LP DECODING WITH BOUNDED-WIDTH MATRICES

NOTES BY PETAR MAYMOUNKOV

1. The width property

Definition $1.1-A$ subspace $\Gamma \subset \mathbb{R}^{m}$ of dimension $m-n$, where $n \leqslant m$, is said to have the width property iff all $x \in \Gamma$ are such that

$$
\begin{equation*}
\|x\|_{2} \leqslant \frac{\omega}{n^{1 / 2}}\|x\|_{1} \tag{}
\end{equation*}
$$

where $\omega=O\left(\ln (e m / n)^{1 / 2}\right)$.
Definition $1.2-A$ linear transformation $A \in \mathbb{R}^{n \times m}$, where $n<m$, of rank n has the width property iff $\operatorname{ker}(A)$ has the width property.

Matrices with the width property exist (See [1] for references), e.g. a random matrix has this property with high probability. Explicit constructions with slightly bigger ω are found in [2]. It is convenient to think of ω as being "small" compared to m.

Remark 1.1 - The subspace Γ provides a distortion- $\omega(m / n)^{1 / 2}$ embedding of ℓ_{2}^{m-n} into ℓ_{1}^{m} by the map

$$
\begin{equation*}
x \mapsto m^{1 / 2} \cdot U x \tag{1.1}
\end{equation*}
$$

where $U \in \mathbb{R}^{m \times(m-n)}$ is a column-wise orthonormal basis for Γ. To verify the distortion properties, use

$$
\frac{1}{m^{1 / 2}}\|x\|_{1} \leqslant\|x\|_{2} \leqslant \frac{\omega}{n^{1 / 2}}\|x\|_{1}
$$

Let $S=n / \omega^{2}$. The following two lemmas show that (in this order):
(a) Vectors in Γ have large support, and
(b) Their mass is evenly distributed across their support

Lemma $1.1-$ Let $0 \neq x \in \Gamma$, then $\|x\|_{0} \geqslant S$.

Proof. - Set $k=\|x\|_{0}$

$$
\|x\|_{1} \leqslant k^{1 / 2}\|x\|_{2} \leqslant k^{1 / 2} \frac{\omega}{n^{1 / 2}}\|x\|_{1}
$$

The first inequality is Cauchy-Schwarz, the second follows from (*).
Lemma $1.2-$ Let $0 \neq x \in \Gamma$, then for any index set $\Lambda \subseteq[m]$ with $|\Lambda|<S / 4$ one has $\left\|x_{\Lambda}\right\|_{1}<\|x\|_{1} / 2$.

Proof. - Set $k=|\Lambda|$

$$
\begin{array}{rlr}
\left\|x_{\Lambda}\right\|_{1} & \leqslant k^{1 / 2}\left\|x_{\Lambda}\right\|_{2} & \text { (using Cauchy-Schwarz) } \\
& \leqslant k^{1 / 2}\|x\|_{2} & \\
& \leqslant k^{1 / 2} \omega \frac{\|x\|_{1}}{n^{1 / 2}} & (\text { using 平 }) \\
& <\|x\|_{1} / 2 & (\text { using } k<S / 4)
\end{array}
$$

2. LP decoding

Note that all results in this section are more or less obvious when thinking of $\delta \in \operatorname{ker}(A)$ as an evenly spread out vector.

Lemma 2.1 - If $u \in \mathbb{R}^{m}$ with $\|u\|_{0}<S / 4$, then for all $0 \neq x \in \Gamma$ we have $\|u+x\|_{1}>$ $\|u\|_{1}$.

Proof. -

$$
\begin{aligned}
\|u+x\|_{1} & =\left\|u_{\Lambda}+x_{\Lambda}\right\|_{1}+\left\|x_{\bar{\Lambda}}\right\|_{1} \\
& \geqslant\left\|u_{\Lambda}\right\|_{1}-\left\|x_{\Lambda}\right\|_{1}+\left\|x_{\bar{\Lambda}}\right\|_{1} \\
& =\|u\|_{1}+\|x\|_{1}-2\left\|x_{\Lambda}\right\|_{1} \\
& >\|u\|_{1}
\end{aligned}
$$

