named typecheck.

The names that are in scope at the end of a module’s source file can be referred
to by a second module after it imports the first. For example, if a module m defines a
function f, a second module can invoke that function as m.f or f depending on which
variant of the import statement is used to import m.

The first time module m is imported, zeta loads the module, running all the top-
level statements in the module’s zeta source. Subsequent import statements do not
reexecute the statements.

69

A.3. Data types

Zeta provides basic data types, a small collection of container types, data struc-
tures, functions, and extension-oriented syntax trees. Zeta’s functions can be po-
lymorphic in the style of ML. To keep the implementation of polymorphism simple,
all zeta data types are represented by word-sized (32-bit) values. Types larger than 32
bits—strings, tuples, lists, arrays, and so on—are represented by pointers to heap-
allocated storage.

Zeta compares two values for equality by comparing their 32-bit values. For
booleans and numbers, this produces the usual result. Zeta takes special care with
strings to ensure that strings with identical contents point at the same instance, so that
the pointer comparison reflects whether the actual string contents are identical [23].
Larger data types such as tuples, lists, arrays, and structs, only compare equal if they
are the same instance. For example, after

a := (1, 2);
b := a;
c := (1, 2);

the three variables a, b, and c all point at tuples containing the integers 1 and 2; a and
b will compare equal to each other, but c will not compare equal to either.

Zeta automatically initializes variables and data structures by zeroing them, mak-
ing ‘‘used and not set’’ bugs impossible. Thus, an uninitialized bool is always false, an
uninitialized int or float is always zero, and an uninitialized value of one of the
more complex types is always nil.

A.3.1. Basic types

Zeta’s basic data types are bool (boolean), int (32-bit integer), float (32-bit
floating-point), and string (32-bit pointer to character string). As mentioned above,
zeta’s string type arranges that pointers to the same string contents use the same
pointer, so that comparing string pointers for equality is equivalent to comparing their
contents. The empty string is represented by the nil pointer. Thus uninitialized strings
default to the empty string.

A.3.2. Tuples

A tuple type is defined by a list of contained types, like (int, string). A tuple
of one type is the same as the type itself: (int) and int are the same type.

The type (int, string) is a pointer to a record containing an int and a
string. Unlike tuples in many languages, it is possible for a tuple-typed variable to be
nil.

A.3.3. Lists

A list type is defined by its contained type, like list int or list list string.
or list (int, string). Lists are implemented as singly-linked lists and are immut-
able.

70

A.3.4. Arrays

An array is defined by its contained type, like array int or array (int,
string). Arrays have fixed size and allocate their objects in a contiguous memory re-
gion for constant-time indexing. Arrays are mutable.

A.3.5. Maps

A map is defined by its key and value types, like map(int, string). Maps are
mutable data structures implemented using red-black trees. The key type is compared
using ==, which may not be the desired comparison for composite types like lists or
tuples. See the discussion of equality below. The map type in zeta holds a pointer to
the actual map, which must be explicitly allocated. For example,

m: map(int, string); m is a nil pointer
m = map {1 => 2}; m now points at a new map with one entry
print m[1]; prints 2
p := m; p points at the same map as m
p[1] = 2;
print p[1]; prints 2
print m[1]; prints 2

Map lookups for non-existent keys return the default zero value for the map’s value
type.

A.3.6. Functional maps

Functional maps are like maps but are immutable. The only way to add to a
functional map is to create a new functional map and reassign the variable holding the
map:

m: fmap(int, string); m is an empty map
m = fmap {1=>2, 3=>4}; m now points at a new map with two entries
print m[1]; prints 2
p := m; p points at the same map as m
p = fmap {p, 3=>5}; p now maps 3 to 5
print p[1]; prints 2
print p[3]; prints 5
print m[3]; prints 4

If m is a functional map, it is illegal to assign to the expression m[1].

A.3.7. Structs

A struct is a heap-allocated record containing a series of fields. Struct types are
given names as part of their definitions. For example,

struct Point {
x: int;
y: int;

};

defines a struct type Point whose members contain two integers x and y.

71

Structs can contain tagged unions, which introduce subtypes. For example:

struct Point {
x: int;
y: int;
tag Two {
}
tag Three {
z: int;

}
}

defines three types Point, Point.Two, and Point.Three. A value of type Point.Two
or Point.Three can be used where a value of type Point is expected (they are both
subtypes of Point). If p is a value of static type Point, then only its x and y fields
can be accessed. A run-time subtyping check can establish whether p actually points
at a Point.Three, making the z field accessible. Subtyping is discussed in detail
below.

A.3.8. Extension-oriented syntax trees

Extension-oriented syntax trees are discussed in detail in Chapter 3. In addition
to the type names introduced by grammars (for example, C99.expr), the type Xst
denotes a value of any XST type.

A.3.9. Functions

Function types are defined by a list of argument types and a single return type
(returning multiple values can be accomplished using a tuple type). For example,

f: fn(int, string): bool;

defines a variable f that is a (pointer to a) function taking int and string arguments
and returning a bool. Zeta makes no distinction between function variables and trad-
itional function definitions. To zeta, a function definition is simply a declaration of a
function variable along with an initial value.

A.3.10. Modules

After importing a module m, the name m has ‘‘module’’ type. While there can be
names of module type, there are no values of module type, so m cannot be copied, nor
assigned to another variable, nor passed to a function.

A.3.11. Nil

The expression nil has nil type and can be used as any type except bool, float,
and int.

72

A.3.12. Subtyping

The presence of tagged structs, XSTs, and polymorphism introduces the concept
of subtyping, not only in those types but in any container types. Define that t is a
subtype of u (written t <: u) if every value of type t is also a value of type u. Put
another way, knowing that a value has type t is more specific than knowing it has type
u.

It should be clear from the definition that any subtype relation must be reflexive
and transitive. Zeta’s subtype relation is the reflexive transitive closure of the following
base rules. In what follows, names in italics stand for any type. Starred names stand
for any list of types.

First, nil can be used as any type represented by a pointer:
nil <: string
nil <: T for any tuple type T
nil <: list a
nil <: array a
nil <: map (a, b)
nil <: fmap (a, b)
nil <: S for any struct type S
nil <: X for any XST type X

Second, T <: S if T denotes a tagged struct type contained in the struct S. (In
the example above, Point.Two <: Point).

Third, X <: Y if X and Y are both XST types and X is a subtype of Y as
described in Chapter 3. Also, X <: Xst for any XST type X.

Finally, the rules for composite types:
(t0, t1, ..., tn) <: (u0, u1, ..., un),

if t0 <: u0, t1 <: u1, ..., and tn <: un.

fn(t0, t1, ..., tn): tr <: fn(u0, u1, ..., un): ur,
if (u0, u1, ..., un) <: (t0, t1, ..., tn) and tr <: ur.

list a <: list b, if a <: b.

fmap(a, b) <: fmap(c, d), if c <: a and b <: d.

array a <: array b, if a = b.

map(a, b) <: map(c, d), if a = c and b = d.
The rules for array and map are stricter than those for list and fmap because

the former are mutable data structures.

