Generators of Wreaths

Petar Maymounkov and Benjamin Rossman

May 27, 2006

Notation 0.1. $G \leq S_{n}$ will be a finite permutation group. $k(G)$ denotes the minimal number of generators of G. H 亿 $G \cong H^{n} \rtimes G$ denotes the wreath product of a group H by G. Elements of $H \imath G$ are written as $(n+1)$-tuples of the form $\left(h_{1}, \ldots, h_{n} ; g\right)$ where $h_{i} \in H$ and $g \in G$. Multiplication in $H \imath G$ is defined by

$$
\left(h_{1}, \ldots, h_{n} ; g\right)\left(h_{1}^{\prime}, \ldots, h_{n}^{\prime} ; g^{\prime}\right)=\left(h_{1} h_{g(1)}^{\prime}, \ldots, h_{n} h_{g(n)}^{\prime} ; g g^{\prime}\right)
$$

Wreath powers of G are defined as follows. Let $\mathrm{Wr}^{1}(G)=G$ and for $\ell \geq 2$ let $\mathrm{Wr}^{\ell}(G)=$ $\mathrm{Wr}^{\ell-1}(G)$ 乙 G.

Lemma 0.2. If $H \triangleleft G$ such that G / H is abelian, then there exists a surjective homomorphism $\varphi_{\ell}: \mathrm{Wr}^{\ell}(G) \rightarrow(G / H)^{\ell}$.

Proof. We define φ_{ℓ} inductively. φ_{1} is just the usual quotient map $G \rightarrow G / H$. For $\ell \geq 2$ and $\left(\gamma_{1}, \ldots, \gamma_{n} ; g\right) \in \mathrm{Wr}^{\ell}(G)$ - i.e., $\gamma_{1}, \ldots, \gamma_{n} \in \mathrm{Wr}^{\ell-1}(G)$ and $g \in G$ - we define

$$
\varphi_{\ell}\left(\gamma_{1}, \ldots, \gamma_{n} ; g\right)=(\underbrace{\varphi_{\ell-1}\left(\gamma_{1}\right)+\cdots+\varphi_{\ell-1}\left(\gamma_{n}\right)}_{\in(G / H)^{\ell-1}}, \underbrace{\varphi_{1}(g)}_{\in G / H}) \in(G / H)^{\ell} .
$$

It is easy to check that φ_{ℓ} is a surjective homomorphism.
Lemma 0.3. If G is abelian, then $k\left(G^{\ell}\right)=\ell \cdot k(G)$.
Proof.
Corollary 0.4. If $H \triangleleft G$ such that G / H is abelian, then $k\left(\mathrm{Wr}^{\ell}(G)\right) \leq \ell \cdot k(G / H)$.
Proof. Use the previous two lemmas.
Corollary 0.5. $k\left(\mathrm{Wr}^{\ell}\left(S_{n}\right)\right) \geq \ell$ for all $n \geq 2$.
Proof. By the previous corollary, $k\left(\mathrm{Wr}^{\ell}\left(S_{n}\right)\right) \geq \ell \cdot k\left(S_{n} / A_{n}\right)=\ell \cdot k\left(C_{2}\right)=\ell$.
There is an obvious way in which $\mathrm{Wr}^{\ell}(G)$ acts on the vertex set of the complete n-ary tree T of height $\ell+1$. For instance, if $G=S_{n}$ then $\mathrm{Wr}^{\ell}(G)$ acts as the full automorphism group of T. This action of $\mathrm{Wr}^{\ell}(G)$ on T restricts to an action on the leaves of T, which we label using the set $\left[n^{\ell+1}\right]=\left\{1,2, \ldots, n^{\ell+1}\right\}$.

Lemma 0.6. If G is transitive (i.e., acts transitively on $[n]$), then $\mathrm{Wr}^{\ell}(G)$ acts transitively on $\left[n^{\ell}\right]$.

