Problem Set 2, Petar Maymounkov

6.841J - Advanced Complexity with Prof. Madhu Sudan

Collaborators: Oren Weimann, Alex Andoni, Krzysztof Onak

1. Circuit-size Hierarchy:

Let F_{n} be the set of binary functions on n variables, and $C_{n}(t(n))$ be the set of binary functions on n variables computable by circuits of size at most $t(n)$.

We use that every $f \in F_{n}$ can be computed by some $c_{f} \in C_{n}\left(O\left(2^{n} / n\right)\right)$, and therefore $F_{n} \subseteq$ $C_{n}\left(O\left(2^{n} / n\right)\right)$. Furthermore, we use that $\left|C_{n}(t(n))\right|=2^{O(t(n) \ln t(n))}$.

Set $x(n)=\ln (f(n) \ln f(n))$. Note that $x(n) \leq n$. Set $A=C_{n}(o(f(n))), B=F_{x}$ and $C=$ $C_{n}\left(O\left(2^{x} / x\right)\right)$. We will show that $A \varsubsetneqq B \subseteq C$ which would imply that there exists $g \in F_{x} \subseteq F_{n}$ computable by a $(f(n) \ln f(n))$-size circuit, and not computable by a $o(f(n))$-size circuit. $B \subseteq C$ follows immediately from the facts above. For $A \nsubseteq B$ we use that $|A| \leq 2^{o(f(n) \ln f(n))} \ll f(n)^{f(n)}=$ $|B|$.

2. Poly-size Circuits:

If NP $\subseteq \mathrm{P} /$ poly then Ladner's theorem provides the desired language. Otherwise, $\mathrm{NP} \not \subset \mathrm{P} /$ poly and hence no NP-hard language is in $\mathrm{P} /$ poly. On the other hand, the unary halting problem (in $\mathrm{P} / 1$) is not in NP. And we are done.
$\operatorname{TIME}\left(2^{n^{\log n}}\right) \not \subset \mathrm{P} /$ poly: We would like to build a machine M such that for all input lengths $n \in \mathbb{N}$, and all circuits $C \in \mathrm{NC}$ of size at most $g=n^{\sqrt{\log n}}$ (super-polynomial), there exists $x \in\{0,1\}^{n}$ with $M(x) \neq C(x)$. Since $g(n)$ is super-polynomial, eventually M will differ from all polynomial-size circuits.

Let $C=c_{1}, \ldots, c_{m}$ be an enumeration of all circuits on n inputs of size at most $g=n^{\sqrt{\log n}}$. By counting, $m \leq 3^{g}(g+n)^{2 g}=2^{O(g \log g)}$. Let $\alpha_{1}, \ldots, \alpha_{2^{n}}$ be all possible values of the input. $M(x)$ is computed as follows:

1. Set $i \leftarrow 1$ and $R \leftarrow C$
2. While $R \neq \varnothing$, repeat:
i. $M\left(\alpha_{i}\right) \leftarrow \neg \operatorname{Maj}(R)$
ii. $R \leftarrow\left\{c \in C \mid c\left(\alpha_{i}\right) \neq M\left(\alpha_{i}\right)\right\}$
iii. $i \leftarrow i+1$
3. For $j \geq i$ set $M\left(\alpha_{j}\right) \leftarrow 0$

We are thus left to show that M runs in time $2^{n^{\log n}}$. It is easy to see that M simulates at most $2 m$ circuits, each requiring $n^{\sqrt{\log n}}$ steps, for a total:

$$
2^{O\left(n \sqrt{\log n} \cdot \log ^{3 / 2} n\right)} \ll 2^{O\left(n^{\log n}\right)}
$$

3. CNF, DNF, and Branching Programs:

Let k-DNF formula $\Phi_{\text {DNF }}$ and an l-CNF formula $\Phi_{\text {CNF }}$ be given for a boolean function $f:\{0,1\}^{n} \rightarrow$ $\{0,1\}$. It then immediately follows that the following hold:

$$
\begin{align*}
& \bigwedge_{C \in \Phi_{\mathrm{CNF}}} \bigwedge_{T \in \Phi_{\mathrm{DNF}}} \bigwedge_{T \in \Phi_{\mathrm{DNF}}} \bigwedge_{l \in T} C \ni l \\
& \bigvee_{\mathrm{CNF}} T \ni l
\end{align*}
$$

Where T is a term, C is a clause and l is a literal.
Let $A_{k, l}$ be the set of binary functions on n variables that have a k-DNF and an l-CNF formulas. For a fixed function $\Phi \in A_{k, l}$ we describe a depth- k branching program (BP) that either evaluates Φ on an input $x \in\{0,1\}^{n}$ or makes a recursive call to a BP evaluator for $\Phi^{\prime} \in A_{k, l-1}$ on $x^{\prime} \in\{0,1\}^{n-k}$, where $x^{\prime} \subset x$.