73

A.3.13. Parametric polymorphism

Zeta provides polymorphic functions in the style of ML, allowing function argu-
ments and return types to use type variables like ’a to denote a variable of unknown
type. Values of the same variable type can be tested for equality using the == operator.

A.4. Statements

Most statements in zeta can appear either inside function bodies or simply as
top-level statements in a module. The exceptions are include statements and grammar
statements, both of which can only be used at top level. A module’s top-level state-
ments are executed when the module is loaded, as explained above.

A.4.1. Expression statement
stmt: expr ;

An expression statement evaluates the expression it contains.

A.4.2. Print statement
stmt: print expr ;

A print statement prints the expression, followed by a newline character.

A.4.3. Typedef statement
stmt: typedef name : type ;

A typedef statement introduces name into the current scope as an alias for type.

A.4.4. Statement block
stmt: { stmt* }

A statement block executes its statements in sequence. Statement blocks intro-
duce a new scope; names declared inside a block are no longer usable once the block
ends, even though their values may be.

A.4.5. Conditional statements
stmt: if (expr) stmt
stmt: if (expr) stmt else stmt

An if statement is made up of an expression called a condition and one or two
sub-statements called branches. The if statement first evaluates the condition. If the
condition is true (that is, not false, zero, or nil), the first branch is executed; otherwise
the second branch is executed, if there is one. An if statement executes in its own
scope: if the expr declares a name, that name is available both branches but not to
statements following the if. Similarly, the two branches execute in their own scopes:
names introduced in the first branch cannot be referred to in the second branch.

Expressions can declare different names when they evaluate true than when they
evaluate false. For example, the pattern match a ~ list [b, c] only introduces the
names b and c when it evaluates true. The condition’s true declarations are available
only in the true branch; its false declarations are available only in the false branch.

74

A.4.6. Assertion statements
stmt: assert expr ;

An assertion statement evaluates its condition expr and halts program execution if
expr is false (that is, false, zero, or nil). The condition’s true declarations are made
available in the scope in which the assert appears. For example, after this asserted
pattern match:

assert a ~ list [b, c];

the names b and c will be in scope. Thus, an assertion statement’s effect on its scope
differs from the otherwise equivalent conditional:

if(!expr) halt();

A.4.7. Loop statements
stmt: while (expr) stmt

The while statement evaluates expr. If expr is true, it executes stmt and then re-
peats. The stmt executes in its own scope. Names introduced by a true evaluation of
expr are available to stmt; names introduced by a false evaluation are made available in
the scope in which the while statement appears. Thus, the while statement can mim-
ic even the scope effects of an assertion:

while(!expr) halt();

stmt: do stmt while (expr);
The do-while statement’s execution is like while’s, except that it runs stmt once

before checking expr. Thus, names introduced by expr (true or false) are not available
outside of expr, while names declared by stmt are made available in the scope of the
do-while. (Of course, if stmt is itself in braces (i.e., a statement block), it declares no
names.)

stmt: for (expr? ; expr? ; expr?) stmt
The three-expression for loop executes identically to that of C. The loop exe-

cutes in its own scope, as does stmt. Names declared by a true evaluation of the con-
dition expr are made available in stmt. No names declared during the loop are made
available in the scope in which the for statement appears.

stmt: for (expr in expr) stmt
The for-in statement iterates over a collection—an array, list, map, or functional

map. Like the three-expression for loop, it executes in its own scope: no names are
declared in the scope in which the loop appears. The for-in loop’s iterator
variable—the first expr—is treated as a declaration and must be appropriate to the col-
lection being iterated. For arrays and lists, the iterator variable must be a simple name
like x. For maps, the iterator variable can be either a simple name or a pair (k, v)
that will be initialized with successive keys and values. If a simple name is given, it is
initialized with a tuple containing the key and value.

stmt: break;
stmt: continue;

The break and continue statements behave as in C: break stops the innermost

75

loop, while continue skips over the rest of the innermost loop’s stmt body, starting the
next iteration.

A.4.8. Switch statements
stmt: switch (expr) { case* }
case: case expr : stmt*

A switch statement evaluates its expression once and then matches it against each
of the case expressions in turn. When a match is found, it executes the associated
statement list; further matches are not considered. The case expressions can be arbi-
trary patterns as described in the pattern matching section below. The switch state-
ment is identical to an if else if ... sequence with pattern matches as conditions,
except that side effects in the switch expr are executed exactly once.

A.4.9. Functions

stmt: fn name (fnarg[,]*) : type { stmt* }
fnarg: name : type

A function statement defines a function body associated with name. If name has
not already been declared, the function statement also declares name as a variable of
function type. The return type annotation : type is optional. If omitted, the function
is assumed to have the empty tuple as its return type.

A.4.10. Import statements
stmt: import name ;
stmt: from name import name[,]+ ;
stmt: from name import * ;

The import statements load the named module and make its names available.
The first form (import name) declares name in the current scope. The module’s own
names can be accessed via dot expressions, as in m.var. The second form does not
declare the module name in the current scope; instead it makes the listed module
names available directly. The third form is like the second but makes all names de-
clared in the module available directly.

A.4.11. Include statement
stmt: include file ;

The include statement, which can only appear at top level, replaces itself in the
input with the contents of file.

A.4.12. Grammar statement

The grammar statement, which can only appear at top level, defines a new gram-
mar. Grammar statements are discussed in detail in Chapter 3.

76

A.5. Expressions

A.5.1. Constant expressions
expr: true
expr: false
expr: integer
expr: floating
expr: " string "
expr: nil

These expressions evaluate to the obvious constants.

A.5.2. Constructors
expr: list [expr[,]*]
expr: expr :: expr

These expression create new list values. The first form creates a new list with the
given expressions as members; they must all be subtypes of some common type. If no
expressions are given, the first form evaluates to nil. The second form creates a new
list from a head and a tail.

expr: (expr[,]*)
A parenthesized expression list with zero or two or more expressions creates a

new tuple value. A parenthesized single expression evaluates to just that expression.
expr: array [expr[,]*]
expr: array (expr)

These expressions create new array values. The first form creates a new array
with the given expressions as members; they must all be subtypes of some common
type. The second form creates a new array whose length is given by expr; the
members are zeroed. The second form has type ‘‘array of any,’’ and can be used as any
array type. This is type-safe because it is not possible to create explicit variables of
type ‘‘array of any,’’ so there is no way to use the second form as two different types
simultaneously.

expr: map { keyvalue[,]* }
keyvalue: expr => expr

This expression creates a new map, optionally populating it with the given
key/value pairs. The key expressions must all be values of a common type, and the
value expression must all be values of a common possibly-different type.

expr: fmap { }
expr: fmap { expr , keyvalue[,]* }

These expression create new functional maps. The first form creates an empty
map and evaluates to nil. The second form starts with an existing map and applies
the given key/value pairs to create a new map. Functional maps are immutable: the
existing map is not changed.

