Electric routing and concurrent flow cutting.

Jonathan Kelner, MIT Petar Maymounkov, MIT

ISAAC'09
\% Oblivious routing, history, results
$\%$ Geometry and routing
$\%$ Electric flow and electric routing
\% Congestion and L_{1} spectral inequalities
\& Remarks and other results

Outline
\% Oblivious routing, history, results
\% Geometry and routing
$\%$ Electric flow and electric routing
\% Congestion and L_{1} spectral inequalities
$\%$ Remarks and other results

Oblivious routing_problem

(1) Graph instance

(3) Adversarial

Ratio $\eta=\max _{G, D} \frac{\left\|t_{\text {obl }}\right\|_{\infty}}{\left\|t_{\text {opt }}\right\|_{\infty}}$
$\left\|t_{\text {ob }}\right\|_{\infty}=2$

Input family	Type	Ratio $\frac{\left\\|t_{\text {ob }}\right\\|_{p}}{\left\\|t_{\text {opt }}\right\\|_{p}}$	Time	
hypercube	ℓ_{2}	$O(\log n)$	n / a	Valiant'81
any	ℓ_{∞}	$O\left(\log ^{3} n\right)$	$\exp (n)$	Räcke'02
any	ℓ_{∞}	$O\left(\log ^{2} n \cdot \log \log n\right)$	poly (n)	Harrelson'03
any	$\ell_{1 \leqslant p \leqslant \infty}$	$O(\log n)$	poly (n)	Räcke'08'10
expanders	ℓ_{∞}	$O(\log n)$	$\tilde{O}(n)$	this work
$"$	$\ell_{1 \leqslant p \leqslant \infty}$	$"$	n / a	Lawler'09

\% Ratio lower-bound $\Omega(\log n / \log \log n)$ for expanders Hajiaghayi'06

* Computation
\% Vertices $=$ processors, edges $=$ communication links
\% $O(\log n)$ rounds of communication (for expanders)
- Asynchronous version as well
* Computation
\div Vertices $=$ processors, edges $=$ communication links
\% $O(\log n)$ rounds of communication (for expanders)
*- Asynchronous version as well
$\%$ Routing scheme representation
$\%$ Per-vertex routing tables of size $\operatorname{deg}(v) \cdot n$
$\%$ Computation
\div Vertices $=$ processors, edges $=$ communication links
\% $O(\log n)$ rounds of communication (for expanders)
*- Asynchronous version as well
$\%$ Routing scheme representation
$\%$ Per-vertex routing tables of size $\operatorname{deg}(v) \cdot n$
\% Querying the routing scheme
\% At vertex v, given source s and $\operatorname{sink} t$,
\because Compute the next hop in $O(1)$ time using local table

New Mathematics

$\%$ Prior schemes on ℓ_{∞} congestion use tree decompositions
\% We use electric flow
\& Prior schemes on ℓ_{∞} congestion use tree decompositions
© We use electric flow
\because We use a geometric framework
\& Ratio bound equals $\left\|L^{\dagger}\right\|_{1 \rightarrow 1} \leqslant O\left(\frac{\log n}{\lambda}\right)$
$\%$ New rounding techniques
© Also see Lawler'09
\& Prior schemes on ℓ_{∞} congestion use tree decompositions
© We use electric flow
\& We use a geometric framework
$\%$ Ratio bound equals $\left\|L^{\dagger}\right\|_{1 \rightarrow 1} \leqslant O\left(\frac{\log n}{\lambda}\right)$
© New rounding techniques
© Also see Lawler'09
$\ddot{\circ}$ Fault-tolerance $=$ statements about distribution of edge-flow in electric current

Outline

\% Oblivious routing, history, results
$\%$ Geometry and routing
\% Electric flow and electric routing
\% Congestion and L_{1} spectral inequalities
\& Remarks and other results

Demand and flow
\because A demand is a vector like $d=\mathbb{1}_{s}-\mathbb{1}_{t}$
$\%$ Formally, any $d \in \mathbb{R}^{v}$ with $\sum_{v} d_{v}=0$

$\%$ A demand is a vector like $d=\mathbb{1}_{s}-\mathbb{1}_{t}$ \because Formally, any $d \in \mathbb{R}^{v}$ with $\sum_{v} d_{v}=0$

\because Fix any orientation $u \rightarrow v$ on G's edges
$\%$ A demand is a vector like $d=\mathbb{1}_{s}-\mathbb{1}_{t}$ \because Formally, any $d \in \mathbb{R}^{v}$ with $\sum_{v} d_{v}=0$

\because Fix any orientation $u \rightarrow v$ on G's edges
\because A flow is a vector $f \in \mathbb{R}^{E}$
© Think $f_{(u, v)}$ flow travels from u to v if $u \rightarrow v$

Divergence operator, flow-demand connection

© The divergence operator, div: $\mathbb{R}^{E} \rightarrow \mathbb{R}^{V}$,
\& Maps an edge flow to vertex flow imbalance

