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Motivation
� Downloading big files in p2p systems (e.g. movies)

� Problem truncated downloads
- Transfer time of file � � average uptime

- Many more nodes with partial downloads than with complete
file

- Partial downloads tend to have overlapping information

- Suboptimal reconciliation protocols waste bandwidth

� Objectives
- Better bandwidth utilization = low overhead when reconciling

- High file availability (when source nodes leave network)

� Key idea: Rateless codes



Rateless codes
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Efficient rateless codes
� Public:

- LT codes [Luby]

- Online codes [Maymounkov]

Online LT
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� Proprietary
- Raptor codes [Shokrollahi, Digital Fountain]



Design of on-line codes
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� Each message block is reflected in 3 random
auxiliary blocks



Check blocks
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� Each check block generated independently

� To generate check block with ID � :
- Seed pseudo-random generator with �
- Choose 	
 � ���  � from a special distribution

- Set�  to XOR of 	
 � ��  � random composite message blocks



Decoding algorithm

1. 2. 3.

4. 5.
� � � �� �

� �

� � � �

� � � �� �

� �

� � � �� �

� �

� �

� � � �� �� � � �� �

� �

� �� � � �

� Repeat until entire original message recovered:
1. Find a check (auxiliary) block, s.t. all incorporated blocks are

known, except for one

2. Solve for it



Main idea
� Every transmitted block ID from source nodes is unique

- Sufficient information to recover the file accumulates quickly in the
network

- High file availability

� Exploit large check block ID space
- Observation: Nodes download many blocks from each other before

aborting connections

- Transmit data only in the form of check block streams

- Each stream concisely described by its ID � :
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Download state information

� Table of � �� � �� � � �� �� 	�
 � � pairs
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Downloading from a source node
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� Source nodes can generate blocks from any stream



Downloading from a partial-knowledge
node
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Conclusion

� Higher availability
- Only way for a knowledge overlap is, if blocks with same IDs

earlier came from the same non-source node

- Unavoidable! Optimal?

� Simple reconciliation
- Message cost = state table size

# of pairs in table � # of streams within life-cycle of a download

� # of truncated downloads within life-cycle

- Number can be bound