77

A.5.3. Declaration expressions

expr: name : type
This expression declares a new variable with the given name and type. The vari-

able is initialized to the zero value for that type. Thus, the expression (a: int) + (b:
int) evaluates to zero but declares two new integer variables in the process.

expr: expr := expr
This expression declares and initializes a new variable or variables. The type of

the new variable or variables is inferred from the type of the initial value. The expres-
sion on the left can be either a simple name, as in x := 1, which declares and initial-
izes a new integer variable, or can be a possibly-nested tuple of names, as in (a, b) :=
(1, 2) or (a, (b, c)) := (1, (2, 3)).

A.5.4. Assignment expressions

expr: expr = expr
The assignment expression changes the value of the left expression to be that of

the right expression. The left expression must be assignable, meaning it is a variable
name, an array element, or a map element.

expr: expr += expr
expr: expr -= expr
expr: expr *= expr
expr: expr /= expr
expr: expr %= expr
expr: expr <<= expr
expr: expr >>= expr
expr: expr &= expr
expr: expr ^= expr
expr: expr |= expr

Like in C, these expressions are shorthands for expr = expr op expr, where the left
expression’s side effects are evaluated only once.

A.5.5. Variable references
expr: name

If the current scope defines name as a variable, the expression evaluates to name’s
current value. Variable references can be assigned to.

A.5.6. Casts

There are no automatic type conversions in zeta expressions, unlike in C. All
conversion between types must be done explicitly using casts.

expr: bool (expr)
This expression converts an expression of any value into a boolean: false, 0, and

nil convert to false and any other values convert to true.
expr: int (expr)
expr: float (expr)

This expression converts a boolean, float, or string to an integer or float. Strings

78

are converted by interpreting them as base 10.
expr: string (expr)

This expression converts a boolean, integer, float, or XST to a string. XSTs are
converted by concatenating all the string literals in the rules in the tree; the result is
intended for debugging and may or may not be syntactically valid.

expr: list (expr)
expr: array (expr)

These expressions convert arrays to lists and vice versa.

A.5.7. Equality expressions
expr: expr == expr
expr: expr != expr

These expressions check for equality (or inequality) of their operands, which must
both be subtypes of some common type. As explained above, equality on non-basic
types is only pointer comparison, not a deep equality check.

A.5.8. Comparison expressions
expr: expr < expr
expr: expr <= expr
expr: expr > expr
expr: expr >= expr

These expressions compare their operands, as in C. Both operands must be the
same type; only int, float, and string can be compared.

A.5.9. Arithmetic expressions
expr: expr | expr
expr: expr ^ expr
expr: expr & expr
expr: expr << expr
expr: expr >> expr
expr: expr + expr
expr: expr - expr
expr: expr * expr
expr: expr / expr
expr: expr % expr
expr: ! expr
expr: ~ expr
expr: + expr
expr: - expr

On integer and floating-point values, these expressions have the same meaning as
in C. There are no implicit conversions between the arithmetic types: binary operators
must have operands of equal type.

If both exprs are lists, then expr + expr evaluates to the concatenation of the two
lists. It shares storage with the second operand, but not the first. If both exprs are
strings, then expr + expr evaluates to the concatenation of the two strings.

79

A.5.10. Lookup expressions

expr: expr . name
The dot lookup syntax provides access to a name that exists within expr, which

may be a module name, a struct type name, a grammar type name, or a struct value.

A.5.11. Indexing and slices

expr: expr [expr]
An indexing expression extracts a member from a collection. It extracts an ele-

ment from an array, a member from a tuple, a character from a string, a keyed value
from a map, an element from a list, and a keyed value from an association list. Since
zeta has no character type, an extracted string character is represented by the
corresponding one-letter string. Indexing into a list with an integer index requires
time proportional to the index size: l[0] is equivalent to l.hd, and l[3] is equivalent
to l.tl.tl.tl.hd. If l is a list of (key, value) pairs, then indexing into l with an in-
dex of the key type will search the list for the first pair with the given key and return
the corresponding value. It is usually a better idea to use a functional map. Keyed
lookups that fail return the default zero for the value type.

expr: expr [expr , expr?]
The slice expression extracts a range of members from an array or string. If the

second expression is omitted, the slice extends to the end of the array or string Nega-
tive indices will have the length of the array or string added to them before use, so
that x[-5,] returns the last five elements in an array.

A.5.12. Subtype queries
expr: expr <: type

Because of the subtype rules of tagged structures and also XST types, a variable
declared as type T in a zeta program may, at run time, have a more specific type U.
For example, a variable might be statically identified as a Point but at run time might
sometimes be a Point.Two. Subtyping queries allow programs to dynamically query
the type of a particular variable. If v is a value, the expression v <: U evaluates true if
v’s actual type is a subtype of (or equal to) U. A common use of this in xoc is to
check whether an XST of static type C is actually a more specific kind, like C.expr. If
the expression being checked is a simple name, then the true scope of the subtype
query re-binds that name to the more specific type:

x: C;
if(x <: C.expr){

// here, x has static type C.expr
}
// now x has type C again

It is only valid to use dynamically typed values, like tagged structs or XSTs, in subtyp-
ing queries: subtype queries cannot be applied to strings, lists, or tuples, for example.

expr: expr !<: type
The !<: expression evaluates to the negation of the <: operator.

expr: tag (expr)

80

The tag built-in, which only applies to values with dynamic types, returns a
string representation of the most specific type of its argument. For example, if p is
statically typed as a Point but actually a Point.Two during execution, tag(p) would
return the string Point.Two.

A.5.13. Function expressions

expr: fn (fnarg[,]+) : type { stmt* }
A function expression is an anonymous function body. Except for the lack of a

name, it is handled identically to the function statement. In fact, the function state-
ment simply declares a name and attaches the equivalent function expression as the
body.

A.5.14. Pattern matches

expr: expr ~ pattern
A pattern match is a boolean expression checking whether expr matches the pat-

tern. A successful pattern match can bind new variable names in the current name
scope, so pattern matches are most often used as conditions. Patterns are described in
detail below.

A.5.15. Conditional expressions

expr: expr && expr
expr: expr || expr

Like in C, && and || are short-circuit boolean operators: the expression on the
right is not evaluated if it is not needed to determine the overall result. Unlike in C,
conditional expressions have an effect on the name scope in which they appear. When
an && expression evaluates true, both branches are guaranteed to have succeeded, so
names generated by either successful match are added to the && expression’s success
scope. When it evaluates false, only names common to both expression’s failures are
added to the overall expression’s failure scope. The rules for || are reversed: when it
evaluates false, names generated by either failure are added to the || expression’s
failure scope. When it evaluates true, only names common to both successes are ad-
ded to the success scope.

expr: ! expr
The ! operator negates the boolean value of expr, also exchanging its success and

failure scopes.