In the last derivation we use that $\|x\|_{1}-2\left\|x_{\Lambda}\right\|_{1}>0$, which follows from Lemma 1.2 ,
Remark 2.1 - Recall that for a signal u the Basis Pursuit algorithm computes an approximation u_{A} of u

$$
\begin{equation*}
u_{A}:=u+\underset{\delta \in \operatorname{ker}(A)}{\arg \min }\|u+\delta\|_{1} \tag{2.1}
\end{equation*}
$$

by solving the Linear Program (LP)

$$
\text { minimize }\left\|u^{*}\right\|_{1} \text { subject to } A u^{*}=A u
$$

Here $u^{*}=u+\delta$. Lemma 2.1 thus ensures that when $\|u\|_{0}<S / 4$ we can recover the signal exactly, i.e. $u=u_{A}$, when A is a matrix with the width property. The next theorem provides recovery guarantees for the case when the signal is not necessarily sparse.

Theorem 2.1 - For any u and u^{*} such that $\left\|u^{*}\right\|_{1} \leqslant\|u\|_{1}, u^{*}-u \in \Gamma$ and $k \leqslant S / 16$ we have

$$
\begin{align*}
& \left\|u^{*}-u\right\|_{1} \leqslant 4 \cdot \operatorname{Err}_{1}^{k}(u), \text { and } \tag{2.2}\\
& \left\|u^{*}-u\right\|_{2} \leqslant k^{-1 / 2} \cdot \operatorname{Err}_{1}^{k}(u) \tag{2.3}
\end{align*}
$$

Remark 2.2 - Recall that

$$
\begin{equation*}
\operatorname{Err}_{p}^{k}(u)=\min _{\substack{w \\\|w\|_{0} \leqslant k}}\|w-u\|_{p} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{\Lambda}=\underset{\|w\|_{0} \leqslant k}{\arg \min }\|w-u\|_{p}, \tag{2.5}
\end{equation*}
$$

where u_{Λ} is the restriction of u to the index set Λ, and Λ is the index set of u 's k heaviest (in absolute value) coordinates.

Proof. - 2.3) follows directly from (2.2) and *. We now show 2.2. Let $\sigma=\operatorname{Err}_{1}^{k}(u)$.

$$
\begin{equation*}
\left\|u-u^{*}\right\|_{1}=\left\|u_{\Lambda}-u_{\Lambda}^{*}\right\|_{1}+\left\|u_{\bar{\Lambda}}-u_{\bar{\Lambda}}^{*}\right\|_{1} \tag{2.6}
\end{equation*}
$$

Consider the tail error first:

$$
\begin{equation*}
\left\|u_{\bar{\Lambda}}-u_{\bar{\Lambda}}^{*}\right\|_{1} \leqslant \underbrace{\left\|u_{\bar{\Lambda}}\right\|_{1}}_{\sigma}+\left\|u_{\bar{\Lambda}}^{*}\right\|_{1} \tag{2.7}
\end{equation*}
$$

Just using $\left\|u^{*}\right\|_{1} \leqslant\|u\|_{1}$ we bound

$$
\begin{array}{rlr}
\left\|u_{\Lambda}^{*}\right\|_{1} & \leqslant\left\|u_{\Lambda}\right\|_{1}+\left\|u_{\Lambda}\right\|_{1}-\left\|u_{\Lambda}^{*}\right\|_{1} & \text { (rewriting } \left.\left\|u^{*}\right\|_{1} \leqslant\|u\|_{1}\right) \\
& \leqslant\left\|u_{\Lambda}\right\|_{1}+\left\|u_{\Lambda}-u_{\Lambda}^{*}\right\|_{1} & \text { (triangular inequality) } \tag{2.8}
\end{array}
$$

Combine (2.7), 2.8) and (2.6)

$$
\begin{equation*}
\left\|u-u^{*}\right\|_{1} \leqslant 2\left\|u_{\Lambda}-u_{\Lambda}^{*}\right\|_{1}+2 \sigma \tag{2.9}
\end{equation*}
$$

Let's examine the head error now:

$$
\begin{align*}
\left\|u_{\Lambda}-u_{\Lambda}^{*}\right\|_{1} & \leqslant k^{1 / 2}\left\|u_{\Lambda}-u_{\Lambda}^{*}\right\|_{2} & & \text { (Cauchy-Schwarz) } \\
& \leqslant k^{1 / 2}\left\|u-u^{*}\right\|_{2} & & \\
& \leqslant k^{1 / 2} S^{-1 / 2}\left\|u-u^{*}\right\|_{1} & & \text { (width property) } \\
& \leqslant 1 / 4 \cdot\left\|u-u^{*}\right\|_{1} & & \text { (using } k \leqslant S / 16 \text {) } \tag{2.10}
\end{align*}
$$

Combine (2.9) and (2.10) to obtain (2.2).

