Problem 1. We want $\pi P=\pi$, where $\pi \geqq 0, \pi \neq 0$. If such a π exists, it is an eigenvector and hence there also exists a π for which $\sum \pi_{i}=1$. Hence we want $\pi P=\pi$, where $\pi \geqq 0, \sum \pi_{i}=1$. The LP for this is $\min \{0 x \mid A x=b, x \geqq 0\}$, where $A^{T}=\left(P-I_{n} \mid 1^{n}\right)$, $b^{T}=\left(0^{n} \mid 1\right)$.
The dual is $\max \{\lambda \mid(P-I) y+\lambda \leqq 0\}$. We prove that the original LP is feasible and bounded, by showing that the dual is feasible and bounded. In particular we prove that $\lambda \leqq 0$.

Pick (y, λ) such that $(P-I) y+\lambda \leqq 0$. Let y_{i} be the smallest entry in y, then we have $p_{i} y-y_{i}+\lambda \leqq 0$ where p_{i} is the i-th row of P. We also have that $y_{i} \leqq p_{i} y$, because $p_{i} y$ is a convex combination of the entries in y. And therefore $\lambda \leqq 0$.

Problem 2a. When Alice's strategy is known x is fixed, hence Bob is optimizing $\max _{y}(x A) y$. In other words Bob is trying to pick a maximum convex combination $\left(\sum y=1\right)$ of the entries of $(x A)$. This is achieved by assigning probability 1 to any maximum entry of $(x A)$.

Problem 2b. Part 2a implies:

$$
\min _{x} \max _{y} x A y=\min _{x} \max _{y}\left\{x A_{1}, \ldots, x A_{n}\right\}
$$

Where A_{i} is the i-th column of A. And so this is equivalent to:

$$
\min \left\{z \mid \sum^{n} x_{i}=1, x A_{1} \leqq z, \cdots, x A_{n} \leqq z, x \geqq 0\right\}
$$

Alternatively, for Bob:

$$
\max _{y} \min _{x} x A y=\max _{y} \min _{x}\left\{a_{1} y, \ldots, a_{m} y\right\}
$$

Where a_{i} is the i-th row of A. And so this is equivalent to:

$$
\max \left\{w \mid \sum^{n} y_{i}=1, w \leqq a_{1} y, \cdots, w \leqq a_{m} y, y \geqq 0\right\}
$$

Problem 2c. Alice's goal is to find an assignment for x that minimzes the largest of $x A_{1}, \ldots, x A_{n}$. We identify the largest value by introducing the variable z and minimizing it. Intuitively, the largest term $x A_{i}$ represents Bob's fixed strategy that maximizes Bob's expected outcome regardless of which strategy Alice chooses according to her distribution x.

Problem 2d. The dual of Alice's LP after a straightforward application of Dual-taking rules is:

$$
\max \left\{w \mid \sum^{m} y_{i}=1,-a_{1} y \geqq w, \cdots,-a_{m} y \geqq w, y \leqq 0\right\}
$$

Without changing the dual LP, replace y with $-y$:

$$
\max \left\{w \mid \sum^{m} y_{i} \geqq 1, a_{1} y \geqq w, \cdots, a_{m} y \geqq w, y \geqq 0\right\}
$$

Finally, we can replace $\sum^{m} y_{i} \geqq 1$ with $\sum^{m} y_{i}=1$ without modifying the optimal solution, because $a_{1} \geqq 0, \ldots, a_{m} \geqq 0$, so we get the required form:

$$
\max \left\{w \mid \sum^{m} y_{i}=1, a_{1} y \geqq w, \cdots, a_{m} y \geqq w, y \geqq 0\right\}
$$

Problem 3a. Algorithms: exhaustively pick a point x_{i} and remove all vertices H_{i} that are at distance $\leqq d$ from it (including itself). Do until no vertices left. Here $i<j$ if x_{i} was picked before x_{j}.