A.6. Patterns

Pattern match syntax mimics ordinary expression syntax. There is no ambiguity
because patterns appear only after the ~ operator in a case label, where expressions
cannot. As a simple example, x ~ list [1, y] is true if x is a two-element integer
list with first element 1. In its success name scope, y is bound to the second value in
the list.

81

A.6.1. Constants

pattern: constant
Constants like 3.14 and true are also patterns: they match that value.

A.6.2. Names

pattern: name
A name matches any value. After a successful match, that name is bound to the

value it matched.

A.6.3. Conditional matching

pattern: pattern && pattern
pattern: pattern || pattern

The && and || operators have the same meaning in patterns as they do in ordi-
nary expressions: an && pattern only matches if both clauses match, while an || pat-
tern matches if at least one of the clauses matches.

A.6.4. Constructors

pattern: structname (pattern[,]*)
pattern: array [pattern[,]*]
pattern: list [pattern[,]*]
pattern: pattern :: pattern
pattern: (pattern[,]*)
pattern: ...

These constructors all match the same form they would construct as ordinary ex-
pressions. The structname denotes a structure name, perhaps with a leading module
name followed by a dot. The wildcard ... matches the end of an array, tuple, list, or
struct.

A.6.5. Declarations

pattern: name := pattern
The declaration pattern matches a value if pattern matches the value. It also

binds name to that value.

A.7. Type expressions

Type expressions are different from types. The types described above are the ac-
tual types in the zeta type system. This section describes the syntax for naming types.
The main difference is that type expressions can use typedef’ed names, while the type
system does not.

A.7.1. Basic types

type: int | float | string | bool
These are the basic types.

82

A.7.2. Functions

type: fn (type[,]*) : type
This expression denotes a function type with the named argument types and re-

turn type. Like in function statements, the return type is optional; if omitted it is tak-
en to be the empty tuple.

A.7.3. Tuples

type: (type[,]*)
This expression denotes a tuple type.

A.7.4. Container types

type: list type
type: array type
type: map (type , type)
type: fmap (type , type)

These expressions denote the list, array, map, and fmap types.

A.7.5. Polymorphic types

type: ’ name
A polymorphic variable type is written as an apostrophe ’ followed by a name.

Like in ML, polymorphic types are implicitly quantified at the top level, so list ’a
denotes a homogeneous list.

A.7.6. Type names

type: name
A type name is a name given to a type by an earlier typedef statement. The

name can also be prefixed by a module name and a dot, in order to name a type de-
clared in an imported module.

83

 B

Xoc extension listings

Xoc’s extensions are short, but not short enough to list in full during Chapter 5.
This appendix gives the full source listings for all the extensions discussed in that
chapter.

B.1. Alef channel types

// Alef channel type
//
// chan(t) is a type for any type t.
// All chan(t) are represented by Channel*
// in the underlying C code.

from xoc import *;

extend grammar C99
{

typespec: "chan" "(" type ")";
}

extend attribute
compiled(t: C.type): COutput.type
{

if(t ~ ‘{chan(_)})
return ‘COutput.type{Channel*};

return default(t);
}

85

B.2. Alef channel allocation

// Alef channel allocation statement

from xoc import *;
import alef_chan;
import util;

extend grammar C99
{

stmt: "alloc" expr[,]+ ";";
}

extend attribute
typecheck(term: C)
{

exprs: list C.expr;
if(term ~ ‘C.stmt{alloc \(exprs);}){

for(e in exprs)
if(e.type && e.type !~ ‘{chan(_)})

errorast(term, "alloc of non-channel");
return;

}
default(term);

}

extend attribute
compiled(term: C.stmt): COutput.stmt
{

exprs: list C.expr;
if(term ~ ‘C.stmt{alloc \(exprs);}){

bl: list C.blockitem;
for(e in exprs){

assert e.type ~ ‘{chan(\t)};
bl = ‘C.blockitem{\e = chancreate(\(t.sizeof), 0);} :: bl;

}
bl = util.reverse(bl);
return ‘C.stmt{ { \bl } }.compiled;

}
return default(term);

}

86

B.3. Alef channel send and receive operators

// Alef channel send and receive operations

from xoc import *;
import alef_chan;

extend grammar C99
{

expr: "<-" expr
| expr "<-=" expr;

}

extend attribute
type(term: C.expr): C.type
{

if(term ~ ‘{<-\e}){
if(e.type){

if(e.type ~ ‘{chan(\t)})
return t;

errorast(term, "recv from non-channel");
}
return nil;

}
if(term ~ ‘{\e <-= \v}){

if(e.type && v.type){
if(e.type ~ ‘{chan(\t)}){

if(canconvert(t, v.type))
return t;

errorast(term, "cannot send "+v.type.fmt+
" on chan of "+t.fmt);

}else
errorast(term, "send on non-channel");

}
return nil;

}
return default(term);

}

87

extend attribute
compiled(term: C.expr): COutput.expr
{

if(term ~ ‘{<-\e}){
assert e.type ~ ‘{chan(\t)};
tmp := mktmp(t);
return ‘C.expr{

(chanrecv(\e, &\tmp), \tmp)
}.compiled;

}
if(term ~ ‘{\e <-= \v}){

assert e.type ~ ‘{chan(\t)};
tmp := mktmp(t);
return ‘C.expr{

(\tmp = \v, chansend(\e, &\tmp), \tmp)
}.compiled;

}
return default(term);

}

B.4. Alef alt statement

// Alef alt statement

from xoc import *;
import alef_chan;
import alef_sendrecv;
import util;

extend grammar C99
{

stmt: /alt/a "{" altclause* "}";
altclause: "case" expr ":" stmt*;

}

extend attribute
typecheck(term: C)
{

if(term ~ ‘C.stmt{alt { \clauses }}){
for(c in clauses){

assert c ~ ‘{case \e: \body};
if(e.type == nil)

continue;
if(e !~ ‘{<-_} && e !~ ‘{_ = <-_} && e !~ ‘{_ <-= _})

errorast(e, "malformed alt case");
}
return;

}
default(term);

}

88

extend attribute
compiled(term: C.stmt): COutput.stmt
{

if(term ~ ‘{alt { \clauses }}){
n := length(clauses);
alts := mktmp(‘C.type{Alt[\(n+1)]}); // +1 for CHANNOP
inits: list C.stmt;
body: list C.stmt;
i := 0;
for(c in clauses){

assert c ~ ‘{case \e: \b};
switch(e){
case ‘{<-\chan}:

assert chan.type ~ ‘{chan(\t)};
inits = ‘C.stmt{{

\alts[\i].op = CHANRCV;
\alts[\i].v = nil;
\alts[\i].c = \chan;

}} :: inits;
body = ‘C.stmt{

{
case \i:

\b
break;

}
} :: body;

case ‘{\val = <-\chan}:
assert chan.type ~ ‘{chan(\t)};
tmp := mktmp(t);
inits = ‘C.stmt{{

\alts[\i].op = CHANRCV;
\alts[\i].v = \tmp;
\alts[\i].c = \chan;

}} :: inits;
body = ‘C.stmt{

{
case \i:

