
Rateless Codes and Big Downloads

Petar Maymounkov and David Mazières

� � � � � � �� �� �	
� � � � �� �� ��� � �� � �

–
NYU Department of Computer Science

Motivation
� Downloading big files in p2p systems (e.g. movies)

� Problem truncated downloads
- Transfer time of file � � average uptime

- Many more nodes with partial downloads than with complete
file

- Partial downloads tend to have overlapping information

- Suboptimal reconciliation protocols waste bandwidth

� Objectives
- Better bandwidth utilization = low overhead when reconciling

- High file availability (when source nodes leave network)

� Key idea: Rateless codes

Rateless codes

Encoding

Lossy channel

Decoding

Recovered � blocks w.h.p.

Received ��� � � � � blocks

File � blocks

Infinite encoding

Efficient rateless codes
� Public:

- LT codes [Luby]

- Online codes [Maymounkov]

Online LT

Encoding time/block � ��� � � ��� � �	� �

Blocks to decode � �
 � �� �
 � �� � �

Decoding � �� � � �� � � �� �

� Proprietary
- Raptor codes [Shokrollahi, Digital Fountain]

Design of on-line codes

Auxiliary blocks (� � � � �)

Composite Message

INNER

Check blocks

OUTER

Original message blocks (�)

Lossy channel

Received check blocks � � � � � �

Recovered original message

Partially-recovered composite
message blocks

OUTER

� 	

INNER

� 	

Auxiliary blocks

Original message
blocks

� �� �� �� �� �
Auxiliary blocks

� �� � � � � � � � � � �� � � � � � � � �

� � � � �� � � � � � � � �

� � � � � � � �

� � � � �� � � � � � � � � � � �

� Each message block is reflected in 3 random
auxiliary blocks

Check blocks

� � � �
� �� �� �� �� �� �� �

� �

Composite Message

� � � � �� � �

� � � � � � � � � � �

� � � � �

� Each check block generated independently

� To generate check block with ID � :
- Seed pseudo-random generator with �
- Choose 	
 � ��� � from a special distribution

- Set� to XOR of 	
 � �� � random composite message blocks

Decoding algorithm

1. 2. 3.

4. 5.
� � � �� �

� �

� � � �

� � � �� �

� �

� � � �� �

� �

� �

� � � �� �� � � �� �

� �

� �� � � �

� Repeat until entire original message recovered:
1. Find a check (auxiliary) block, s.t. all incorporated blocks are

known, except for one

2. Solve for it

Main idea
� Every transmitted block ID from source nodes is unique

- Sufficient information to recover the file accumulates quickly in the
network

- High file availability

� Exploit large check block ID space
- Observation: Nodes download many blocks from each other before

aborting connections

- Transmit data only in the form of check block streams

- Each stream concisely described by its ID � :

� � ��� �

Download state information

� Table of � �� � �� � � �� �� 	�
 � � pairs

 � � �� � � ��� �

 � � �� � � ��� �

 � � �� � � ��� �

�
�

 �

Downloading from a source node

� � �

�
�

Node � Source node

� ��� � � �	
 �� 	 �� ��� � �

� Source nodes can generate blocks from any stream

Downloading from a partial-knowledge
node

�
�

�

Node �Node �

�
�

�
�

�� � � �	
 �� 	 �� ��� � �

��� � � �	
 � � 	 �� � � � �

��� � � �	
 � � 	 �� � � � �

Conclusion

� Higher availability
- Only way for a knowledge overlap is, if blocks with same IDs

earlier came from the same non-source node

- Unavoidable! Optimal?

� Simple reconciliation
- Message cost = state table size

of pairs in table � # of streams within life-cycle of a download

� # of truncated downloads within life-cycle

- Number can be bound