Let the optimal clustering be C_{1}, \ldots, C_{l}. And let $x_{i} \in C_{p}$ and $x_{j} \in C_{q}$ and $i<j$. Claim that $p \neq q$. Assume otherwise, then x_{i} and x_{j} in $C_{r}(r=p$ or $r=q)$, hence $d\left(x_{i}, x_{j}\right) \leqq d$,
but then by construction $x_{j} \in H_{i}$ - contradiction. Therefore, by pigeon-hole there can be at most l centers x_{i}, where $l \leqq k$ is the number of optimal clusters, and after relabeling $x_{i} \in C_{i}$ for all $1 \leqq i \leqq l$.

Show that $C_{i} \subset H_{i}$ by induction. Base case: for any $y \in C_{1}, d\left(y, x_{1}\right) \leqq d$ (since $x_{1} \in C_{1}$) hence by algorithm definition $y \in H_{1}$.

Inductive step: pick any $y \in C_{i}$, then $d\left(x_{i}, y\right) \leqq d$, therefore $y \in H_{i}$ or $y \in H_{j}$ for some $j<i$. If $y \in H_{j}$, then $d\left(y, x_{j}\right) \leqq d$, and therefore $y \in C_{j}$ (since $x_{j} \in C_{j}$). So $y \in C_{i} \cap C_{j}$, but $C_{i} \cap C_{j}=\emptyset$, since $i \neq j$ - contradiction.

Therefore, we've shown that the H_{i} 's cover all the C_{i} 's and hence they cover all vertices. Next, pick any $v, w \in H_{i}$, then $d(v, w) \leqq d\left(v, x_{i}\right)+d\left(w, x_{i}\right) \leqq d+d \leqq 2 d$. Hence the diameter of each H_{i} is $\leqq 2 d$, hence we get a 2 -approximation.

Problem 3b. Let x_{1}, \ldots, x_{k} be the center points chosen by the given algorithm. We claim that they are a valid super-sequence of the points that the algorithm from part a could have chosen (knowing d).

Indeed, inductively after choosing x_{i-1} the algorithm from part either ends, or chooses x_{i} such that $d\left(x_{i}, x_{j}\right)>d$ for all $1 \leqq j \leqq i-1$. In particular, a point whose minimum distance to all previously chosen centers is largest will do.

From part 3a, we know that there are $l \leqq k$ clusters H_{1}, \ldots, H_{l} and every point lies within distance $\leqq d$ of some x_{1}, \ldots, x_{l}. Hence if we obtain clusters G_{1}, \ldots, G_{k} by assigning every vertex to the center closest to it, we have that if $y \in G_{i}$, then $d\left(y, x_{i}\right) \leqq d$. And therefore, by the triangular inequality (as in part 3a), the diamter of each G_{i} is at most $2 d$. Hence we obtain a 2 -approximation.

Problem 4a. Assume given any schedule A where jobs j and i are both feasible, j is scheduled before i and $d_{j} \geqq d_{i}$. Let $c_{A}(i)$ denote the completion time of job i under schedule A.

Consider schedule B produced from schedule A by removing job j and placing it right on
top of job i. Observe, the completion times of job i and all jobs between i and j in schedule A only decrease (by p_{j}) in schedule B, also $c_{B}(j)=c_{A}(i)$, and no other jobs' completion times change.

Since by assumption $d_{j} \geqq c_{A}(i)$, in schedule B job j is still feasible but now it is ordered after i.

Repeat exhaustively until all feasible jobs are ordered in ascending order of their deadlines.