\val = \tmp;
\b
break;

}
} :: body;

89

case ‘{\chan <-= \val}:
assert chan.type ~ ‘{chan(\t)};
tmp := mktmp(t);
inits = ‘C.stmt{{

\tmp = \val;
\alts[\i].op = CHANSND;
\alts[\i].v = \tmp;
\alts[\i].c = \chan;

}} :: inits;
body = ‘C.stmt{

{
case \i:

\b
break;

}
} :: body;

case _:
util.panic("unexpected alt case");

}
i++;

}
inits = ‘C.stmt{ \alts[\i].op = CHANEND; } :: inits;
return ‘C.stmt{

{
\inits
switch(alt(\alts))

\body
}

}.compiled;
}

return default(term);
}

90

B.5. Alef task (thread creation) statement

// Alef task syntax

from xoc import *;
import util;

extend grammar C99
{

stmt: "task" expr ";";
};

extend attribute
typecheck(term: C)
{

if(term ~ ‘C.stmt{task \e;}){
if(e.type == nil)

return;
if(e !~ ‘{_(_)}){

errorast(e, "task statement requires"+
" function call expression");

return;
}
return;

}
default(term);

}

ntramp := 0;
fn
trampname(): string
{

return "__tramp"+string(ntramp++);
}

extend attribute
compiled(term: C.stmt): COutput.stmt
{

args: list C.expr;
if(term ~ ‘C.stmt{task \f(\(args));}){

// Build up:
// * list of struct declarators
// * list of arguments referring to closure named "cl"
// them from a closure instance named "cl".
i := 0;
decls := list [‘C.sudecl{\(f.type)* f;}];
clargs: list C.expr;
for(a in args){

n := "a"+string(i++);
decls = ‘C.sudecl{\(a.type) \n;} :: decls;
clargs = ‘C.expr{cl.\n} :: clargs;

}
decls = util.reverse(decls);

91

clargs = util.reverse(clargs);

// Create new struct type.
t := ‘C.type{ struct { \decls } };

// Create new trampoline function.
tname := trampname();
tramp := ‘C.fndef{

void \tname(void *v) {
\t cl;
cl = *(\t*)v;
(free(v));
cl.f(\clargs);

}
};
newfn(tramp);

// Create variable to hold allocated closure
// in expansion of task statement.
// Note that this cl is not the same as the trampoline
// function’s cl local variable.
cl := Sym.Var("cl", term, ‘C.type{\t*}, ...);
cl.islocal = true;

// Create list of initializers filling in cl.
// Cannot construct inits in the loop above,
// because it needs cl, and cl needs t,
// and the loop above creates the member list for t.
inits: list C.stmt;
for(a in args){

n := "a"+string(i++);
inits = ‘C.stmt{\cl->\n = \a;} :: inits;

}
inits = util.reverse(inits);

// Expand task statement into closure alloc,
// closure initialization, and call to taskcreate library fn.
return ‘C.stmt{

{
\cl = malloc(sizeof *cl);
\inits
taskcreate(\tname, \cl, 1<<20);

}
}.compiled;

}
return default(term);

}

92

B.6. Alef iterator expressions

// Alef-style iterator.
//
// a[i=0::10] = 0;
// a[0::10] = 0;
//
// both turn into
//
// for(i=0; i<10; i++)
// a[i] = 0;

from xoc import *;

extend grammar C99
{

%right AlefIter;
%priority Shift > AlefIter > Relational;

expr: expr "::" expr [AlefIter];
}

struct Iterator
{

var: C.expr;
lo: C.expr;
hi: C.expr;

};

extend attribute
type(term: C.expr): Type
{

switch(term){
case ‘{\a=\b ::\c}:

if(a.type.isinteger
&& b.type.isinteger
&& c.type.isinteger)

return a.type;
errorast(term, "non-integer iterator");

case ‘{\b ::\c}:
//print b;
if(b.type.isinteger
&& c.type.isinteger)

return ‘Type{int};
errorast(term, "non-integer iterator");

}
return default(term);

}

attribute
iterator(term: C.expr): Iterator
{

switch(term){

93

case ‘{\a=\b ::\c}:
return Iterator(a, b, c);

case ‘{\b ::\c}:
sym := Sym.Var("i", term, ‘Type{int}, ...);
sym.islocal = true;
return Iterator(‘C.expr{\sym}, b, c);

}
return nil;

}

attribute
iterators(term: C): list Iterator
{

k := astsplit(term);
out: list Iterator;
for(i:=length(k)-1; i>=0; i--)

out = k[i].iterators + out;
if(term <: C.expr && term.iterator)

out = term.iterator :: out;
return out;

}

attribute
without_iterators(term: C): C
{

if(term.iterators == nil)
return term;

if(term <: C.expr && term.iterator)
return term.iterator.var;

k := astsplit(term);
for(i:=0; i<length(k); i++)

k[i] = k[i].without_iterators;
term = astjoin(term, k);
return term;

}

extend attribute
compiled(term: C.stmt): COutput.stmt
{

if(term.iterators == nil)
return default(term);

body1 := term.without_iterators;
assert body1 <: C.stmt;
body := body1;
for(i in term.iterators)

body = ‘C.stmt{
for(\(i.var) = \(i.lo); \(i.var) < \(i.hi); \(i.var)++)

\body
};

return body.compiled;
}

94

B.7. Sparse attribute syntax

from xoc import *;

extend grammar C99 {
attr: /address_space/a "(" expr ")";

}

extend attribute
canonical(attr: C.attr): C.attr
{

switch(attr){
case ‘‘{address_space(0)}:

return ‘‘C.attr{__no_attribute__};
}
return default(attr);

}

B.8. Sparse address space attributes

import sparse_grammar;
from xoc import *;
import sys;
import util;

attribute
address_space(t: C.type): int
{

for(a in t.attrs){
if(a ~ ‘C.attr{address_space(\e)}){

if(e.constvalue ~ Constant.Integer(i))
return i;

errorast(t, "address space is not constant integer");
return 0;

}
}
return 0;

}

attribute
has_address_space(t: C.type): bool
{

for(a in t.attrs)
if(a ~ ‘C.attr{address_space(_)})

return true;
return false;

}

95

fn
no_address_space(a: C.attr): bool
{

return a !~ ‘{address_space(_)};
}

attribute
without_address_space(t: C.type): C.type
{

tt := astcopy(t);
tt.attrs = util.filter(no_address_space, t.attrs);
return tt;

}

extend fn
canconvert(old: C.type, new: C.type): bool
{

if(old ~ ‘{\told*} && new ~ ‘{\tnew*}){
if(told.address_space != tnew.address_space){

sys.werrstr("address space mismatch");
return false;

}
if(told.has_address_space)

return default(‘C.type{\(told.without_address_space)*}, new);
}
return default(old, new);

}

extend fn
cancast(old: C.type, new: C.type): C.type
{

if(old ~ ‘{\told*} && new ~ ‘{\tnew*}){
if(told.address_space != tnew.address_space){

sys.werrstr("address space mismatch");
return nil;

