Generators of Wreaths

Petar Maymounkov and Benjamin Rossman

May 27, 2006

Notation 0.1. $G \leq S_n$ will be a finite permutation group. k(G) denotes the minimal number of generators of G. $H \wr G \cong H^n \rtimes G$ denotes the wreath product of a group H by G. Elements of $H \wr G$ are written as (n + 1)-tuples of the form $(h_1, \ldots, h_n; g)$ where $h_i \in H$ and $g \in G$. Multiplication in $H \wr G$ is defined by

$$(h_1, \ldots, h_n; g)(h'_1, \ldots, h'_n; g') = (h_1 h'_{q(1)}, \ldots, h_n h'_{q(n)}; gg')$$

Wreath powers of G are defined as follows. Let $\operatorname{Wr}^1(G) = G$ and for $\ell \geq 2$ let $\operatorname{Wr}^{\ell}(G) = \operatorname{Wr}^{\ell-1}(G) \wr G$.

Lemma 0.2. If $H \triangleleft G$ such that G/H is abelian, then there exists a surjective homomorphism $\varphi_{\ell} : \operatorname{Wr}^{\ell}(G) \to (G/H)^{\ell}$.

Proof. We define φ_{ℓ} inductively. φ_1 is just the usual quotient map $G \to G/H$. For $\ell \geq 2$ and $(\gamma_1, \ldots, \gamma_n; g) \in \operatorname{Wr}^{\ell}(G)$ — i.e., $\gamma_1, \ldots, \gamma_n \in \operatorname{Wr}^{\ell-1}(G)$ and $g \in G$ — we define

$$\varphi_{\ell}(\gamma_1,\ldots,\gamma_n;g) = (\underbrace{\varphi_{\ell-1}(\gamma_1) + \cdots + \varphi_{\ell-1}(\gamma_n)}_{\in (G/H)^{\ell-1}}, \underbrace{\varphi_1(g)}_{\in G/H}) \in (G/H)^{\ell}.$$

It is easy to check that φ_{ℓ} is a surjective homomorphism.

Lemma 0.3. If G is abelian, then $k(G^{\ell}) = \ell \cdot k(G)$.

Proof.

Corollary 0.4. If $H \triangleleft G$ such that G/H is abelian, then $k(\operatorname{Wr}^{\ell}(G)) \leq \ell \cdot k(G/H)$.

Proof. Use the previous two lemmas.

Corollary 0.5. $k(\operatorname{Wr}^{\ell}(S_n)) \geq \ell$ for all $n \geq 2$.

Proof. By the previous corollary, $k(\operatorname{Wr}^{\ell}(S_n)) \geq \ell \cdot k(S_n/A_n) = \ell \cdot k(C_2) = \ell$.

There is an obvious way in which $\operatorname{Wr}^{\ell}(G)$ acts on the vertex set of the complete *n*-ary tree *T* of height $\ell+1$. For instance, if $G = S_n$ then $\operatorname{Wr}^{\ell}(G)$ acts as the full automorphism group of *T*. This action of $\operatorname{Wr}^{\ell}(G)$ on *T* restricts to an action on the leaves of *T*, which we label using the set $[n^{\ell+1}] = \{1, 2, \ldots, n^{\ell+1}\}$.

Lemma 0.6. If G is transitive (i.e., acts transitively on [n]), then $Wr^{\ell}(G)$ acts transitively on $[n^{\ell}]$.

Proof. Proof by induction on tree height.

We now establish a matching upper bound to show that $k(\operatorname{Wr}^{\ell}(S_n)) = \ell$. We begin by noticing that for $\ell \geq 2$, not only can we express $\operatorname{Wr}^{\ell}(G)$ as a semidirect product $\operatorname{Wr}^{\ell-1}(G) \rtimes G$, but also

$$\operatorname{Wr}^{\ell}(G) \cong G^{n^{\ell}} \rtimes \operatorname{Wr}^{\ell-1}(G).$$

View $G^{n^{\ell}}$ and $Wr^{\ell-1}(G)$ as subgroups of $Wr^{\ell}(G)$ in the obvious way: $Wr^{\ell-1}(G)$ permutes the top ℓ levels of the tree, and $G^{n^{\ell}}$ is the automorphism group of the remaining level.

We introduce an alternative notation for elements of $Wr^{\ell}(G)$, as $(n^{\ell} + 1)$ -tuples $\langle g_1, \ldots, g_{n^{\ell}}; \gamma \rangle$ where $g_1, \ldots, g_{n^{\ell}} \in G$ and $\gamma \in Wr^{\ell-1}(G)$. In this notation, multiplication is defined by

$$\langle g_1, \dots, g_{n^\ell}; \gamma \rangle \langle g'_1, \dots, g'_{n^\ell}; \gamma' \rangle = \langle g_1 g'_{\gamma(1)}, \dots, g_{n^\ell} g'_{\gamma(n^\ell)}; \gamma \gamma' \rangle$$

where $\gamma(i)$ denotes the image of $i \in [n^{\ell}]$ under the action of $\gamma \in \operatorname{Wr}^{\ell-1}(G)$ just described.

Proposition 0.7. If G is transitive, then $k(\operatorname{Wr}^{\ell}(G)) \leq \ell \cdot k(G)$.

Proof. Suppose $\{g_j\}_{j \in [t]}$ generates G. We define generating set $\{\gamma_{i,j}^\ell\}_{i \in [\ell], j \in [t]}$ for $Wr^{\ell}(G)$ inductively.

•
$$\gamma_{1,j}^1 := g_j$$
 for all $j \in [t]$.