Divergence operator, flow-demand connection

\% The divergence operator, div: $\mathbb{R}^{E} \rightarrow \mathbb{R}^{V}$,
\% Maps an edge flow to vertex flow imbalance
\% Vertex flow imbalance $=$ incoming flow - outgoing flow

$$
(\operatorname{div} \cdot f)_{v}=\sum_{u: u \rightarrow v} f_{(u, v)}-\sum_{w: v \rightarrow w} f_{(w, v)}
$$

\& The divergence operator, div: $\mathbb{R}^{E} \rightarrow \mathbb{R}^{V}$,
\% Maps an edge flow to vertex flow imbalance
\& Vertex flow imbalance $=$ incoming flow - outgoing flow

$$
(\operatorname{div} \cdot f)_{v}=\sum_{u: u \rightarrow v} f_{(u, v)}-\sum_{w: v \rightarrow w} f_{(w, v)}
$$

© Say that flow f routes demand d if $\operatorname{div} \cdot f=d$

Linear routing schemes
\% A linear routing scheme is a function R such that
$\because R$ maps a demand to a flow that routes it, and $\because R: \mathbb{R}^{V} \rightarrow \mathbb{R}^{E}$ is linear

Linear routing schemes

\% A linear routing scheme is a function R such that
$\div R$ maps a demand to a flow that routes it, and
$\because R: \mathbb{R}^{V} \rightarrow \mathbb{R}^{E}$ is linear
$\%$ Algebraically,
$\because R: \mathbb{R}^{V} \rightarrow \mathbb{R}^{E}$ is a routing iff linear and div $R \cdot d=d$ for all d

Linear routing schemes

\% A linear routing scheme is a function R such that
$\div R$ maps a demand to a flow that routes it, and
$\because R: \mathbb{R}^{V} \rightarrow \mathbb{R}^{E}$ is linear
$\%$ Algebraically,
$\because R: \mathbb{R}^{V} \rightarrow \mathbb{R}^{E}$ is a routing iff linear and div $R \cdot d=d$ for all d
© Examples
\% Routing along a spanning tree, or
$\%$ Electric routing

Sets of demands and flows

\because Write a set of demands $\left\{d_{i} \in \mathbb{R}^{V}\right\}_{i=1, \ldots, k}$ as $\oplus_{i} d_{i} \in \mathbb{R}^{V \times k}$
© Similarly, a set of flows $\left\{f_{i} \in \mathbb{R}^{E}\right\}_{i=1, \ldots, k}$ as $\oplus_{i} f_{i} \in \mathbb{R}^{E \times k}$

* $x \oplus y$ means concatenate column vectors x and y into $\left(\begin{array}{cc}1 & 1 \\ x & y \\ 1 & 1\end{array}\right)$.

Sets of demands and flows

\because Write a set of demands $\left\{d_{i} \in \mathbb{R}^{V}\right\}_{i=1, \ldots, k}$ as $\oplus_{i} d_{i} \in \mathbb{R}^{V \times k}$
\% Similarly, a set of flows $\left\{f_{i} \in \mathbb{R}^{E}\right\}_{i=1, \ldots, k}$ as $\oplus_{i} f_{i} \in \mathbb{R}^{E \times k}$
\because Say flows $\oplus_{i} f_{i}$ route demands $\oplus_{i} d_{i}$ if $\operatorname{div} \cdot\left(\oplus_{i} f_{i}\right)=\oplus_{i} d_{i}$
\because Simply means:
\because Flow f_{i} routes demand d_{i} for all i, by applying
"flow f routes demand d if $\operatorname{div} \cdot f=d$ "

* $x \oplus y$ means concatenate column vectors x and y into $\left(\begin{array}{ll}1 & 1 \\ x & y \\ 1 & 1\end{array}\right)$.

Congestion and norms

$\ddot{\circ}$ For a set of flows $F=\oplus_{i} f_{i}$ the congestion equals
$\%$ The traffic on the most loaded edge, or
$\because\left\|F^{*}\right\|_{1 \rightarrow 1}$ where $\|A\|_{1 \rightarrow 1}:=\sup _{x} \frac{\|A x\|_{1}}{\|x\|_{1}}$
$\%$ Notably, congestion is a norm (over $\mathbb{R}^{E \times \infty}$)
$\%$ Abbreviate it as $\|F\|$
\because Recall, for a scheme R, ratio is $\eta_{R}:=\max _{D} \frac{\|R(D)\|}{\|\operatorname{opt}(D)\|}$
$\%$ W.L.O.G. $\|\operatorname{opt}(D)\|=1$

Theorem For all such $D,\|R(D)\| \leqslant\left\|R\left(D_{\text {worst }}\right)\right\|$, where $D_{\text {worst }}$ demands one unit of flow between endpoints of every edge in G.
\because So, $\eta_{R}=\left\|R\left(D_{\text {worst }}\right)\right\|$
\therefore Oblivious routing, history, results $\%$ Geometry and routing
$\%$ Electric flow and electric routing $\%$ Congestion and L_{1} spectral inequalities
\% Remarks and other results

Electric flow

\& How to map demand to electric flow?