}
}
return default(old, new);

}

96

B.9. Sparse noderef attribute

// Sparse no-deref attribute.

from xoc import *;

// No need to extend grammar: single words
// like noderef are already parsed as valid attributes.

fn
noderef(term: C.expr, e: C.expr)
{

if(e.iscomputation
&& !term.isaddressof
&& e.type ~ ‘{\tt*}
&& hasattr(tt, ‘C.attr{noderef}))

warnast(term, "deref of no-deref expr");
}

extend attribute
type(term: C.expr): C.type
{

if((t := default(term)) == nil)
return nil;

if(term ~ ‘{*\e} || term ~ ‘{\e->_})
noderef(term, e);

else if(term ~ ‘{\a[\b]}){
noderef(term, a);
noderef(term, b);

}

return t;
}

97

B.10. Sparse force casts

// Sparse force attribute in casts

from xoc import *;
import util;

fn
noforceattr(a: C.attr): bool
{

return a !~ ‘{force};
}

attribute
without_force(t: C.type): C.type
{

tt := astcopy(t);
tt.attrs = util.filter(noforceattr, t.attrs);
return tt;

}

extend fn
cancast(old: C.type, new: C.type): C.type
{

if(old ~ ‘{\told*}
&& new ~ ‘{\tnew*}
&& hasattr(tnew, ‘C.attr{force}))

return ‘C.type{\(tnew.without_force)*};
return default(old, new);

}

98

B.11. Sparse context checking

// Sparse context attributes and __context__ statement.

from xoc import *;
import flow;

extend grammar C99 {
attr: /context/a "(" expr "," expr "," expr ")";
stmt: "__context__" "(" expr "," expr ")" ";";

}

// Type check __context__ statement.
// Actually ignore it. Will check argument during compiled.
extend attribute
typecheck(term: C)
{

if(term ~ ‘C.stmt{__context__(_, \delta);})
return;

default(term);
}

// Compiled form of __context__ statement is an empty statement
// with a pre-initialized ctxdelta attribute.

attribute
ctxdelta(term: C): int
{

if(term.copiedfrom)
return term.copiedfrom.ctxdelta;

return 0;
}

extend attribute
compiled(term: C.stmt): COutput.stmt
{

if(term ~ ‘C.stmt{__context__(_, \delta);}){
out := ‘COutput.stmt{;};
out.line = term.line;
if(delta.constvalue ~ Constant.Integer(d))

out.ctxdelta = d;
else

errorast(term, "context delta not integer constant");
return out;

}
return default(term);

}

99

////////
// Data flow analysis of contexts.

// Context data structure, attached to each node in control flow graph.
struct Ctx
{

inx: int;
outx: int;
have: bool;

};

attribute
ctx(term: C): Ctx
{

return Ctx(...);
}

// Filter function - keep only interesting nodes,
// ones that have something to do with context.
fn
ctxfilter(term: C): bool
{

return term.ctxdelta || term ~ ‘COutput.expr{\f(_)};
}

// For debugging, return the string that should be
// used as the label on the edge a -> b.
fn
edgelabel(a: C, b: C): string
{

s := string(a.ctx.outx);
if(a.ctx.outx != b.ctx.inx)

s = "!" + s;
return s;

}

extend struct Sym
{

havedelta: bool;
delta: int;

}

100

fn
typectxdelta(t: C.type): (bool, int)
{

if(t == nil)
return (false, 0);

if(t ~ ‘{\tt*})
t = tt;

for(a in t.attrs)
if(a ~ ‘{context(_, \down, \up)}){

switch((down.constvalue, up.constvalue)){
case (Integer(d), Integer(u)):

return (true, u - d);
}
errorast(t, "context delta not integer constant");
return (true, 0);

}
return (false, 0);

}

fn
symctxdelta(sym: Sym.Var.Fn, isuse: bool): (bool, int)
{

if(sym == nil)
return (false, 0);

if(!sym.havedelta){
(have, delta) := typectxdelta(sym.type);
if(have){

sym.havedelta = true;
sym.delta = delta;

}
else if(isuse || sym.storage !~ ‘{static}){

sym.havedelta = true;
sym.delta = 0;

}
}
return (sym.havedelta, sym.delta);

}

fn
exprctxdelta(e: C.expr): (bool, int)
{

if(e ~ ‘{_::name}){
sym := e.namesym;
if(sym <: Sym.Var.Fn)

return symctxdelta(sym, true);
}
return typectxdelta(e.type);

}

101

fn
dataflow(fun: Sym.Var.Fn, cfg: flow.Cfg): bool
{

errors := 0;

// Called on cfg.start: set initial context.
fn init(a: C)
{

a.ctx.have = true;
a.ctx.inx = 0;

}

// Called each time a node is visited:
// compute the out context from the in context.
// It is guaranteed that either init(a) or join(_, a)
// has been called in the past.
fn transfer(a: C)
{

// If this is a function call, get the context from the fn.
delta: int;
if(a ~ ‘C.expr{\f(_)})

(_, delta) = exprctxdelta(f);
else

delta = a.ctxdelta;
a.ctx.outx = a.ctx.inx + delta;

}

// Called for each out arrow from a after visiting a:
// check that if b has already been visited, the ctx
// we had before matches the ctx coming from a.
// Returns whether to visit b.
fn join(a: C, b: C): bool
{

// If this is our first join of b, just record a’s out context.
if(!b.ctx.have){

b.ctx.have = true;
b.ctx.inx = a.ctx.outx;
return true;

}

// If we’ve been here before, the context from before
// has to match the context we’re seeing now.
// Only warn about the first error: when it rains, it pours.
if(a.ctx.outx != b.ctx.inx && !errors++)

warnast(b, fun.name+": context mismatch "+
string(a.ctx.outx)+" vs "+string(b.ctx.inx));

return false;
}

d := flow.Dataflow(init, transfer, join);
flow.dataflow(cfg, d);

return !errors;
}

102

// Hook analysis into type-checking.
// After type-checking a function, run the sparse analysis
// on the compiled (standard C) form of the function body.
extend attribute
typecheck(term: C)
{

default(term);
if(term <: C.fndef){

assert term ~ ‘{_ _ \body};
cfg := flow.buildcfg(body.compiled, ctxfilter);

// Set up for data flow analysis by initializing the
// expected end-of-function context. One wrinkle
// is that sparse does not require annotations on
// static functions that get inlined: the inliner runs before
// sparse’s analysis, so those functions don’t actually
// exist as far as sparse is concerned. Since we don’t
// have an inliner, we instead infer the appropriate
// context annotation for static functions that have not
// yet been used.
fsym := term.function;
(have, delta) := symctxdelta(fsym, false);
cfg.end.ctx.have = have;
cfg.end.ctx.inx = delta;