3. Relation to RIP

Here we pursue the connection between RIP and width property of matrices.
Definition $3.1-A$ matrix $A \in \mathbb{R}^{n \times m}$ has the (k, δ)-Restricted Isometry Property (RIP) iff for all $x \in \mathbb{R}^{m}$ so that $\|x\|_{0} \leqslant k$

$$
\begin{equation*}
(1-\delta)\|x\|_{2} \leqslant\|A x\|_{2} \leqslant(1+\delta)\|x\|_{2} \tag{3.1}
\end{equation*}
$$

It will be helpful to keep the following RIP theorems in mind:
Theorem $3.1-A$ random (with independent Gaussian entries) $A \in \mathbb{R}^{n \times m}$ with $n=$ $\Theta(k \ln (m / k))$ has the ($k, 1 / 3)$-RIP with high probability.

Corollary $3.1-A$ random $A \in \mathbb{R}^{n \times m}$ has the ($n / \ln m, 1 / 3$)-RIP w.h.p.
Theorem 3.2 - If $A \in \mathbb{R}^{n \times m}$ is $(O(k), 1 / 3)$-RIP then for all $u \in \mathbb{R}^{m}$

$$
\begin{equation*}
\left\|u-u_{A}\right\|_{2} \leqslant \frac{O\left(\mathbf{E r r}_{1}^{k}(u)\right)}{k^{1 / 2}} \leqslant \frac{O\left(\|u\|_{1}\right)}{k^{1 / 2}}, \tag{3.2}
\end{equation*}
$$

where u_{A} is the recovered signal using Basis Pursuit, defined in 2.1).

The next lemma shows that if a matrix is good enough for LP decoding (e.g. if it is RIP), then it must have the width property.

Lemma 3.1 (LP implies WP) - Let $A \in \mathbb{R}^{n \times m}$ and k be so that

$$
\begin{equation*}
\|\underset{\delta \in \operatorname{ker}(A)}{\arg \min }\| u+\delta\left\|_{1}\right\|_{2} \leqslant k^{-1 / 2}\|u\|_{1}, \tag{3.3}
\end{equation*}
$$

then A has the width property with $\|x\|_{2} \leqslant k^{-1 / 2}\|x\|_{1}$ for all $x \in \boldsymbol{\operatorname { k e r }}(A)$.
Remark 3.1 - Corollary 3.1 asserts the existence of matrices $A \in \mathbb{R}^{n \times m}$ with $(O(n / \ln m), 1 / 3)$-RIP, which then have the width property with $k=O(n / \ln m)$ according to Lemma 3.1. Note that this is slightly weaker than *, where $k=O(n / \ln (m / n))$ is required.

Proof. - Set $\Gamma=\operatorname{ker}(A)$ and let $u \in \Gamma$. Then

$$
\underset{\delta \in \operatorname{ker}(A)}{\arg \min }\|u+\delta\|_{1}=-u
$$

and (3.3) gives

$$
\|u\|_{2} \leqslant k^{-1 / 2}\|u\|_{1} .
$$

4. Unresolved: Decoding with noise

When recovering $u \in \mathbb{R}^{m}$ "in the presence of noise" (See [3]), it is assumed that an error $e \in \mathbb{R}^{n}$ occurs in the measurement process in which event the measured signal is $A u+e$. In this event, [3] consider a relaxed decoding procedure
minimize $\left\|u^{*}\right\|_{1}$ subject to $\left\|A u^{*}-(A u+e)\right\|_{2} \leqslant \epsilon$,
where ϵ is the size of the error term e. In this event, a decoding error guarantee linear in ϵ is obtained when A is RIP. It is unresolved whether a similar noise-resilience can be derived for matrices with the width property only.

References

[1] Kashin and Temlyakov, A remark on compressed sensing, 2007
[2] Lee, Razborov and Guruswami, Almost Euclidean sections of ℓ_{1}^{N} using expander codes, in SODA'08
[3] Cands, Romberg and Tao, Stable signal recovery from incomplete and inaccurate measurements, in Comm. Pure Appl. Math., 59 1207-1223