- $\gamma_{i,j}^{\ell} := \langle \underbrace{1_G, \ldots, 1_G}_{n^{\ell} \text{ times}}; \gamma_{i,j}^{\ell-1} \rangle \text{ for all } \ell \ge 2 \text{ and } i \in [\ell-1] \text{ and } j \in [t].$
- $\gamma_{\ell,j}^{\ell} := \langle g_j, \underbrace{1_G, \dots, 1_G}_{n^{\ell-1} \text{ times}}; 1_{\operatorname{Wr}^{\ell-1}(G)} \rangle \text{ for all } j \in [t].$

Let *H* be the subgroup of $Wr^{\ell}(G)$ generated by $\{\gamma_{i,j}^{\ell}\}_{i \in [\ell], j \in [t]}$ for some $\ell \geq 2$. We prove that $H = Wr^{\ell}(G)$ in the following steps.

1. $\langle 1_G, \ldots, 1_G; \delta \rangle \in H$ for all $\delta \in Wr^{\ell-1}(G)$.

This follows from the induction hypothesis that $\{\gamma_{i,j}^{\ell-1}\}_{i \in [\ell-1], j \in [t]}$ generates $\operatorname{Wr}^{\ell-1}(G)$ (trivial in the base case when $\ell = 2$).

2. $\langle \underbrace{1_G, \ldots, 1_G, g_j, 1_G, \ldots, 1_G}_{\text{in the } q \text{th location}}; 1_{\mathrm{Wr}^{\ell-1}(G)} \rangle \in H \text{ for all } q \in [n^{\ell}].$

By assumption, G is transitive. So by previous lemma, $\operatorname{Wr}^{\ell-1}(G)$ acts transitively on $[n^{\ell}]$. Find $\delta \in \operatorname{Wr}^{\ell-1}(G)$ taking 1 to q. We see that

$$\langle 1_G, \dots, 1_G, g_j, 1_G, \dots, 1_G; 1_{Wr^{\ell-1}(G)} \rangle = \langle 1_G, \dots, 1_G; \delta \rangle \gamma_{\ell, j}^{\ell} \langle 1_G, \dots, 1_G; \delta \rangle^{-1} \in H.$$

 г		
 L		
 L		

3. We now easily have:

$$\langle \underbrace{\mathbf{1}_G, \dots, \mathbf{1}_G, g', \mathbf{1}_G, \dots, \mathbf{1}_G}_{\text{in the } q \text{th location}}; \mathbf{1}_{\mathrm{Wr}^{\ell-1}(G)} \rangle \in H \text{ for all } g' \in G \text{ and } q \in [n^{\ell}].$$
4. $\langle g'_1, \dots, g'_{n^{\ell}}; \mathbf{1}_{\mathrm{Wr}^{\ell-1}(G)} \rangle \in H \text{ for all } g'_1, \dots, g'_{n^{\ell}} \in G.$
5. $H = \mathrm{Wr}^{\ell}(G).$

We now return to wreath powers $Wr^{\ell}(S_n)$ of the symmetric group S_n .

Lemma 0.8. For $n \ge 4$, there exists $\alpha, \beta \in S_n$ such that $\alpha(1) = 1$ and $\beta(2) = 2$ and both $\{\alpha, \beta\}$ and $\{\alpha^{\operatorname{ord}(\beta)}, \beta^{\operatorname{ord}(\alpha)}\}$ generate S_n .

Proof. If n is even, then let $\alpha = (2 \ 3 \ \dots \ n)$ and $\beta = (1 \ n)$. If n is odd, who knows. More thinking is required.

Corollary 0.9. For $n \ge 4$, $k(S_n \wr S_n) = 2$

Proof. Take generators
$$\gamma = \langle \beta, \underbrace{1, \dots, 1}_{n-1 \text{ times}}; \alpha \rangle$$
 and $\delta = \langle 1, \alpha, \underbrace{1, \dots, 1}_{n-2 \text{ times}}; \beta \rangle$. Hint, notice that $\gamma^{\operatorname{ord}(\beta)} = \langle \underbrace{1, \dots, 1}_{n \text{ times}}; \alpha^{\operatorname{ord}(\beta)} \rangle$ and $\delta^{\operatorname{ord}(\alpha)} = \langle \underbrace{1, \dots, 1}_{n \text{ times}}; \beta^{\operatorname{ord}(\alpha)} \rangle$, then use the previous lemma.

Corollary 0.10. For $n \ge 4$ and $\ell \ge 2$, $k(Wr^{\ell}(S_n)) \le k(Wr^{\ell-1}(S_n)) + 1$.

Proof. Suppose $\{\gamma_1, \ldots, \gamma_t\}$ generates $\operatorname{Wr}^{\ell-1}(S_n)$. Let $\alpha, \beta \in S_n$ be as in the previous lemma. For $j \in [t]$, let $\gamma'_j = \langle 1, \ldots, 1; \gamma_j \rangle \in \operatorname{Wr}^{\ell}(S_n)$ and let $\delta = \langle \alpha, \beta, 1, \ldots, 1; 1 \rangle$. It is easy to show that $\{\gamma'_1, \ldots, \gamma'_t, \delta\}$ generates $\operatorname{Wr}^{\ell}(S_n)$. (Hint: Use the elements $\delta^{\operatorname{ord}(\alpha)}$ and $\delta^{\operatorname{ord}(\beta)}$.)

Theorem 0.11. For n = 2 and $n \ge 4$, $k(\operatorname{Wr}^{\ell}(S_n)) = \ell$.

Proof.

However, for all we know $k(\operatorname{Wr}^{\ell}(A_n)) = 2$ for $n \ge 5$ (or any non-abelian simple group instead of A_n).