// Run the data flow analysis. If it encounters any
// errors, it will return false and we can bail out.
if(!dataflow(fsym, cfg)){

if(false)
flow.showcfg("/tmp/a.sparse", cfg, edgelabel);

return;
}

// If we didn’t set an annotation earlier, we need to
// reconcile the fsym.delta and the delta we inferred
// for cfg.end.
if(!have && cfg.end.ctx.have){

if(!fsym.havedelta){
fsym.havedelta = true;
fsym.delta = cfg.end.ctx.inx;

}else{
if(fsym.delta != cfg.end.ctx.inx){

warnast(term, fsym.name+": context mismatch at end of function: "+
string(fsym.delta)+" vs "+string(cfg.end.ctx.inx));

}
}

}
}

}

103

B.12. GNU typeof(expr) type specifier

from xoc import *;

extend grammar C99
{

typeof: "typeof" "(" expr ")";
}

extend attribute
type(term: C.type): C.type
{

switch(term){
case ‘{typeof(\e::expr)}:

if(e.type == nil)
errorast(term, "no type here! "+string(e));

return e.type;
}
return default(term);

}

extend attribute
compiled(term: C.type): COutput.type
{

switch(term){
case ‘{typeof(\e::expr)}:

if(term.copiedfrom)
return term.copiedfrom.compiled;

if(e.type)
return e.type.compiled;

else{
errorast(term, "no type! " + string(e));
return ‘COutput.type{int};

}
}
return default(term);

}

extend attribute
iscomputation(term: C.expr): bool
{

if(term.parent ~ ‘C.typeof{typeof(_::expr)})
return false;

return default(term);
}

104

B.13. GNU a ?: binary conditional expression

from xoc import *;

extend grammar C99
{

expr: expr "?" ":" expr [Conditional];
};

extend attribute
type(term: C.expr): C.type
{

if(term ~ ‘{\a ?: \b})
return ‘C.expr{\a ? \a : \b}.type;

return default(term);
}

extend attribute
compiled(term: C.expr): COutput.expr
{

if(term ~ ‘{\a ?: \b}){
tmp := mktmp(a.type);
return ‘C.expr{

(\tmp = \a) ? \tmp : \b
}.compiled;

}
return default(term);

}

105

References

[1] Andrew W. Appel. Modern Compiler Implementation in C. Cambridge University Press, 1998.

[2] Apple Computer, Inc.. Dylan Reference Manual. 1995.

[3] Ken Arnold, James Gosling, and David Holmes. The Java Programming Language. Prentice Hall,
2005.

[4] Jonathan Bachrach and Keith Playford. The Java Syntactic Extender (JSE). Proceedings of the 16th
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
pages 31-42, Tampa Bay, Florida, United States, 2001.

[5] Jason Baker and Wilson C. Hsieh. Maya: Multiple Dispatch Syntax Extension in Java. Proceedings
of the ACM SIGPLAN 2002 Conference on Programming Language Design and Implementation,
pages 270-281, Berlin, Germany, 2002.

[6] Alan Bawden. Quasiquotation in Lisp. Proceedings of the 1999 ACM SIGPLAN Workshop on
Partial Evaluation and Semantics-based Program Manipulation (PEPM ’99), pages 4-12, San
Antonio, Texas, United States, 1999.

[7] Thomas Anthony Bergan. Typmix: A Framework For Implementing Modular, Extensible Type
Systems. Master’s thesis, University of California Los Angeles, 2007.

[8] Computer History Museum. Fellow Awards | 1997 Recipient Dennis Ritchie. Available online at
http://www.computerhistory.org/fellowawards/index.php?id=71 as of August 2008.

[9] William Clinger and Jonathan Rees. Macros that Work. Proceedings of the 1991 ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 155-162, Orlando, Florida,
United States, 1991.

[10] Coverity. Linuxbugs. http://linuxbugs.coverity.com Offline as of 2006. Available via
archive.org at http://web.archive.org/web/*/http://linuxbugs.coverity.com

[11] Brad J. Cox and Andrew J. Novobilski. Object-Oriented Programming: An Evolutionary Approach.
Addison-Wesley, 1986.

[12] Glen Ditchfield. An Overview of Cforall. Available online at
http://plg.uwaterloo.ca/~cforall/ as of August 2008.

[13] Eelco Dolstra and Eelco Visser. Building Interpreters with Rewriting Strategies. Proceedings of the
2002 Workshop on Language Descriptions, Tools, and Applications, Grenoble, France, 2002.

[14] Gabriel Dos Reis and Bjarne Stroustroup. Specifying C++ concepts. Proceedings of the 2006 ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 295-308.

[15] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic Abstraction in Scheme. Lisp and
Symbolic Computation 5(4), pages 295-326, 1992.

[16] Dawson R. Engler, David Yu Chen, and Andy Chou. Bugs as Inconsistent Behavior: A General
Approach to Inferring Errors in Systems Code. Proceedings of the 2001 Symposium on Operating
Systems Principles, pages 57-72, Banff, Canada, 2001.

[17] Dawson R. Engler. Incorporating Application Semantics and Control into Compilation.
Proceedings of the USENIX Conference on Domain-Specific Languages (DSL ’97), October 1997.

[18] Bob Flandrena. Alef User’s Guide. Plan 9 Programmer’s Manual: Volume Two, 1995.

[19] Bryan Ford. Parsing Expression Grammars: a Recognition-Based Syntactic Foundation.
Proceedings of the 2004 ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Venice, Italy, January 2004.

107

[20] James Gosling. Ace: a syntax-driven C preprocessor, 1989. Available online at
http://swtch.com/gosling89ace.pdf as of August 2008.

[21] Paul Graham. On LISP: Advanced Techniques for Common LISP. Prentice-Hall, 1993.

[22] Michael Hammer. An Alternative Approach to Macro Processing. Proceedings of the International
Symposium on Extensible Languages, pages 58-64, Grenoble, France, 1971.

[23] David R. Hanson. C Interfaces and Implementations: Techniques for Creating Reusable Software.
Addison-Wesley, 1996.

[24] David R. Hanson and Christopher W. Fraser. A Retargetable C Compiler: Design and
Implementation. Addison-Wesley, 1995.

[25] David R. Hanson and Jeffrey L. Korn. A Simple and Extensible Graphical Debugger. Proceedings
of the 1997 USENIX Technical Conference, 1997.

[26] Timothy P. Hart. MACRO Definitions for LISP. MIT AI Project—RLE and MIT Computation
Center AI Memo 57. Cambridge, MA, October 1973. Reproduced in [56].

[27] Matthew S. Hecht. Flow Analysis of Computer Programs. North-Holland/Elsevier, 1977.

[28] Martin Hirzel and Robert Grimm. Jeannie: Granting Java native interface developers their wishes.
Proceedings of the 2007 ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages and Applications, pages 19-38, Montreal, Canada, October 2007.

[29] C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM 21(8), pages
666-677, August 1978.

[30] Gerard J. Holzmann. Static source code checking for user-defined properties. Proceedings of the
6th World Conference on Integrated Design & Process Technology, Pasadena, California, United
States, June 2002.