$$
\nabla \cdot L^{\dagger}: \mathbb{R}^{V} \rightarrow \mathbb{R}^{E}
$$

Electric flow

\& How to map demand to electric flow?

$$
\nabla \cdot L^{\dagger}: \mathbb{R}^{V} \rightarrow \mathbb{R}^{E}
$$

\% where $\nabla: \mathbb{R}^{V} \rightarrow \mathbb{R}^{E}$ maps vertex potentials to edge potential differences

Electric flow

\& How to map demand to electric flow?

$$
\nabla \cdot L^{\dagger}: \mathbb{R}^{V} \rightarrow \mathbb{R}^{E}
$$

\& where $\nabla: \mathbb{R}^{V} \rightarrow \mathbb{R}^{E}$ maps vertex potentials to edge potential differences
$\%$ and $L:=\operatorname{div} \cdot \nabla$

Derivation of electric flow

© Ohm's law: edge flow $=$ potential difference * edge conductance
\% ∇ maps vertex potentials to edge flow (Ohm's law)
\because div maps edge flows to vertex flow imbalance (a.k.a. demand)
\% $\nabla \cdot L^{\dagger}$ maps demand to edge flows
\% Oblivious routing, history, results
$\%$ Geometry and routing
\% Electric flow and electric routing
\% Congestion and L_{1} spectral inequalities
$\%$ Remarks and other results

Ratio of electric routing

$\%$ Electric routing operator is $\nabla \cdot L^{\dagger}$
$\%$ Worst-case demands are $D_{\text {worst }}$ (by theorem)
One unit of demand between the endpoints of every edge in G.
\& So, competitive ratio equals $\left\|\nabla \cdot L^{\dagger} \cdot D_{\text {worst }}\right\|$

Ratio of electric routing

$\%$ Electric routing operator is $\nabla \cdot L^{\dagger}$
$\%$ Worst-case demands are $D_{\text {worst }}$ (by theorem)
One unit of demand between the endpoints of every edge in G.
$\ddot{\circ}$ So, competitive ratio equals $\left\|\nabla \cdot L^{\dagger} \cdot D_{\text {worst }}\right\|$

$$
\approx\left\|L^{\dagger}\right\|_{1 \rightarrow 1} \text { when } G \text { is bounded degree }
$$

$\%$ Electric routing operator is $\nabla \cdot L^{\dagger}$
$\%$ Worst-case demands are $D_{\text {worst }}$ (by theorem)
One unit of demand between the endpoints of every edge in G.
$\ddot{\circ}$ So, competitive ratio equals $\left\|\nabla \cdot L^{\dagger} \cdot D_{\text {worst }}\right\|$

$$
\begin{aligned}
& \approx\left\|L^{\dagger}\right\|_{1 \rightarrow 1} \text { when } G \text { is bounded degree } \\
& =\max _{s \neq t}\left\|\nabla \cdot L^{\dagger}\left(\mathbb{1}_{s}-\mathbb{1}_{t}\right)\right\|_{1}
\end{aligned}
$$

Laplacian $\ell_{1} \rightarrow \ell_{1}$ norm bound

Theorem:
$\left\|\nabla L^{\dagger}\left(\mathbb{1}_{s}-\mathbb{1}_{t}\right)\right\|_{1} \leqslant O(\log n)$, if $\min _{S \subseteq v} \frac{\left|E\left(S, S^{\complement}\right)\right|}{\min |S|,\left|S^{\complement}\right|}=O(1)$.
$\dot{\circ}$ Think $\left(\mathbb{1}_{s}-\mathbb{1}_{t}\right) \stackrel{L^{\dagger}}{\longmapsto} x \stackrel{\nabla}{\longmapsto} f$, and ask $\|f\|_{1} \leqslant$?
$\%$ Local property: Sum of edge lengths on any cut equals 1

Rounding argument

$k_{i}=$ number of edges cut by c_{i}
$n_{i}=$ number of vertices to left of c_{i}
Idea Make a few cuts, then upperbound total edge length by (scaled) edge length on cuts.
$\%$ Invariant $k_{i}=\Theta\left(n_{i}\right)$
\because Cut spacing $\Delta_{i+1}=\left|c_{i}-c_{i+1}\right|=$ twice the avg. edge length on c_{i}
$\Rightarrow k_{i+1} \leqslant \theta k_{i}$ where $0<\theta<1$ const.
$\Rightarrow \Delta_{i+1} \geqslant \frac{\Delta_{i}}{\theta}$
$\%$ Using $\sum_{i} \Delta_{i} \leqslant \lambda^{-1}=O(1)$
\% Conclude at most $O(\log n)$ cuts
\% Oblivious routing, history, results
\because Geometry and routing
\% Electric flow and electric routing
\% Congestion and L_{1} spectral inequalities
\% Remarks and other results
© Computation

* Approximate L^{\dagger} by low-degree power-series polynomial in L
$\%$ Multiplication by L is one distributed step
\& Potential perturbation
© Computed potentials are not exact
\% Theorem Electric flow under perturbed potentials as good
$\%$ Laplacian symmetrization to get degree independence

Thank you!

petar@csail.mit.edu

