Petar Maymounkov

MIT 6.859 - Randomness and Computation, with Ronitt Rubinfeld
Collaborators: Benjamin Rossman

Problem Set 5 - Solutions

Problem 1

We have Ext : $\{0,1\}^{n} \rightarrow\{0,1\}$ and $0 \leq \delta \leq 1 / 2$. Observe that there is $D \subseteq\{0,1\}^{n}$ with $|D|=2^{n} / 2$ where Ext is constant. Fix one such D. Define the SV-source X as:

$$
\operatorname{Pr}[X=x]= \begin{cases}2 \delta / 2^{n}, & \text { if } x \notin D \\ 2(1-\delta) / 2^{n}, & \text { otherwise }\end{cases}
$$

Note that if $\operatorname{Ext}(D)=0$ then $\operatorname{Pr}[\operatorname{Ext}(X)=1] \leq \delta$, otherwise $\operatorname{Pr}[\operatorname{Ext}(X)=1] \geq$ $1-\delta$. We have to show that X is an SV -source with parameter δ.

Given a fixed $i \in[n]$ and $x_{1}, \ldots, x_{i-1} \in\{0,1\}$, let:

$$
U_{b}=\left\{y \in\{0,1\}^{n} \mid y_{i}=b \wedge \bigwedge_{k \in[i-1]} y_{k}=x_{k}\right\}
$$

Also set $U_{*}=U_{0} \cup U_{1}$. For shorthand, let $p_{\beta}=\operatorname{Pr}\left[X \in U_{b}\right]$, where $\beta \in\{0,1, *\}$. Then:

$$
\operatorname{Pr}\left[X_{i}=1 \mid \bigwedge_{k \in[i-1]} X_{k}=x_{k}\right]=\frac{p_{1}}{p_{*}}=\frac{p_{1}}{p_{0}+p_{1}}=\frac{1}{1+p_{0} / p_{1}}
$$

Now, observe that $\left(2 \delta / 2^{n}\right)\left|U_{j}\right| \leq p_{j} \leq\left(2(1-\delta) / 2^{n}\right)\left|U_{j}\right|$ for $j \in\{0,1\}$. Since $\left|U_{0}\right|=$ $\left|U_{1}\right|$, we get:

$$
\frac{\delta}{1-\delta} \leq \frac{p_{0}}{p_{1}} \leq \frac{1-\delta}{\delta}
$$

Which, in turn, implies that:

$$
\delta \leq \frac{1}{1+p_{0} / p_{1}} \leq 1-\delta
$$

Problem 2

Part (a) Let Ext: $\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ be a fixed extractor, and let X be a fixed flat k-source on $K \subseteq\{0,1\}^{n}$ where $K \cong\{0,1\}^{k}$. If $d_{T V}\left(\operatorname{Ext}(X), U_{m}\right)>\epsilon$, then there must exist $A \subseteq\{0,1\}^{m}$ with $|A|=2^{m} / 2$ such that $\operatorname{Pr}_{x}[\operatorname{Ext}(x) \in A]>1 / 2+\epsilon / 2$.

The latter is equivalent to $\left|\operatorname{Ext}^{-1}(A)\right|>(1 / 2+\epsilon / 2) 2^{k}$. For a fixed A (of size $2^{m} / 2$), let $Y_{A}=\left|\operatorname{Ext}^{-1}(A)\right|$ (a random variable). And let Z_{i}, for $i \in K$, be the indicator that $\operatorname{Ext}(i) \in A$. Then $Y_{A}=\sum_{i \in K} Z_{i}$, and therefore $\mathbf{E}\left[Y_{A}\right]=\sum_{i \in K}|A| / 2^{m}=2^{k} / 2$.

Applying a Chernoff bound for Y_{A} yields that:

$$
\operatorname{Pr}_{\text {Ext }}\left[Y_{A}>(1 / 2+\epsilon / 2) 2^{k}\right]<\exp \left(-\epsilon^{2} 2^{k-1} / 3\right)
$$

Next, applying a union bound over all $A \subseteq\{0,1\}^{m}$ with $|A|=2^{m} / 2$ (at most $2^{2^{m}}$ in count) and using that $m=k-2 \log 1 / \epsilon-D$ (where $D=O(1))$ produces:

$$
\operatorname{Pr}_{\mathrm{Ext}}\left[\bigvee_{A \subseteq\{0,1\}^{m}} Y_{A}>(1 / 2+\epsilon / 2) 2^{k}\right]<\exp \left(2^{k} \epsilon^{2}\left(-1 / 6+(\ln 2) / 2^{D}\right)\right)
$$

Picking D to be sufficiently large completes the proof.

Part (b) Build Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ randomly. Observe that when Ext is fed a fixed flat k-source X_{k} and a random number U_{d}, it can be treated as a function $\{0,1\}^{n+d} \rightarrow\{0,1\}^{m}$ which is fed a specific $(k+d)$-source $Y_{k+d}=Y_{k+d}\left(X_{k}\right)$. Therefore part (a) applies and the probabibility that $\operatorname{Ext}\left(Y_{k+d}\right)$ fails to be at most ϵ-far from U_{m} is $2^{\Omega\left(-2^{k+d} \epsilon^{2}\right)}$. Taking a union bound over all X_{k} (equivalently over all Y_{k+d}) which are $\binom{2^{n}}{2^{k}} \leq 2^{k+k(n-k) \ln 2}$ in count, yields that the probability that Ext fails to be a (k, ϵ)-extractor is $2^{\Omega\left(-2^{k}(n-k) C^{\prime}+(n-k) k C^{\prime \prime}\right)}$. Choosing the constants C^{\prime} and $C^{\prime \prime}$ appropriately ensures that this probability is strictly less than 1 , and therefore by the probabilistic method, such an extractor must exist.