[31] Stephen C. Johnson. YACC: Yet Another Compiler Compiler. Unix Programmer’s Manual, Volume
2, Murray Hill, NJ, 1979.

[32] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language, 2nd Edition. Prentice
Hall, 1988.

[33] Donald E. Knuth. Semantics of context free languages. Mathematical Systems Theory 2(2), pages
127-146, June 1968.

[34] Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce Duba. Hygienic Macro
Expansion. Proceedings of the 1986 ACM Conference on LISP and Functional Programming (LFP
’86), pages 151-161, Cambridge, Massachusetts, United States, 1986.

[35] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. The Click
Modular Router. ACM Transactions on Computer Systems 18(3), pages 263-297, August 2000.

[36] Eddie Kohler, Benjie Chen, M. Frans Kaashoek, Robert Morris, and Massimiliano Poletto.
Programming Language Techniques for Modular Router Configurations. MIT Laboratory for
Computer Science Technical Report MIT-LCS-TR-812. Cambridge, MA, August 2000.

[37] Maxwell Krohn, Eddie Kohler, and M. Frans Kaashoek. Events Can Make Sense. Proceedings of
the 2007 USENIX Technical Conference, Santa Clara, CA, 2007.

[38] Donis Marshall. Programming Microsoft Visual C# 2008: The Language. Microsoft Press, 2008.

[39] David Mazières. A Toolkit for User-Level File Systems. Proceedings of the 2001 USENIX Technical
Conference, pages 261-274, Boston, MA, June 2001.

[40] M. Douglas McIlroy. Macro Instruction Extensions of Compiler Languages. Communications of
the ACM 3(4), pages 214-220, April 1960.

[41] Scott McPeak. Elkhound: A Fast, Practical GLR Parser Generator. University of California
Berkeley Technical Report UCB/CSD-2-1214. Berkeley, CA, December 2002.

[42] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard ML.
MIT Press, 1997.

108

[43] George C. Necula, Scott McPeak, S. P. Rahul, and Westley Weimer. CIL: Intermediate Language
and Tools for Analysis and Transformation of C Programs. Proceedings of the 11th International
Conference on Compiler Construction, 2002.

[44] Nathaniel Nystrom, Michael Clarkson, and Andrew Myers. Polyglot: an Extensible Compiler
Framework for Java. Proceedings of the 12th International Conference on Compiler Construction,
April 2003.

[45] Nathaniel Nystrom, Xin Qi, and Andrew Myers. J&: Software Composition with Nested
Intersection. Proceedings of the 2006 ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 21-36, 2006.

[46] Chris Okasaki. Red-Black Trees in a Functional Setting. Journal of Functional Programming 9(4),
pages 471-477, July 1999.

[47] Rob Pike. The Implementation of Newsqueak. Software—Practice and Experience 20(7), pages
649-659, July 1990.

[48] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson, Howard Trickey, and Phil
Winterbottom. Plan 9 from Bell Labs. Computing Systems 8(3), pages 221-254, 1995.

[49] Plan 9 from Bell Labs, Second Edition. Harcourt Brace & Company, 1995. The source code in the
introduction is from the file /sys/src/cmd/acme/scrl.l.

[50] Plan 9 from Bell Labs, Fourth Edition. Available online at http://plan9.bell-
labs.com/plan9/ as of August 2008. The source code in the introduction is from the file
/sys/src/cmd/acme/scrl.c.

[51] Dipanwita Sarkar, Oscar Waddell, and R. Kent Dybvig. A Nanopass Infrastructure for Compiler
Education. Proceedings of the 2004 ACM SIGPLAN International Conference on Functional
Programming, Snowbird, Utah, United States, September 2004.

[52] Elizabeth Scott and Adrian Johnstone. Right-Nulled GLR Parsers. ACM Transactions on
Programming Languages and Systems 28(4), July 2006.

[53] Doc Searls. Linus and the Lunatics, Part I. Linux Journal, 2003.

[54] Peter Seebach. Infrequently Asked Questions in comp.lang.c.

[55] Sparse – a Semantic Parser for C. http://kernel.org/pub/software/devel/sparse/

[56] Guy L. Steele, Jr. and Richard P. Gabriel. The Evolution of Lisp. ACM SIGPLAN Notices 28(3),
pages 231-270, 1993.

[57] Bjarne Stroustrup. The C++ Programming Language, 3rd Edition. Addison-Wesley, 1997.

[58] Bjarne Stroustrup. A Rationale for Semantically Enhanced Library Languages. Proceedings of
Library-Centric Software Design (LCSD’05), 2005 (co-located with OOPSLA 2005).

[59] A. S. Tanenbaum. A Tutorial on ALGOL 68. Computing Surveys, pages 155-190, June 1976.

[60] M. G. J. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge, T. Kuipers, P. Klint,
P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser, and J. Visser. The ASF+SDF Meta-Environment: a
component-based language development environment. Proceedings of Compiler Construction 2001,
pages 365-370.

[61] Eric Van Wyk, Derek Bodin, Lijesh Krishnan, and J. Gao. Silver: an extensible attribute grammar
system. Proceedings of the 2007 Workshop on Language Descriptions, Tools, and Applications, Braga,
Portugal, 2007.

[62] Eric Van Wyk, Lijesh Krishnan, August Schwerdfeger, and Derek Bodin. Attribute grammar-based
language extensions for Java. Proceedings of 21st European Conference on Object-Oriented
Programming, Berlin, Germany, August 2007.

[63] Eelco Visser, Zine el Abidine Benaissa, and Andrew Tolmach. Building program optimizers with
rewriting strategies. Proceedings of the 1998 ACM SIGPLAN International Conference on
Functional Programming, Baltimore, Maryland, United States, September 1998.

109

[64] Eelco Visser. Program transformation with Stratego/XT: Rules, strategies, tools, and systems in
Stratego/XT 0.9. Institute of Information and Computing Sciences, Utrecht University Technical
Report UU-CS-2004-011. 2004.

[65] Scott A. Vorthman. Coordinated Incremental Attribute Evaluation on a DR-Threaded Tree.
Attribute Grammars and Their Applications, 1990.

[66] Daniel Weise and Roger Crew. Programmable Syntax Macros. Proceedings of the 1993 SIGPLAN
Conference on Programming Language Design and Implementation, pages 156-165, 1993.

[67] Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P. Amarasinghe, Jennifer-Ann
M. Anderson, Steven W. K. Tjiang, Shih-Wei Liao, Chau-Wen Tseng, Mary W. Hall, Monica S. Lam,
and John L. Hennessy. SUIF: An Infrastructure for Research on Parallelizing and Optimizing
Compilers. SIGPLAN Notices 29(12), pages 31-37, 1994.

[68] Phil Winterbottom. Acid: a debugger built from a language. Proceedings of the 1994 Winter
USENIX Technical Conference, pages 211-222, 1994.

[69] Phil Winterbottom. Alef Language Reference Manual. Plan 9 Programmer’s Manual: Volume Two,
1995.

110

