Petar Maymounkov

MIT 6.859 - Randomness and Computation, with Ronitt Rubinfeld Collaborators: Benjamin Rossman

Problem Set 2 - Solutions

Problem 1

(a) Assume f, h and g are linear consistent, then there is some linear $\phi(\cdot)$ such that:

$$
\begin{aligned}
f(x) & =\phi(x)+a_{f} \\
g(y) & =\phi(y)+a_{g} \\
h(x+y) & =\phi(x+y)+a_{h}
\end{aligned}
$$

where $a_{f}+a_{g}=a_{h}$, therefore:

$$
\begin{aligned}
f(x)+g(y) & =\phi(x)+a_{f}+\phi(y)+a_{g} \\
& =\phi(x+y)+a_{h} \\
& =h(x+y)
\end{aligned}
$$

In the other direction, define $\phi(x)=h(x)-h(0)$. Check that $\phi(\cdot)$ is linear:

$$
\begin{aligned}
\phi(x)+\phi(y) & =h(y)-h(0)+h(y)-h(0) \\
& =f(x)+g(0)-h(0)+f(0)+g(y)-h(0) \\
& =(f(x)+g(y))+(f(0)+g(0))-2 h(0) \\
& =h(x+y)+h(0)-2 h(0) \\
& =h(x+y)-h(0) \\
& =\phi(x+y)
\end{aligned}
$$

For f, define $a_{f}=h(0)-g(0)$, then:

$$
f(x)=h(x)-g(0)=h(x)-h(0)+a_{f}=\phi(x)+a_{f}
$$

For g, define $a_{g}=h(0)-f(0)$, then:

$$
g(x)=h(x)-f(0)=h(x)-h(0)+a_{g}=\phi(x)+a_{g}
$$

For h, define $a_{h}=h(0)$, then:

$$
h(x)=h(x)-h(0)+h(0)=h(x)-h(0)+a_{h}=\phi(x)+a_{h}
$$

Finally, verify that:

$$
\begin{aligned}
a_{f}+a_{g} & =h(0)-g(0)+h(0)-f(0) \\
& =2 h(0)-(f(0)+g(0)) \\
& =h(0) \\
& =a_{h}
\end{aligned}
$$

(b) We know that $d\left(f, \chi_{S}\right)=(1-\hat{f}(S)) / 2$, we also know that $d\left(f,-\chi_{S}\right)=1-$ $d\left(f, \chi_{S}\right)$, therefore $d\left(f,-\chi_{S}\right)=(1+\hat{f}(S)) / 2$. Hence, we can compute:

$$
\begin{aligned}
\min _{S} d\left(f, \pm \chi_{S}\right) & =\min \left\{\min _{S} d\left(f, \chi_{S}\right), \min _{S} d\left(f,-\chi_{S}\right)\right\} \\
& =\min \left\{\frac{1}{2}\left(1-\max _{S} \hat{f}(S)\right), \frac{1}{2}\left(1+\min _{S} \hat{f}(S)\right)\right\} \\
& =\frac{1}{2}\left(1-\max _{S}|\hat{f}(S)|\right)
\end{aligned}
$$

And therefore (we will need this later):

$$
\min _{S} d\left(f, \pm \chi_{S}\right) \leq \delta \Leftrightarrow \max _{S}|\hat{f}(S)| \geq 1-2 \delta
$$

(c) Begin by observing that:

$$
\mathbf{I}[f(x) g(y) \neq h(x y)]=\frac{1-f(x) g(y) h(x y)}{2}
$$

Furthermore, (following the lecture notes):

$$
\begin{aligned}
\mathbf{E}_{x, y}[f(x) g(y) h(x y)] & =\mathbf{E}_{x, y}\left[\sum_{S} \hat{f}(S) \chi_{S}(x) \sum_{T} \hat{g}(T) \chi_{T}(y) \sum_{U} \hat{h}(U) \chi_{U}(x y)\right] \\
& =\sum_{S, T, U} \hat{f}(S) \hat{g}(T) \hat{h}(U) \mathbf{E}_{x, y}\left[\chi_{S}(x) \chi_{T}(y) \chi_{U}(x y)\right] \\
& =\sum_{S} \hat{f}(S) \hat{g}(S) \hat{h}(S)
\end{aligned}
$$

Notice:

$$
\begin{aligned}
\operatorname{Pr}_{x, y}[f(x) g(y) \neq h(x y)] & =\operatorname{Pr}_{x, y}[\mathbf{I}[f(x) g(y) \neq h(x y)]=1] \\
& =\mathbf{E}_{x, y}[\mathbf{I}[f(x) g(y) \neq h(x y)]] \\
& =\mathbf{E}_{x, y}\left[\frac{1-f(x) g(y) h(x y)}{2}\right]
\end{aligned}
$$

Therefore $\operatorname{Pr}_{x, y}[f(x) g(y) \neq h(x y)] \leq \delta$ amounts to:

$$
\sum_{S} \hat{f}(S) \hat{g}(S) \hat{h}(S) \geq 1-2 \delta
$$

On the other hand, we derive that:

$$
\begin{aligned}
\max _{S}|\hat{f}(S)|^{2} & =\max _{S}|\hat{f}(S)|^{2}\left(\sum_{T}|\hat{g}(T)|^{2}\right)\left(\sum_{T}|\hat{h}(T)|^{2}\right) \quad \text { by Parseval } \\
& \geq \max _{S}|\hat{f}(S)|^{2}\left(\sum_{T}|\hat{g}(T)| \cdot|\hat{h}(T)|\right)^{2} \quad \text { by Cauchy-Schwarz } \\
& =\left(\max _{S}|\hat{f}(S)| \sum_{T}|\hat{g}(T)| \cdot|\hat{h}(T)|\right)^{2} \\
& \geq\left(\sum_{S}|\hat{f}(S) \hat{g}(S) \hat{h}(S)|\right)^{2} \\
& \geq\left(\sum_{S} \hat{f}(S) \hat{g}(S) \hat{h}(S)\right)^{2}
\end{aligned}
$$

