
6.854 Advanced Algorithms Petar Maymounkov

Problem Set 4 (October 7, 2005)

With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour

Problem 1a. FALSE

T�
�

�
�@

@
@

@
@

@
@

@�
�

�
�

1

2 3

4 5

S
B

C

D

Two different max flows for example are SBCT and SBDT of flow 1.

Problem 1b. FALSE

1

@
@

@
@ �

�
�

�@
@

@
@S T

A

1 1

1

A

TS 1

1 1

1 1

�
�

�
�

Max flow in original graph is 1, and in derivative graph is 2.

Problem 1c. FALSE

T�
�

�
�@

@
@

@
@

@
@

@�
�

�
�

�
�

�
�@

@
@

@
@

@
@

@�
�

�
�

5

2 1

2 1

S
B

C

D

T
5+4

2+4 1+4

2+4 1+4

S
B

C

D

4-1



Problem Set 4 (October 7, 2005) Petar Maymounkov

Min cut in the original graph is S = {S, B, C,D}, and in the derivative graph

is S = {S}.

Problem 2a. SHORTEST PATH performs n inserts, n delete-mins and m

decrease-keys, where the keys are the “current” path lengths. Dial’s data

structure supports inserts and decrease-keys in O(1) time. Delete-mins are

suported in total time D (the maximum distance), because each delete-min

scans forward through the array (of size D) to find the first non-empty bucket.

Since the minimum element is non-decreasing, each array bucket gets scanned

ever only once. Runtime O(m + n + D) = O(m + D).

Problem 2b.

1. Suppose not

2. Then lvw + dv − dw < 0

3. Then dw > dv + lvw

4. Contradiction:

5. We know that dw 5 dv + lvw, since the shortest path to v appended by

the edge vw is a valid path from s to w.

Problem 2c. For any path s, v0, . . . , vk, the path length under the reduced

distnace works out (after telescoping and observing that ds = 0) to be lsv0 +

lv0v1 + · · · + lvk−1vk
− dvk

.

4-2



Problem Set 4 (October 7, 2005) Petar Maymounkov

Since edge weights are non-negative, the shortest possible path has length

0, and in fact this length is achieved if and only if the path is the same a

shortest path from s to vk under the regular edge weights.

Therefore, there is a 1-to-1 correspondance between shortest paths in the

regular and reduced edge variants of the graph. And thus the lengths of all

shortest paths in the reduced graph are 0.

Problem 2d. We do log C iterations of SHORTEST PATH over the given

graph with edge lengths xi
vw on each iteration i, where:

xi
vw = livw + 2di−1

v − 2di−1
w ,

Where livw are the i most significant bits of lvw, and di
v is the length of the

shortest path to v under edge lengths are livw.

Note that xi
vw is non-negative because:

xi
vw = livw + 2di−1

v − 2di−1
w

= 2
(
li−1
vw + di−1

v − di−1
w

)
+ ε, where ε ∈ {0, 1}

And the part in the brackets is non-negative as shown in part 2b.

Inductive hypthesis: At the end of step i − 1 we have knowledge of all di−1
v .

Inductive step: At step i, we run SHORTEST PATH under edge lengths xi
vw,

and let ri
v denote the length of the shortest path to v. We have that:

4-3



Problem Set 4 (October 7, 2005) Petar Maymounkov

ri
v = arg min

paths

(
xi

sw0
+ xi

w0w1
+ · · · + xi

wkv

)
= arg min

paths

(
lisw0

+ liw0w1
+ · · · + liwkv − 2di−1

v

)
= arg min

paths

(
lisw0

+ liw0w1
+ · · · + liwkv

)
− 2di−1

v

= di
v − 2di−1

v

Therefore,

di
v = ri

v + 2di−1
v

This proves correctness of our algorithm. Next we show that the longest

shortest path at iteration i is at most n (under the xi
vw edge length). We

have ri
v = di

v−2di−1
v . Also we know that di

v 5 2di−1
v +n, because the shortest

path to v in the (i − 1)-st iteration has length at most 2di−1
v + n in the i-th

iteration. We conclude that ri
v 5 n.

Therefore, the running time (using Dial’s algorithm) on an iteration is at

most O(m + n), and hence the total running time is O(m log C).

Problem 2e. When we use base b, the number of scaling iterations is

logb C. In this case we set up:

xi
vw = livw + bdi−1

v − bdi−1
w

And derive di
v = ri

v + bdi−1
v . Hence the length of the longest shortest path

becomes bn, and the total running time O((m + bn) logb C). We find the

optimum b = m/n, to get total running time O(m logm/n C).