Let $T \in \Phi_{\mathrm{DNF}}$ be a DNF term and assume $T=x_{1} \ldots x_{k}$. If T is true in x then halt and output " 1 ". Otherwise, according to (\dagger) we can remove at least one literal (in T) from each clause in $\Phi_{\text {CNF }}$ thus obtaining Φ^{\prime}, which we evaluate on x_{k+1}, \ldots, x_{n} recursively.

Similarly, for $\Phi \in A_{k, l}$ we have a depth-l BP that either evaluates Φ on x, or makes a recursive call to a BP evaluator for $\Phi^{\prime} \in A_{k-1, l}$ on $x^{\prime} \in\{0,1\}^{n-l}$, where $x^{\prime} \subset x$.

Using these two constructions, it is straightforward that $f(k, l) \leq k l+\min \{k, l\}$. (You can also do a little better and get $k l$.)

4. Finding a satisfying assignment when there are many:

(This solution is adapted from Hirsch'98.) For a formula f on n variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$ we let $f\left[l_{1}, \ldots, l_{k}\right]$, where $L=\left\{l_{1}, \ldots, l_{k}\right\}$ are literals in X, be the formula obtained by restricting f 's inputs correspondingly.

For a k-CNF f consider the following algorithm:

1. $i \leftarrow 0, \Phi_{0}=\{f\}$ and $\Phi_{1}=\cdots=\Phi_{n}=\varnothing$
2. For all $g \in \Phi_{i}$, do:
i. Let $\left(l_{1} \vee \cdots \vee l_{r}\right)$ be the shortest clause in g
ii. Consider the restrictions $g\left[l_{1}\right], g\left[\overline{l_{1}}, l_{2}\right], \ldots, g\left[\overline{l_{1}}, \ldots, \overline{l_{r-1}}, l_{r}\right]$. If any one of them is $\equiv 1$ then halt the algorithm and output a satisfying assignment for f. Otherwise, set $\Phi_{i+1} \leftarrow \Phi_{i+1} \cup$ $\left\{g\left[l_{1}\right], g\left[\overline{l_{1}}, l_{2}\right], \ldots, g\left[\overline{l_{1}}, \ldots, \overline{l_{r-1}}, l_{r}\right]\right\}$
3. $i \leftarrow i+1$. If $i>d$, where d is a threshold to be specified later, halt the algorithm and output " f has less than $\epsilon 2^{n}$ satisfying assignments"
4. Go to step 2

Let T be the abstract tree induced by this algorithm, where each node v corresponds to a restriction $v=f[\ldots]$ and a node u is a parent of v iff v is a restriction of u created in step 2.ii. of the algorithm. Let T be a subtree and v be a node in it. We define the floor of v with respect to T, denoted $\varphi_{T}(v)$, to be the number of variables in T 's root that are restricted in v. Furthermore, we refine our notation by $\Phi_{i}^{T}:=\left\{v \in T \mid \varphi_{T}(v)=i\right\}$, and thus $\Phi_{i}=\Phi_{i}^{R}$ where R is the whole tree.

Let's make an argument for soundness first. Assume the algorithm has reached to the point when Φ_{i} is complete, but it hasn't been processed yet (step 2). This implies that there are no satisfying partial assignments of at most i variables and furthermore any potential satisfying assignment must also be satisfying for some $v \in \Phi_{i} \cup \cdots \cup \Phi_{i+k-1}$. Every $v \in \Phi_{i+j}$, where $0 \leq j<k$, can have at most 2^{n-i-j} satisfying assignments. Therefore, at this point of the execution we have certified that f has at most $M_{i}=\sum_{j=0}^{k-1}\left|\Phi_{i+j}\right| \cdot 2^{n-i-j}$ satisfying assignments in total. The threshold d is chosen so that the algorithm stops as soon as $M_{d} / 2^{n}<\epsilon$. This completes soundness. We now analyze the running time.

We begin by deriving that $\left|\Phi_{i}\right| \leq \lambda_{k}^{i}$ where λ_{k} is the unique positive solution of $h_{k}(x)=1-x^{-1}-$ $\cdots-x^{-k}$. Induct on the size of T. In the base, $|T|=1$ and we check that $\Phi_{0}=1 \leq \lambda_{k}^{0}=1$ and $\Phi_{i}=0<\lambda_{k}^{i}=1$ for $i>0$. For the step, we let R be the root of the tree and T_{1}, \ldots, T_{l}, where $0 \leq l \leq k$, be the subtrees of its children:

$$
\left|\Phi_{i}^{R}\right|=\sum_{j=1}^{l}\left|\Phi_{i-j}^{T_{j}}\right| \leq \sum_{j=1}^{l} \lambda_{k}^{i-j}=\lambda_{k}^{i} \sum_{j=1}^{l} \lambda_{k}^{-j} \leq \lambda_{k}^{i} \sum_{j=1}^{k} \lambda_{k}^{-j}=\lambda_{k}^{i} \cdot\left(1-h_{k}\left(\lambda_{k}\right)\right) \leq \lambda_{k}^{i}
$$

