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Notation 0.1. G ≤ Sn will be a finite permutation group. k(G) denotes the minimal
number of generators of G. H o G ∼= Hn o G denotes the wreath product of a group H
by G. Elements of H o G are written as (n + 1)-tuples of the form (h1, . . . , hn; g) where
hi ∈ H and g ∈ G. Multiplication in H oG is defined by

(h1, . . . , hn; g)(h′1, . . . , h
′
n; g′) = (h1h

′
g(1), . . . , hnh

′
g(n); gg′).

Wreath powers of G are defined as follows. Let Wr1(G) = G and for ` ≥ 2 let Wr`(G) =
Wr`−1(G) oG.

Lemma 0.2. If H /G such that G/H is abelian, then there exists a surjective homomor-
phism ϕ` : Wr`(G) → (G/H)`.

Proof. We define ϕ` inductively. ϕ1 is just the usual quotient map G → G/H. For ` ≥ 2
and (γ1, . . . , γn; g) ∈ Wr`(G) — i.e., γ1, . . . , γn ∈ Wr`−1(G) and g ∈ G — we define

ϕ`(γ1, . . . , γn; g) = (ϕ`−1(γ1) + · · ·+ ϕ`−1(γn)︸ ︷︷ ︸
∈(G/H)`−1

, ϕ1(g)︸ ︷︷ ︸
∈G/H

) ∈ (G/H)`.

It is easy to check that ϕ` is a surjective homomorphism.

Lemma 0.3. If G is abelian, then k(G`) = `·k(G).

Proof.

Corollary 0.4. If H / G such that G/H is abelian, then k(Wr`(G)) ≤ `·k(G/H).

Proof. Use the previous two lemmas.

Corollary 0.5. k(Wr`(Sn)) ≥ ` for all n ≥ 2.

Proof. By the previous corollary, k(Wr`(Sn)) ≥ `·k(Sn/An) = `·k(C2) = `.

There is an obvious way in which Wr`(G) acts on the vertex set of the complete n-ary
tree T of height `+1. For instance, if G = Sn then Wr`(G) acts as the full automorphism
group of T . This action of Wr`(G) on T restricts to an action on the leaves of T , which
we label using the set [n`+1] = {1, 2, . . . , n`+1}.
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Lemma 0.6. If G is transitive (i.e., acts transitively on [n]), then Wr`(G) acts transi-
tively on [n`].

Proof. Proof by induction on tree height.

We now establish a matching upper bound to show that k(Wr`(Sn)) = `. We begin
by noticing that for ` ≥ 2, not only can we express Wr`(G) as a semidirect product
Wr`−1(G) o G, but also

Wr`(G) ∼= Gn` o Wr`−1(G).

View Gn`
and Wr`−1(G) as subgroups of Wr`(G) in the obvious way: Wr`−1(G) permutes

the top ` levels of the tree, and Gn`
is the automorphism group of the remaining level.

We introduce an alternative notation for elements of Wr`(G), as (n` + 1)-tuples
〈g1, . . . , gn` ; γ〉 where g1, . . . , gn` ∈ G and γ ∈ Wr`−1(G). In this notation, multiplica-
tion is defined by

〈g1, . . . , gn` ; γ〉〈g′1, . . . , g′n` ; γ
′〉 = 〈g1g

′
γ(1), . . . , gn`g′γ(n`); γγ′〉

where γ(i) denotes the image of i ∈ [n`] under the action of γ ∈ Wr`−1(G) just described.

Proposition 0.7. If G is transitive, then k(Wr`(G)) ≤ `·k(G).

Proof. Suppose {gj}j∈[t] generates G. We define generating set {γ`
i,j}i∈[`],j∈[t] for Wr`(G)

inductively.

• γ1
1,j := gj for all j ∈ [t].

• γ`
i,j := 〈1G, . . . , 1G︸ ︷︷ ︸

n` times

; γ`−1
i,j 〉 for all ` ≥ 2 and i ∈ [`− 1] and j ∈ [t].

• γ`
`,j := 〈gj, 1G, . . . , 1G︸ ︷︷ ︸

n`−1 times

; 1Wr`−1(G)〉 for all j ∈ [t].

Let H be the subgroup of Wr`(G) generated by {γ`
i,j}i∈[`],j∈[t] for some ` ≥ 2. We prove

that H = Wr`(G) in the following steps.

1. 〈1G, . . . , 1G; δ〉 ∈ H for all δ ∈ Wr`−1(G).

This follows from the induction hypothesis that {γ`−1
i,j }i∈[`−1],j∈[t] generates Wr`−1(G)

(trivial in the base case when ` = 2).

2. 〈1G, . . . , 1G, gj, 1G, . . . , 1G︸ ︷︷ ︸
in the qth location

; 1Wr`−1(G)〉 ∈ H for all q ∈ [n`].

By assumption, G is transitive. So by previous lemma, Wr`−1(G) acts transitively
on [n`]. Find δ ∈ Wr`−1(G) taking 1 to q. We see that

〈1G, . . . , 1G, gj, 1G, . . . , 1G; 1Wr`−1(G)〉 = 〈1G, . . . , 1G; δ〉γ`
`,j〈1G, . . . , 1G; δ〉−1 ∈ H.
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3. We now easily have:

〈1G, . . . , 1G, g′, 1G, . . . , 1G︸ ︷︷ ︸
in the qth location

; 1Wr`−1(G)〉 ∈ H for all g′ ∈ G and q ∈ [n`].

4. 〈g′1, . . . , g′n` ; 1Wr`−1(G)〉 ∈ H for all g′1, . . . , g
′
n` ∈ G.

5. H = Wr`(G).

We now return to wreath powers Wr`(Sn) of the symmetric group Sn.

Lemma 0.8. For n ≥ 4, there exists α, β ∈ Sn such that α(1) = 1 and β(2) = 2 and
both {α, β} and {αord(β), βord(α)} generate Sn.

Proof. If n is even, then let α = (2 3 . . . n) and β = (1 n).
If n is odd, who knows. More thinking is required.

Corollary 0.9. For n ≥ 4, k(Sn o Sn) = 2

Proof. Take generators γ = 〈β, 1, . . . , 1︸ ︷︷ ︸
n−1 times

; α〉 and δ = 〈1, α, 1, . . . , 1︸ ︷︷ ︸
n−2 times

; β〉. Hint, notice that

γord(β) = 〈1, . . . , 1︸ ︷︷ ︸
n times

; αord(β)〉 and δord(α) = 〈1, . . . , 1︸ ︷︷ ︸
n times

; βord(α)〉, then use the previous lemma.

Corollary 0.10. For n ≥ 4 and ` ≥ 2, k(Wr`(Sn)) ≤ k(Wr`−1(Sn)) + 1.

Proof. Suppose {γ1, . . . , γt} generates Wr`−1(Sn). Let α, β ∈ Sn be as in the previous
lemma. For j ∈ [t], let γ′j = 〈1, . . . , 1; γj〉 ∈ Wr`(Sn) and let δ = 〈α, β, 1, . . . , 1; 1〉. It is

easy to show that {γ′1, . . . , γ′t, δ} generates Wr`(Sn). (Hint: Use the elements δord(α) and
δord(β).)

Theorem 0.11. For n = 2 and n ≥ 4, k(Wr`(Sn)) = `.

Proof.

However, for all we know k(Wr`(An)) = 2 for n ≥ 5 (or any non-abelian simple group
instead of An).
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