Proof. Proof by induction on tree height.
We now establish a matching upper bound to show that $k\left(\mathrm{Wr}^{\ell}\left(S_{n}\right)\right)=\ell$. We begin by noticing that for $\ell \geq 2$, not only can we express $\mathrm{Wr}^{\ell}(G)$ as a semidirect product $\mathrm{Wr}^{\ell-1}(G) \rtimes G$, but also

$$
\mathrm{Wr}^{\ell}(G) \cong G^{n^{\ell}} \rtimes \mathrm{Wr}^{\ell-1}(G)
$$

View $G^{n^{\ell}}$ and $\mathrm{Wr}^{\ell-1}(G)$ as subgroups of $\mathrm{Wr}^{\ell}(G)$ in the obvious way: $\mathrm{Wr}^{\ell-1}(G)$ permutes the top ℓ levels of the tree, and $G^{n^{\ell}}$ is the automorphism group of the remaining level.

We introduce an alternative notation for elements of $\mathrm{Wr}^{\ell}(G)$, as $\left(n^{\ell}+1\right)$-tuples $\left\langle g_{1}, \ldots, g_{n} \ell ; \gamma\right\rangle$ where $g_{1}, \ldots, g_{n^{\ell}} \in G$ and $\gamma \in \mathrm{Wr}^{\ell-1}(G)$. In this notation, multiplication is defined by

$$
\left\langle g_{1}, \ldots, g_{n^{\ell}} ; \gamma\right\rangle\left\langle g_{1}^{\prime}, \ldots, g_{n^{\ell}}^{\prime} ; \gamma^{\prime}\right\rangle=\left\langle g_{1} g_{\gamma(1)}^{\prime}, \ldots, g_{n^{\ell}} g_{\gamma\left(n^{\ell}\right)}^{\prime} ; \gamma \gamma^{\prime}\right\rangle
$$

where $\gamma(i)$ denotes the image of $i \in\left[n^{\ell}\right]$ under the action of $\gamma \in \mathrm{Wr}^{\ell-1}(G)$ just described.
Proposition 0.7. If G is transitive, then $k\left(\mathrm{Wr}^{\ell}(G)\right) \leq \ell \cdot k(G)$.
Proof. Suppose $\left\{g_{j}\right\}_{j \in[t]}$ generates G. We define generating set $\left\{\gamma_{i, j}^{\ell}\right\}_{i \in[\ell], j \in[t]}$ for $\mathrm{Wr}^{\ell}(G)$ inductively.

- $\gamma_{1, j}^{1}:=g_{j}$ for all $j \in[t]$.
- $\gamma_{i, j}^{\ell}:=\langle\underbrace{1_{G}, \ldots, 1_{G}}_{n^{\ell} \text { times }} ; \gamma_{i, j}^{\ell-1}\rangle$ for all $\ell \geq 2$ and $i \in[\ell-1]$ and $j \in[t]$.
- $\gamma_{\ell, j}^{\ell}:=\langle g_{j}, \underbrace{1_{G}, \ldots, 1_{G}}_{n^{\ell}-1 \text { times }} ; 1_{\mathrm{Wr}^{\ell-1}(G)}\rangle$ for all $j \in[t]$.

Let H be the subgroup of $\mathrm{Wr}^{\ell}(G)$ generated by $\left\{\gamma_{i, j}^{\ell}\right\}_{i \in[\ell], j \in[t]}$ for some $\ell \geq 2$. We prove that $H=\mathrm{Wr}^{\ell}(G)$ in the following steps.

1. $\left\langle 1_{G}, \ldots, 1_{G} ; \delta\right\rangle \in H$ for all $\delta \in \mathrm{Wr}^{\ell-1}(G)$.

This follows from the induction hypothesis that $\left\{\gamma_{i, j}^{\ell-1}\right\}_{i \in[\ell-1], j \in[t]}$ generates $\mathrm{Wr}^{\ell-1}(G)$ (trivial in the base case when $\ell=2$).
2. $\langle\underbrace{1_{G}, \ldots, 1_{G}, g_{j}, 1_{G}, \ldots, 1_{G}}_{\text {in the } q \text { th location }} ; 1_{\mathrm{Wr}^{\ell-1}(G)}\rangle \in H$ for all $q \in\left[n^{\ell}\right]$.

