
LP DECODING WITH BOUNDED-WIDTH MATRICES

NOTES BY PETAR MAYMOUNKOV

1. The width property

Definition 1.1 — A subspace Γ ⊂ Rm of dimension m − n, where n 6 m, is said to
have the width property iff all x ∈ Γ are such that

‖x‖2 6
ω

n1/2
‖x‖1,(*)

where ω = O(ln(em/n)1/2).

Definition 1.2 — A linear transformation A ∈ Rn×m, where n < m, of rank n has the
width property iff ker(A) has the width property.

Matrices with the width property exist (See [1] for references), e.g. a random matrix has
this property with high probability. Explicit constructions with slightly bigger ω are found
in [2]. It is convenient to think of ω as being “small” compared to m.

Remark 1.1 — The subspace Γ provides a distortion-ω(m/n)1/2 embedding of `m−n2 into
`m1 by the map

x 7→ m1/2 · Ux,(1.1)

where U ∈ Rm×(m−n) is a column-wise orthonormal basis for Γ. To verify the distortion
properties, use

1
m1/2

‖x‖1 6 ‖x‖2 6
ω

n1/2
‖x‖1.

Let S = n/ω2. The following two lemmas show that (in this order):

(a) Vectors in Γ have large support, and
(b) Their mass is evenly distributed across their support

Lemma 1.1 — Let 0 6= x ∈ Γ, then ‖x‖0 > S.

Proof. — Set k = ‖x‖0

‖x‖1 6 k1/2‖x‖2 6 k1/2 ω

n1/2
‖x‖1

The first inequality is Cauchy-Schwarz, the second follows from (*). z

Lemma 1.2 — Let 0 6= x ∈ Γ, then for any index set Λ ⊆ [m] with |Λ| < S/4 one has
‖xΛ‖1 < ‖x‖1/2.
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Proof. — Set k = |Λ|

‖xΛ‖1 6 k1/2‖xΛ‖2
(
using Cauchy-Schwarz

)
6 k1/2‖x‖2

6 k1/2ω
‖x‖1
n1/2

(
using (*)

)
< ‖x‖1/2

(
using k < S/4

)
z

2. LP decoding

Note that all results in this section are more or less obvious when thinking of δ ∈ ker(A)
as an evenly spread out vector.

Lemma 2.1 — If u ∈ Rm with ‖u‖0 < S/4, then for all 0 6= x ∈ Γ we have ‖u+ x‖1 >
‖u‖1.

Proof. —

‖u+ x‖1 = ‖uΛ + xΛ‖1 + ‖xΛ‖1
> ‖uΛ‖1 − ‖xΛ‖1 + ‖xΛ‖1
= ‖u‖1 + ‖x‖1 − 2‖xΛ‖1
> ‖u‖1

In the last derivation we use that ‖x‖1 − 2‖xΛ‖1 > 0, which follows from Lemma 1.2. z

Remark 2.1 — Recall that for a signal u the Basis Pursuit algorithm computes an
approximation uA of u

uA := u+ arg min
δ∈ker(A)

‖u+ δ‖1(2.1)

by solving the Linear Program (LP)

minimize ‖u∗‖1 subject to Au∗ = Au

Here u∗ = u + δ. Lemma 2.1 thus ensures that when ‖u‖0 < S/4 we can recover the signal
exactly, i.e. u = uA, when A is a matrix with the width property. The next theorem provides
recovery guarantees for the case when the signal is not necessarily sparse.

Theorem 2.1 — For any u and u∗ such that ‖u∗‖1 6 ‖u‖1, u∗ − u ∈ Γ and k 6 S/16
we have

‖u∗ − u‖1 6 4 ·Errk1(u), and(2.2)

‖u∗ − u‖2 6 k−1/2 ·Errk1(u)(2.3)

Remark 2.2 — Recall that

Errkp(u) = min
w

‖w‖06k

‖w − u‖p(2.4)
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and

uΛ = arg min
w

‖w‖06k

‖w − u‖p,(2.5)

where uΛ is the restriction of u to the index set Λ, and Λ is the index set of u’s k heaviest
(in absolute value) coordinates.

