LOW-STRETCH SPANNING TREES AND MINIMAX DUALITY

notes by Petar MAYMOUNKOV

1. Notation

We study a connected undirected graph G which is positively edgeweighted by $w(e)$, where a missing edge has $w(e)=\infty$. In way of standard notation, $n=|V(G)|$ and $m=|E(G)|$. We use $\mathbf{1}_{Q}$ to denote the characteristic vector of the set Q, i.e.

$$
\mathbf{1}_{Q}(i)= \begin{cases}1, & \text { if } i \in Q \tag{1.1}\\ 0, & \text { otherwise }\end{cases}
$$

and also let 1 be the all-ones vector.

2. The graph game

Consider a 2-player 0-sum game with a maximizing edge player, denoted x, and a minimizing tree player, denoted y. The strategies of the edge player range over the edges $E(G)$, while the strategies of the tree player range over the set $T(G)$ of spanning trees of G. The payoff $a_{(u, v), T}$ at edge $e=(u, v)$ and tree T is defined as

$$
\begin{equation*}
a(e, T):=\frac{d_{T}(u, v)}{w(e)} \tag{2.1}
\end{equation*}
$$

and let $A \in \mathbb{R}^{E(G) \times T(G)}$ be the corresponding payoff matrix. When probabilistic strategies $x \in \mathbb{R}^{E(G)}$ and $y \in \mathbb{R}^{T(G)}$ are fixed, the value of the game is given by

$$
\begin{equation*}
x^{*} A y=\sum_{e, T} x(e) \cdot a(e, T) \cdot y(T) \tag{2.2}
\end{equation*}
$$

In what follows, we are going to use
Theorem 2.1 (Minimax Principle). -

$$
\begin{equation*}
\max _{x} \min _{y} x^{*} A y=\min _{y} \max _{x} x^{*} A y \tag{2.3}
\end{equation*}
$$

Remark 2.2. - Here and throughout we view a vector $z \in \mathbb{R}^{Q}$ (for some set Q) as a distribution (or, equivalently, a convex combination) over the elements of Q as long as $z \geqslant 0$ and $\|z\|_{1}=1$.

3. Probabilistic stretch implies average stretch

Lemma 3.1. - Let $y_{\star} \in \mathbb{R}^{T(G)}$ be an α-probabilistic approximation of G, then for every challenge distribution $x_{\mathbf{c h}} \in \mathbb{R}^{E(G)}$ there exists a spanning tree T_{\star} so that

$$
\begin{equation*}
\sum_{e \in E(G)} x_{\mathbf{c h}}(e) \frac{d_{T_{\star}}(e)}{w(e)} \leqslant \alpha \tag{3.1}
\end{equation*}
$$

Specializing $x_{\mathbf{c h}}=\mathbf{1}_{H} /|H|$, where $H \subseteq E(G)$, we obtain:
Corollary 3.2. - If G has an α-probabilistic approximation, then for all $H \subseteq E(G)$ there exists a spanning tree T_{\star} of G with average stretch over the edges in H at most α. Formally,

$$
\begin{equation*}
\frac{1}{|H|} \sum_{e \in H} \frac{d_{T_{\star}}(e)}{w(e)} \leqslant \alpha \tag{3.2}
\end{equation*}
$$

And when $H=E(G)$ we get the well-known:
Corollary 3.3. - If G has an α-probabilistic approximation, then there exists a spanning tree T_{\star} of G with average stretch over all edges in G at most α. Formally,

$$
\begin{equation*}
\frac{1}{m} \sum_{e \in E(G)} \frac{d_{T_{\star}}(e)}{w(e)} \leqslant \alpha \tag{3.3}
\end{equation*}
$$

Proof of Lemma 3.1. - By assumption y_{\star} is an α-probabilistic approximation of G, i.e. for all $e \in E(G)$ we have

$$
\begin{equation*}
\mathbf{E}_{T \sim y_{\star}} \cdot d_{T}(e)=\sum_{T} a(e, T) y_{\star}(T) \leqslant \alpha, \tag{3.4}
\end{equation*}
$$

equivalently

$$
\begin{equation*}
A y_{\star} \leqslant \alpha \tag{3.5}
\end{equation*}
$$

Thus for any convex combination x

$$
\begin{equation*}
x^{*}\left(A y_{\star}\right) \leqslant \alpha \tag{3.6}
\end{equation*}
$$

Now, fix a challenge distribution $x_{\text {ch }}$ and observe

$$
\begin{array}{rlrl}
\min _{y} x_{\mathbf{c h}}^{*} A y & \leqslant \min _{y} \max _{x} x^{*} A y & \\
& =\max _{x} \min _{y} x^{*} A y & & \text { (using Minimax Principle) } \\
& \leqslant \max _{x} x^{*} A y_{\star} & & \left(\text { since } \min _{y} x^{*} A y \leqslant x^{*} A y_{\star}\right) \\
& \leqslant \alpha & & (\text { using } 3.6)
\end{array}
$$

On the other hand, we know that $\min _{y} x_{\mathbf{c h}}^{*} A y$ is achieved at some $y_{\text {ch }}=\mathbf{1}_{T_{\star}}$ (since y ranges over convex combinations), i.e. (3.8) gives

$$
\begin{equation*}
x_{\mathrm{ch}}^{*} A \mathbf{1}_{T_{\star}} \leqslant \alpha \tag{3.9}
\end{equation*}
$$

Using the above with (2.2) and (2.1) we obtain

$$
\begin{aligned}
x_{\mathbf{c h}}^{*} A \mathbf{1}_{T_{\star}} & =\sum_{e} x_{\mathbf{c h}}(e) a\left(e, T_{\star}\right) \\
& =\sum_{e} x_{\mathbf{c h}}(e) \frac{d_{T_{\star}}(e)}{w(e)} \leqslant \alpha .
\end{aligned}
$$

4. Lower bound for expanders

Theorem 4.1. - All spanning trees of an expander graph family G_{n} incur average stretch $\Theta(\ln n)$. Thus, expanders have no o $(\ln n)$ probabilistic approximations.