Using this bound we can now derive $d \geq \frac{\log 2 / \epsilon}{\log 2 / \lambda_{k}}$ using $M_{d} / 2^{n}<\epsilon$ and:

$$
\sum_{j=0}^{k-1}\left|\Phi_{d+j}\right| \cdot 2^{n-d-j} \leq \sum_{j=0}^{k-1} \lambda_{k}^{d} \cdot 2^{n-d-j} \leq 2 \cdot \lambda_{k}^{d} \cdot 2^{n-d}
$$

We have thus far shown that if a f has "many" satisfying assignments, then it has a partial satisfying assignment on $\frac{\log 2 / \epsilon}{\log 2 / \lambda_{k}}+k-1$ variables.
Finally, we need to show that the size of the tree is small:

$$
|T|=\sum_{i=0}^{i-1}\left|\Phi_{i}\right|+\sum_{j=0}^{k-1}\left|\Phi_{i+j}\right| \leq \sum_{i=0}^{i-1} \lambda_{k}^{i}+k \cdot \lambda_{k}^{i}=\cdots=O\left(k(2 / \epsilon)\left(\log _{\lambda_{k}} 2-1\right)^{-1}\right)
$$

The algorithm spends L steps at each tree node, where L is the size of f. This concludes the proof that the algorithm runs in polynomial time.

5. Majority:

As seen from Smolensky's proof that $\oplus_{2} \notin \mathrm{AC}^{0}$, it is the case that $\oplus_{3} \notin \mathrm{AC}_{\oplus_{2}}^{0}$ (where $\mathrm{AC}_{\oplus_{2}}$ stands for $A C$ with parity gates). Therefore, it would be sufficient to show that $\oplus_{3} \leq$ Maj using a constant depth, polynomial size reduction.

For $x \in\{0,1\}^{n}$, let $\geq_{1, t}(x)$ be a circuit that determines if $\#_{1}(x) \geq t$, where $\#_{1}(x)$ is the number of 1 's in x. To implement $\mathrm{GE}_{1, t}(x)$, assume w.l.o.g. $t \leq n / 2$ and verify that $\mathrm{GE}_{1, t}(x):=\operatorname{Maj}\left(1^{n-2 t} \cdot x\right)$
works. We can now also implement $\mathrm{EQ}_{1, t}(x)$ which decides whether x has exactly t entries 1 , as $\mathrm{EQ}_{1, t}(x):=\mathrm{GE}_{1, t}(x) \wedge \mathrm{GE}_{0,|x|-t}(x)$.

Then, set $k:=\lceil n / 3\rceil$ and define:

$$
\oplus_{3}(x):= \begin{cases}0, & \text { if } \bigvee_{i=0}^{k} \operatorname{EQ}_{1,3 k}(x) \\ 1, & \text { if } \bigvee_{i=0}^{k} \operatorname{EQ}_{1,3 k+1}(x) \\ 2, & \text { otherwise }\end{cases}
$$

This completes the reduction $\oplus_{3} \leq \mathrm{Maj}$ (and the problem).

6. A Lower Bound via Communication Complexity:

We assume for contradiction that there exists a 1-tape Turing machine M that solves the PALINDROME language in $o\left(n^{2}\right)$ time. Using M we build a communication protocol for EQ which has worst-case complexity $o(n)$, leading to a contradiction.

Let Alice be given $x \in\{0,1\}^{n}$ and Bob be given $y \in\{0,1\}^{n}$. (Making sure that $|x|=|y|$ is trivial using two $\log n$-bit rounds.)
Alice runs M on input $w_{x}=x \cdot 0^{n} \cdot x^{R}$ and recognizes a location $i_{x} \in[n+1,2 n]$ on the tape such that the number of times M 's pointer passes through i_{x} is $o(n)$. Let's see why such an i always exists. Let $c_{i}(w)$ be the number of times M 's pointer passes through i during computation on w. Since M runs in $o\left(n^{2}\right)$, we have that $\sum_{n<i \leq 2 n} c_{i}(w)=o\left(n^{2}\right)$, and thus by averaging there is an i_{x} for which $c_{i_{x}}(w)=o(n)$. Bob performs a similar computation with $w_{y}=y \cdot 0^{n} \cdot y^{R}$.

Next, Alice and Bob exchange the indices i_{x} and i_{y} in two rounds of $\log n$-bits each. If the indices differ, then $x \neq y$ and the protocol is over. Otherwise:

Alice and Bob simulate an imaginary run of M on tape $x \cdot 0^{n} \cdot y^{R}$, such that at any point either Alice or Bob is simulating and they alternate whenever M 's cursor passes through the agreed upon location i. Control is transferred by sending M 's state in $O(1)$-bits.

If $x=y$ the simulated computation will go exactly as Alice and Bob expect, in $o(n)$ rounds and bits and they will accept. If $x \neq y$, it must be the case that Alice or Bob halts M pre-maturely, or the state of M at hand-off is not what is expected. We have thus obtained a protocol for EQ which requires $o(n)$-bits communication complexity in the worst case - a contradiction.

