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1. Notation

We study a connected undirected graph G which is positively edge-

weighted by w(e), where a missing edge has w(e) = ∞. In way of

standard notation, n = |V (G)| and m = |E(G)|. We use 1Q to denote

the characteristic vector of the set Q, i.e.

1Q(i) =

1, if i ∈ Q
0, otherwise

(1.1)

and also let 1 be the all-ones vector.

2. The graph game

Consider a 2-player 0-sum game with a maximizing edge player, de-

noted x, and a minimizing tree player, denoted y. The strategies of

the edge player range over the edges E(G), while the strategies of the

tree player range over the set T (G) of spanning trees of G. The payoff

a(u,v),T at edge e = (u, v) and tree T is defined as

a(e, T ) :=
dT (u, v)

w(e)
(2.1)

and let A ∈ RE(G)×T (G) be the corresponding payoff matrix. When

probabilistic strategies x ∈ RE(G) and y ∈ RT (G) are fixed, the value of

the game is given by

x∗Ay =
∑
e,T

x(e) · a(e, T ) · y(T )(2.2)
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In what follows, we are going to use

Theorem 2.1 (Minimax Principle). —

max
x

min
y

x∗Ay = min
y

max
x

x∗Ay(2.3)

Remark 2.2. — Here and throughout we view a vector z ∈ RQ (for

some set Q) as a distribution (or, equivalently, a convex combination)

over the elements of Q as long as z > 0 and ‖z‖1 = 1.

3. Probabilistic stretch implies average stretch

Lemma 3.1. — Let y? ∈ RT (G) be an α-probabilistic approximation

of G, then for every challenge distribution xch ∈ RE(G) there exists a

spanning tree T? so that ∑
e∈E(G)

xch(e)
dT?(e)

w(e)
6 α(3.1)

Specializing xch = 1H/|H|, where H ⊆ E(G), we obtain:

Corollary 3.2. — IfG has an α-probabilistic approximation, then

for all H ⊆ E(G) there exists a spanning tree T? of G with average

stretch over the edges in H at most α. Formally,

1

|H|
∑
e∈H

dT?(e)

w(e)
6 α(3.2)

And when H = E(G) we get the well-known:

Corollary 3.3. — IfG has an α-probabilistic approximation, then

there exists a spanning tree T? of G with average stretch over all edges

in G at most α. Formally,

1

m

∑
e∈E(G)

dT?(e)

w(e)
6 α(3.3)

Proof of Lemma 3.1. — By assumption y? is an α-probabilistic ap-

proximation of G, i.e. for all e ∈ E(G) we have

ET∼y? · dT (e) =
∑
T

a(e, T )y?(T ) 6 α,(3.4)

equivalently

Ay? 6 α(3.5)
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Thus for any convex combination x

x∗(Ay?) 6 α(3.6)

Now, fix a challenge distribution xch and observe

min
y

x∗chAy 6 min
y

max
x

x∗Ay(3.7)

= max
x

min
y

x∗Ay
(
using Minimax Principle

)
6 max

x
x∗Ay?

(
since min

y
x∗Ay 6 x∗Ay?

)
6 α

(
using (3.6)

)
(3.8)

On the other hand, we know that miny x
∗
chAy is achieved at some

ych = 1T? (since y ranges over convex combinations), i.e. (3.8) gives

x∗chA1T? 6 α(3.9)

Using the above with (2.2) and (2.1) we obtain

x∗chA1T? =
∑
e

xch(e)a(e, T?)

=
∑
e

xch(e)
dT?(e)

w(e)
6 α.

z

4. Lower bound for expanders

Theorem 4.1. — All spanning trees of an expander graph family

Gn incur average stretch Θ(lnn). Thus, expanders have no o(lnn)-

probabilistic approximations.
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