Problem 4b. Define $B(i, w)$ to be the fastest-completing feasible subset of $\{1, \ldots, i\}$ such that the total weight of this subset is at least w. WLOG assume $i<j \Rightarrow d_{i} \leqq d_{j}$ which will imply (using part 4a) that for any schedule using jobs up to $i-1$, we only need to try to incorporate job i on top of that schedule. Compute $B(i, w)$ dynamically via:

$$
B(i, w)= \begin{cases}0, & \text { if } w=0 \\ \infty, & \text { if } i=0 \\ \min \left\{B(i-1, w), p_{i}+B\left(i-1, w-w_{i}\right)\right\}, & \text { if } d_{i} \geqq p_{i}+B\left(i-1, w-w_{i}\right) \\ B(i-1, w), & \text { otherwise }\end{cases}
$$

Runtime. The dynamic program computes a table of $B(i, w)$'s where i ranges from 0 to n and $w \leqq n w_{\max }=n \operatorname{poly}(n)$. Total runtime is $\operatorname{poly}(n)$.

Problem 4c. Guess optimum penalty OPT. Divide jobs into large and small, respectively, with $w_{j}>$ OPT and $w_{j} \leqq$ OPT. Consider only large jobs. They have to be scheduled without any penalty. Try to schedule them. As shown in part 4a, a best schedule is simply to order them in ascending order of their deadlines. If this schedule is infeasible, your initial guess for OPT was bad.

Otherwise, "subtract" schedule for large jobs from initial problem: Pick a large scheduled job j and collapse time period $\left[d_{j}-p_{j}, d_{j}\right]$ to the single point $d_{j}-p_{j}$. I.e. for all $d_{i} \in\left[d_{j}-p_{j}, d_{j}\right]$ set $d_{i}=d_{j}-p_{j}$, and for all $d_{i}>d_{j}$ set $d_{i}=d_{i}-p_{j}$. Repeat until you run out of large jobs.

Call this the residual problem. The residual problem accommodates all schedules for the small jobs that don't violate the schedule for the large jobs in the original problem.

Find an approximate minimum penalty schedule for the small jobs in the residual problem by scaling. Set:

$$
w_{i}^{\prime}=\frac{n}{\epsilon \mathrm{OPT}} w_{i} \leqq n / \epsilon
$$

New optimum is n / ϵ. Round weights up $w_{i}^{\prime \prime}=\left\lceil w_{i}^{\prime}\right\rceil$. Run DP on integer weights now. Guaranteed that DP schedule will have penalty at most $n / \epsilon+n=(1+\epsilon) n / \epsilon$, which is an ϵ-approximation of new optimum and hence correponds to an ϵ-approximation of the original optimum on the small weights.

When we insert back the large jobs we get an ϵ-approximation schedule for the original problem.

Finally, we need to guess OPT. First guess OPT $=0$, if not, then do binary search on OPT, where $w_{\min } \leqq \mathrm{OPT} \leqq n w_{\max }$, and we only care to fall ϵ-factor within OPT.

Running times. Computing the large jobs involves sorting and checking so it takes $O(n \log n)$ assuming that we can compare deadlines in unit time. (But even without this assumption it is $O(n \log n \operatorname{poly}(n))$ which is still OK.) The computation of the residual problem takes $O\left(n^{2}\right)$. And the dynamic program takes $O\left(n^{3} / \epsilon\right)$ (because $w_{\max }=n / \epsilon$). So the dominant term so far is $O\left(n^{3} / \epsilon\right)$.

We have to perform a binary search on OPT, which searches over $m=n w_{\max } /(\epsilon \mathrm{OPT})$ values. Since if $\mathrm{OPT} \neq 0$, OPT $\geqq w_{\min }$, we have $m \leqq(n / \epsilon)\left(w_{\max } / w_{\min }\right)$. Since $w_{\max }$ and $w_{\text {min }}$ have at most l bits (where l is the numbers of bits in the w with largest number of bits), $w_{\max } / w_{\min }$ has $O(l)$ bits. Hence, $\log m \leqq \log n+\log (1 / \epsilon)+O(l)$.

Total runtime is: $O\left(\left(n^{3} / \epsilon\right)(\log n+\log (1 / \epsilon)+l)\right.$) (which is polynomial in the size $O(n l)$ of the input problem), so we have an FPAS.

