
6.854 Advanced Algorithms Petar Maymounkov

Problem Set 8 (November 2, 2005)

With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour

Problem 1. We want πP = π, where π = 0, π 6= 0. If such a π exists, it is an eigenvector

and hence there also exists a π for which
∑

πi = 1. Hence we want πP = π, where

π = 0,
∑

πi = 1. The LP for this is min
{

0x
∣∣∣Ax = b, x = 0

}
, where AT =

(
P − In

∣∣∣1n
)
,

bT =
(
0n

∣∣∣1).

The dual is max
{

λ
∣∣∣(P − I)y + λ 5 0

}
. We prove that the original LP is feasible and

bounded, by showing that the dual is feasible and bounded. In particular we prove that

λ 5 0.

Pick (y, λ) such that (P − I)y + λ 5 0. Let yi be the smallest entry in y, then we have

piy − yi + λ 5 0 where pi is the i-th row of P . We also have that yi 5 piy, because piy is a

convex combination of the entries in y. And therefore λ 5 0.

Problem 2a. When Alice’s strategy is known x is fixed, hence Bob is optimizing

maxy(xA)y. In other words Bob is trying to pick a maximum convex combination (
∑

y = 1)

of the entries of (xA). This is achieved by assigning probability 1 to any maximum entry of

(xA).

Problem 2b. Part 2a implies:

min
x

max
y

xAy = min
x

max
y
{xA1, . . . , xAn}

Where Ai is the i-th column of A. And so this is equivalent to:

min

{
z
∣∣∣ n∑

xi = 1, xA1 5 z, · · · , xAn 5 z, x = 0

}

Alternatively, for Bob:

8-1



max
y

min
x

xAy = max
y

min
x
{a1y, . . . , amy}

Where ai is the i-th row of A. And so this is equivalent to:

max

{
w

∣∣∣ n∑
yi = 1, w 5 a1y, · · · , w 5 amy, y = 0

}

Problem 2c. Alice’s goal is to find an assignment for x that minimzes the largest of

xA1, . . . , xAn. We identify the largest value by introducing the variable z and minimizing it.

Intuitively, the largest term xAi represents Bob’s fixed strategy that maximizes Bob’s ex-

pected outcome regardless of which strategy Alice chooses according to her distribution x.

Problem 2d. The dual of Alice’s LP after a straightforward application of Dual-taking

rules is:

max

{
w

∣∣∣ m∑
yi = 1,−a1y = w, · · · ,−amy = w, y 5 0

}
Without changing the dual LP, replace y with −y:

max

{
w

∣∣∣ m∑
yi = 1, a1y = w, · · · , amy = w, y = 0

}

Finally, we can replace
∑m yi = 1 with

∑m yi = 1 without modifying the optimal solution,

because a1 = 0, . . . , am = 0, so we get the required form:

max

{
w

∣∣∣ m∑
yi = 1, a1y = w, · · · , amy = w, y = 0

}

Problem 3a. Algorithms: exhaustively pick a point xi and remove all vertices Hi that are

at distance 5 d from it (including itself). Do until no vertices left. Here i < j if xi was

picked before xj.

Let the optimal clustering be C1, . . . , Cl. And let xi ∈ Cp and xj ∈ Cq and i < j. Claim

that p 6= q. Assume otherwise, then xi and xj in Cr (r = p or r = q), hence d(xi, xj) 5 d,

8-2



but then by construction xj ∈ Hi – contradiction. Therefore, by pigeon-hole there can be at

most l centers xi, where l 5 k is the number of optimal clusters, and after relabeling xi ∈ Ci

for all 1 5 i 5 l.

Show that Ci ⊂ Hi by induction. Base case: for any y ∈ C1, d(y, x1) 5 d (since x1 ∈ C1)

hence by algorithm definition y ∈ H1.

Inductive step: pick any y ∈ Ci, then d(xi, y) 5 d, therefore y ∈ Hi or y ∈ Hj for some

j < i. If y ∈ Hj, then d(y, xj) 5 d, and therefore y ∈ Cj (since xj ∈ Cj). So y ∈ Ci ∩ Cj,

but Ci ∩ Cj = ∅, since i 6= j – contradiction.

Therefore, we’ve shown that the Hi’s cover all the Ci’s and hence they cover all vertices.

Next, pick any v, w ∈ Hi, then d(v, w) 5 d(v, xi)+d(w, xi) 5 d+d 5 2d. Hence the diameter

of each Hi is 5 2d, hence we get a 2-approximation.

