LOCAL PARTITIONING ALGORITHMS February 14, 2008

notes by Petar MAYMOUNKOV

1. PageRank method

DEFINITION 1.1. — Conductance of
$$S \subseteq G$$
 is given by

$$\Phi(S) := \frac{|\partial S|}{\min\{\operatorname{vol}(S), \operatorname{vol}(G-S)\}}$$

THEOREM 1.2 (Nibble). — Let $C \subseteq G$ be any set such that $vol(C) \leq vol(G)/2$ and $\Phi(C) \leq O(\phi^2/\ln^2 m)$. There is a $C^* \subseteq C$ so that $vol(C^*) \geq vol(C)/2$, and if $v \in C^*$ then there exists $b \in \{1, \ldots, \log m\}$ so that PageRank-Nibble (v, ϕ, b) finds a set $S \subseteq G$ so that:

- (i) Conductance: $\Phi(S) \leq \phi$,
- (ii) Volume: $2^b/2 \leq \operatorname{vol}(S) \leq 2/3 \cdot \operatorname{vol}(G)$,
- (iii) Intersection: $\operatorname{vol}(S \cap C) \ge 2^b/4$

Running time $O(2^b \ln^2 m/\phi^2)$.

THEOREM 1.3 (Partition). — If there exists $C \subseteq G$ with $\Phi(C) = O(\phi^2/\ln^2 m)$, then with high probability PageRank-Partition(ϕ) finds a set S such that:

(i) Conductance: $\Phi(S) \leq \phi$, and

(ii) Volume: $vol(S) \ge vol(C)/2$

Running time $O(m \ln^4 m/\phi^2)$.

2. Spielman's multi-partition

Spielman-Teng's Multi-Partition algorithm essentially (and roughly) guarantees:

THEOREM 2.1 (Multi-partition (roughly)). — For every $0 < \theta < 1$, Multi-Partition(θ) outputs a multi-partition $\{C_1, \ldots, C_k\}$ of G so that

- (i) The number of cross-cluster edges (cut size) is at most $O(\theta m \ln^2 m)$, and
- (ii) For all *i*, the conductance of the induced graph on C_i is at most $O(\theta^3 / \ln^3 m)$

Running time is $O(m \ln^{O(1)} m/\theta^5)$. This can be improved slightly using PageRank-Partition as a subroutine.