Taking the square root gives us:

$$
\max _{S}|\hat{f}(S)| \geq \sum_{S} \hat{f}(S) \hat{g}(S) \hat{h}(S) \geq 1-2 \delta
$$

Which further implies that:

$$
\min _{S} d\left(f, \pm \chi_{S}\right) \leq \delta
$$

The proof for g and h is identical.

Problem 2

Let $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ be monotone, and for $x \in\{ \pm 1\}^{n}$, let $x^{+} \in\{ \pm 1\}^{n}$ be x with the i-th entry set to +1 , and define x^{-}accordingly. Then we have that:

$$
\begin{aligned}
\mathbf{I}\left[f\left(x^{+}\right) \neq f\left(x^{-}\right)\right] & =\frac{1}{2}\left(f\left(x^{+}\right)-f\left(x^{-}\right)\right) \\
& =\frac{1}{2}\left(f\left(x^{+}\right) \chi_{\{i\}}\left(x^{+}\right)+f\left(x^{-}\right) \chi_{\{0\}}\left(x^{-}\right)\right)
\end{aligned}
$$

Apply this in the following:

$$
\begin{aligned}
\operatorname{Inf}_{i}(f) & =\operatorname{Pr}_{x}\left[f(x) \neq f\left(x \cdot u_{i}\right)\right] \\
& =\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}} \mathbf{I}\left[f\left(x^{+}\right) \neq f\left(x^{-}\right)\right] \\
& =\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}} \frac{1}{2}\left(f\left(x^{+}\right) \chi_{\{i\}}\left(x^{+}\right)+f\left(x^{-}\right) \chi_{\{0\}}\left(x^{-}\right)\right) \\
& =\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}} f(x) \chi_{\{i\}}(x) \\
& =\hat{f}(\{i\})
\end{aligned}
$$

Problem 3

For any monotone function we have:

$$
\begin{aligned}
\inf (f) & =\sum_{i \in[n]} \inf _{i}(f) \\
& =\sum_{i \in[n]} \hat{f}(\{i\}) \quad \text { since } f \text { monotone } \\
& =\sum_{i \in[n]} \frac{1}{2^{n}} \sum_{x \in\{ \pm 1\}^{n}} f(x) \cdot x_{i} \\
& =\frac{1}{2^{n}} \sum_{x \in\{ \pm 1\}^{n}} \sum_{i \in[n]} f(x) \cdot x_{i}
\end{aligned}
$$

Maximizing over all (not just monotone) functions:

$$
\begin{aligned}
\max _{f} \inf (f) & =\max _{f} \frac{1}{2^{n}} \sum_{x \in\{ \pm 1\}^{n}} \sum_{i \in[n]} f(x) \cdot x_{i} \\
& =\frac{1}{2^{n}} \sum_{x \in\{ \pm 1\}^{n}} \max _{f(x)} \sum_{i \in[n]} f(x) \cdot x_{i}
\end{aligned}
$$

The last quantity, when n is odd, is clearly maximized only when:

$$
f(x)=\operatorname{maj}\left\{x_{1}, \ldots, x_{n}\right\}
$$

Problem 4

Let the graph be random d-regular on the left (with each edge connected uniformly at random on the right). Then let X be a random variable equal to the number of subsets of the left vertices that shrink, i.e. whose neighbor sets on the right are equal or smaller in size. For a fixed left set of size k we have that the probability, $p(k)$, that it shrinks is bounded by (using a union bound over all right subsets of size k):

$$
p(k) \leq\binom{ 2 n / 3}{k}\left(\frac{k}{2 n / 3}\right)^{k d}
$$

Hence, for $\mathbf{E}[X]$ we have:

$$
\begin{aligned}
\mathbf{E}[X] & \leq \sum_{k=1}^{n / 2}\binom{n}{k}\binom{2 n / 3}{k}\left(\frac{k}{2 n / 3}\right)^{k d} \\
& \leq \sum_{k=1}^{n / 2}\left(e^{2} \frac{3}{2}\left(\frac{3 k}{2 n}\right)^{d-2}\right)^{k} \text { using }\binom{n}{k} \leq\left(\frac{n e}{k}\right)^{k} \\
& <\sum_{k=1}^{\infty}\left(e^{2} \frac{3}{2}\left(\frac{3}{4}\right)^{d-2}\right)^{k}
\end{aligned}
$$

When $d>\ln \left(3 e^{2}\right) / \ln (4 / 3)+2$, we have that $e^{2} \frac{3}{2}\left(\frac{3}{4}\right)^{d-2}<1 / 2$, and therefore:

$$
\mathbf{E}[X]<\sum_{k=1}^{\infty}(1 / 2)^{k}<1
$$

Therefore, there exists a graph of left degree $d=\left\lceil\ln \left(3 e^{2}\right) / \ln (4 / 3)+3\right\rceil$ for which no left subset of size up to $n / 2$ shrinks on the right.