Problem 3b. Let x1, . . . , xk be the center points chosen by the given algorithm. We claim

that they are a valid super-sequence of the points that the algorithm from part a could have

chosen (knowing d).

Indeed, inductively after choosing xi−1 the algorithm from part either ends, or chooses xi

such that d(xi, xj) > d for all 1 5 j 5 i− 1. In particular, a point whose minimum distance

to all previously chosen centers is largest will do.

From part 3a, we know that there are l 5 k clusters H1, . . . , Hl and every point lies within

distance 5 d of some x1, . . . , xl. Hence if we obtain clusters G1, . . . , Gk by assigning every

vertex to the center closest to it, we have that if y ∈ Gi, then d(y, xi) 5 d. And therefore,

by the triangular inequality (as in part 3a), the diamter of each Gi is at most 2d. Hence we

obtain a 2-approximation.

Problem 4a. Assume given any schedule A where jobs j and i are both feasible, j is

scheduled before i and dj = di. Let cA(i) denote the completion time of job i under schedule

A.

Consider schedule B produced from schedule A by removing job j and placing it right on

8-3



top of job i. Observe, the completion times of job i and all jobs between i and j in schedule

A only decrease (by pj) in schedule B, also cB(j) = cA(i), and no other jobs’ completion

times change.

Since by assumption dj = cA(i), in schedule B job j is still feasible but now it is ordered

after i.

Repeat exhaustively until all feasible jobs are ordered in ascending order of their deadlines.

Problem 4b. Define B(i, w) to be the fastest-completing feasible subset of {1, . . . , i} such

that the total weight of this subset is at least w. WLOG assume i < j ⇒ di 5 dj which will

imply (using part 4a) that for any schedule using jobs up to i − 1, we only need to try to

incorporate job i on top of that schedule. Compute B(i, w) dynamically via:

B(i, w) =



0, if w = 0

∞, if i = 0

min
{

B(i− 1, w), pi + B(i− 1, w − wi)
}

, if di = pi + B(i− 1, w − wi)

B(i− 1, w), otherwise

Runtime. The dynamic program computes a table of B(i, w)’s where i ranges from 0 to n

and w 5 nwmax = npoly(n). Total runtime is poly(n).

Problem 4c. Guess optimum penalty OPT. Divide jobs into large and small, respectively,

with wj > OPT and wj 5 OPT. Consider only large jobs. They have to be scheduled without

any penalty. Try to schedule them. As shown in part 4a, a best schedule is simply to order

them in ascending order of their deadlines. If this schedule is infeasible, your initial guess

for OPT was bad.

Otherwise, “subtract” schedule for large jobs from initial problem: Pick a large scheduled job

j and collapse time period [dj − pj, dj] to the single point dj − pj. I.e. for all di ∈ [dj − pj, dj]

set di = dj − pj, and for all di > dj set di = di − pj. Repeat until you run out of large jobs.

8-4



Call this the residual problem. The residual problem accommodates all schedules for the

small jobs that don’t violate the schedule for the large jobs in the original problem.

Find an approximate minimum penalty schedule for the small jobs in the residual problem

by scaling. Set:

w′
i =

n

εOPT
wi 5 n/ε

New optimum is n/ε. Round weights up w′′
i = dw′

ie. Run DP on integer weights now.

Guaranteed that DP schedule will have penalty at most n/ε + n = (1 + ε)n/ε, which is an

ε-approximation of new optimum and hence correponds to an ε-approximation of the original

optimum on the small weights.

When we insert back the large jobs we get an ε-approximation schedule for the original

problem.

Finally, we need to guess OPT. First guess OPT = 0, if not, then do binary search on OPT,

where wmin 5 OPT 5 nwmax, and we only care to fall ε-factor within OPT.

Running times. Computing the large jobs involves sorting and checking so it takes O(n log n)

assuming that we can compare deadlines in unit time. (But even without this assumption

it is O(n log n poly(n)) which is still OK.) The computation of the residual problem takes

O(n2). And the dynamic program takes O(n3/ε) (because wmax = n/ε). So the dominant

term so far is O(n3/ε).

We have to perform a binary search on OPT, which searches over m = nwmax/(εOPT)

values. Since if OPT 6= 0, OPT = wmin, we have m 5 (n/ε)(wmax/wmin). Since wmax and

wmin have at most l bits (where l is the numbers of bits in the w with largest number of

bits), wmax/wmin has O(l) bits. Hence, log m 5 log n + log(1/ε) + O(l).

Total runtime is: O
(
(n3/ε)(log n + log(1/ε) + l

)
) (which is polynomial in the size O(nl) of

the input problem), so we have an FPAS.

8-5