By assumption, G is transitive. So by previous lemma, $\mathrm{Wr}^{\ell-1}(G)$ acts transitively on $\left[n^{\ell}\right]$. Find $\delta \in \mathrm{Wr}^{\ell-1}(G)$ taking 1 to q. We see that

$$
\left\langle 1_{G}, \ldots, 1_{G}, g_{j}, 1_{G}, \ldots, 1_{G} ; 1_{\mathrm{Wr}^{\ell-1}(G)}\right\rangle=\left\langle 1_{G}, \ldots, 1_{G} ; \delta\right\rangle \gamma_{\ell, j}^{\ell}\left\langle 1_{G}, \ldots, 1_{G} ; \delta\right\rangle^{-1} \in H
$$

3. We now easily have:

$$
\langle\underbrace{1_{G}, \ldots, 1_{G}, g^{\prime}, 1_{G}, \ldots, 1_{G}}_{\text {in the } q \text { th location }} ; 1_{\mathrm{Wr}^{\ell-1}(G)}\rangle \in H \text { for all } g^{\prime} \in G \text { and } q \in\left[n^{\ell}\right] .
$$

4. $\left\langle g_{1}^{\prime}, \ldots, g_{n^{\ell}}^{\prime} ; 1_{\mathrm{Wr}^{\ell-1}(G)}\right\rangle \in H$ for all $g_{1}^{\prime}, \ldots, g_{n^{\ell}}^{\prime} \in G$.
5. $H=\mathrm{Wr}^{\ell}(G)$.

We now return to wreath powers $\mathrm{Wr}^{\ell}\left(S_{n}\right)$ of the symmetric group S_{n}.
Lemma 0.8. For $n \geq 4$, there exists $\alpha, \beta \in S_{n}$ such that $\alpha(1)=1$ and $\beta(2)=2$ and both $\{\alpha, \beta\}$ and $\left\{\alpha^{\operatorname{ord}(\beta)}, \beta^{\operatorname{ord}(\alpha)}\right\}$ generate S_{n}.

Proof. If n is even, then let $\alpha=(23 \ldots n)$ and $\beta=(1 n)$.
If n is odd, who knows. More thinking is required.
Corollary 0.9. For $n \geq 4, k\left(S_{n} \backslash S_{n}\right)=2$
Proof. Take generators $\gamma=\langle\beta, \underbrace{1, \ldots, 1}_{n-1 \text { times }} ; \alpha\rangle$ and $\delta=\langle 1, \alpha, \underbrace{1, \ldots, 1}_{n-2 \text { times }} ; \beta\rangle$. Hint, notice that $\gamma^{\operatorname{ord}(\beta)}=\langle\underbrace{1, \ldots, 1}_{n \text { times }} ; \alpha^{\operatorname{ord}(\beta)}\rangle$ and $\delta^{\operatorname{ord}(\alpha)}=\langle\underbrace{1, \ldots, 1}_{n \text { times }} ; \beta^{\operatorname{ord}(\alpha)}\rangle$, then use the previous lemma.

Corollary 0.10. For $n \geq 4$ and $\ell \geq 2, k\left(\mathrm{Wr}^{\ell}\left(S_{n}\right)\right) \leq k\left(\mathrm{Wr}^{\ell-1}\left(S_{n}\right)\right)+1$.
Proof. Suppose $\left\{\gamma_{1}, \ldots, \gamma_{t}\right\}$ generates $\mathrm{Wr}^{\ell-1}\left(S_{n}\right)$. Let $\alpha, \beta \in S_{n}$ be as in the previous lemma. For $j \in[t]$, let $\gamma_{j}^{\prime}=\left\langle 1, \ldots, 1 ; \gamma_{j}\right\rangle \in \mathrm{Wr}^{\ell}\left(S_{n}\right)$ and let $\delta=\langle\alpha, \beta, 1, \ldots, 1 ; 1\rangle$. It is easy to show that $\left\{\gamma_{1}^{\prime}, \ldots, \gamma_{t}^{\prime}, \delta\right\}$ generates $\mathrm{Wr}^{\ell}\left(S_{n}\right)$. (Hint: Use the elements $\delta^{\operatorname{ord}(\alpha)}$ and $\delta^{\operatorname{ord}(\beta)}$.)

Theorem 0.11. For $n=2$ and $n \geq 4, k\left(\mathrm{Wr}^{\ell}\left(S_{n}\right)\right)=\ell$.
Proof.
However, for all we know $k\left(\mathrm{Wr}^{\ell}\left(A_{n}\right)\right)=2$ for $n \geq 5$ (or any non-abelian simple group instead of A_{n}).