Proof. — (2.3) follows directly from (2.2) and (*). We now show (2.2). Let σ = Errk1(u).

‖u− u∗‖1 = ‖uΛ − u∗Λ‖1 + ‖uΛ − u
∗
Λ
‖1(2.6)

Consider the tail error first:

‖uΛ − u
∗
Λ
‖1 6 ‖uΛ‖1︸ ︷︷ ︸

σ

+‖u∗
Λ
‖1(2.7)

Just using ‖u∗‖1 6 ‖u‖1 we bound

‖u∗
Λ
‖1 6 ‖uΛ‖1 + ‖uΛ‖1 − ‖u∗Λ‖1

(
rewriting ‖u∗‖1 6 ‖u‖1

)
6 ‖uΛ‖1 + ‖uΛ − u∗Λ‖1

(
triangular inequality

)
(2.8)

Combine (2.7), (2.8) and (2.6)

‖u− u∗‖1 6 2‖uΛ − u∗Λ‖1 + 2σ(2.9)

Let’s examine the head error now:

‖uΛ − u∗Λ‖1 6 k1/2‖uΛ − u∗Λ‖2
(
Cauchy-Schwarz

)
6 k1/2‖u− u∗‖2
6 k1/2S−1/2‖u− u∗‖1

(
width property

)
6 1/4 · ‖u− u∗‖1

(
using k 6 S/16

)
(2.10)

Combine (2.9) and (2.10) to obtain (2.2). z

3. Relation to RIP

Here we pursue the connection between RIP and width property of matrices.

Definition 3.1 — A matrix A ∈ Rn×m has the (k, δ)-Restricted Isometry Property
(RIP) iff for all x ∈ Rm so that ‖x‖0 6 k

(1− δ)‖x‖2 6 ‖Ax‖2 6 (1 + δ)‖x‖2.(3.1)

It will be helpful to keep the following RIP theorems in mind:

Theorem 3.1 — A random (with independent Gaussian entries) A ∈ Rn×m with n =
Θ(k ln(m/k)) has the (k, 1/3)-RIP with high probability.

Corollary 3.1 — A random A ∈ Rn×m has the (n/ lnm, 1/3)-RIP w.h.p.

Theorem 3.2 — If A ∈ Rn×m is (O(k), 1/3)-RIP then for all u ∈ Rm

‖u− uA‖2 6
O(Errk1(u))

k1/2
6
O(‖u‖1)
k1/2

,(3.2)

where uA is the recovered signal using Basis Pursuit, defined in (2.1).
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The next lemma shows that if a matrix is good enough for LP decoding (e.g. if it is
RIP), then it must have the width property.

Lemma 3.1 (LP implies WP) — Let A ∈ Rn×m and k be so that∥∥∥arg min
δ∈ker(A)

‖u+ δ‖1
∥∥∥

2
6 k−1/2‖u‖1,(3.3)

then A has the width property with ‖x‖2 6 k−1/2‖x‖1 for all x ∈ ker(A).

Remark 3.1 — Corollary 3.1 asserts the existence of matrices A ∈ Rn×m with
(O(n/ lnm), 1/3)-RIP, which then have the width property with k = O(n/ lnm) accord-
ing to Lemma 3.1. Note that this is slightly weaker than (*), where k = O(n/ ln(m/n)) is
required.

Proof. — Set Γ = ker(A) and let u ∈ Γ. Then

arg min
δ∈ker(A)

‖u+ δ‖1 = −u

and (3.3) gives

‖u‖2 6 k−1/2‖u‖1.
z

4. Unresolved: Decoding with noise

When recovering u ∈ Rm “in the presence of noise” (See [3]), it is assumed that an error
e ∈ Rn occurs in the measurement process in which event the measured signal is Au+ e. In
this event, [3] consider a relaxed decoding procedure

minimize ‖u∗‖1 subject to ‖Au∗ − (Au+ e)‖2 6 ε,

where ε is the size of the error term e. In this event, a decoding error guarantee linear in ε
is obtained when A is RIP. It is unresolved whether a similar noise-resilience can be derived
for matrices with the width property only.
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