4-4



Problem Set 4 (October 7, 2005) Petar Maymounkov

Problem 3a. Define a graph HT , corresponding to T time steps, with

vertices s∗, t∗ and ri,j for all rooms ri and times 0 5 j 5 T , where also r0 = s

and r1 = t. Also let the total number of people be p. Edges:

1. (s∗s0) of capacity p: Puts all people in the starting room initially

2. (tit
∗) of capacity p: Release any people who have reached the target

room

3. (ri,j, ri,j+1) of capacity p: Allow people to remain in a room from one

time step to the next

4. For every edge (ru, rw) of capacity cuw in the original graph, place an

edge (ru,j, rw,j+1) of capacity cuw in the timed graph: Allowing the

appropriate number of people to traverse that corridor between time

steps

An illustration of HT is given below:

p

eeeee

eeeeee

eeeeee

e

e

J
J
J
J
J














����

@
@

@
@

@
@

@
@

����

s∗ s0 s1 s2

t0 t1 t2

t∗

ri0 ri1 ri2

p pp

p

p

e

Ht has O(Tm) edges and O(Tn) vertices, where m and n are the edges and

vertices in the original graph.

4-5



Problem Set 4 (October 7, 2005) Petar Maymounkov

A flow on HT corresponds to a schedule for letting people outside of the

building, and vice-versa (there is a 1-to-1 correspondance). This is so be-

cause each edge represents an event that can be true independantly from

the remaining edges. In particular, two edges at the same time step repre-

sent independent events because they correspond to different corridors, and

two edges across times steps are independent because they refer to different

times.

In particular, a p-flow on HT corresponds to a schedule for sending all people

to lunch in at most T time steps.

Our goal is to find the smallest T for which a p-flow exists. This can be done

with a binary search on T . Start with T = 1. At step Ti run MAX FLOW, if

no p-flow exists let Ti+1 = 2Ti, otherwise stop and do a regular binary search

between Ti−1 and Ti. This procedure takes O(log Tmin) iterations of MAX

FLOW, each taking O(T 3
minmn2), for total of O(mn2T 3

min log Tmin).

Problem 3b. Let the multiple entry locations were rooms ri1 , . . . , rik and

their respective number of people be a1, . . . , ak. Simply add edges (s∗, rix,0)

of capacities ax in HT for 1 5 x 5 k.

Let the multiple exit locations be rooms rj1 , . . . , rjl
. Simply add edges

(rjx,z, t
∗) of capacity p in HT for 1 5 x 5 l and 0 5 x 5 T .

Problem 3c. In this scenario, for a corridor (ru, rw) with transit time y,

introduce edges (ru,i, rw,i+y) of capacity cuw for all i 5 T − y. Note that this

model takes into account that a corridor of transit time y can have up to

cuwy people in it at the same time, where only cuw can enter on each time

step.

4-6



Problem Set 4 (October 7, 2005) Petar Maymounkov

Problem 4a. Begin by finding a feasible flow, simply using the technique

described in class:

• Add new source s∗ and new sink t∗

• Replace each edge ij with an edge of capacity uij − lij

• Add demand edge it∗ of capacity lij

• Add supply edge s∗j of capacity lij

• Add infinite capacity edge ts (old sink to old source)

• Run MAX FLOW on resulting graph

• This produces a feasible flow f on the original graph

At this point we have our original graph G together with a feasible flow. The

next step will produce the minimal flow:

• Create residual graph Gf of G with the feasible flow f

• Subtract uij capacity from the backwards ji edges of Gf so that we

cannot undo the minimum allowable flow on the edges

• Run MAX FLOW on Gf in the opposite direction, i.e. from t to s

• Add the resulting flow g to the initial feasible flow f to get the minimum

feasible flow h

The resulting flow is feasible by construction. It is minimal, because if there

were a smaller flow, we would have missed an augmenting path which is a

contradiction.

4-7



Problem Set 4 (October 7, 2005) Petar Maymounkov

Problem 4b. First we show the inequality. For any feasible flow f and cut

S: the lower bound on the cut capacity (LBCC) is
∑

ij∈S×T lij −
∑

ji∈T×S uji.

We know that
∑

ij∈S×T lij is a lower bound on how much f pushes forward

through the cut, and
∑

ji∈T×S uji is an upper bound on how much f pushes

backwards through the cut, hence the LBCC is a lower bound of f .

We now show that f is equal to the LBCC of some cut (which would imply

that this is the maximum LBCC due to the inequality above).

Start by specifying the edges of the graph G′ on which we run the second

MAX FLOW procedure. For every edge ij in G, there are two edges in G′:

(1) ij with capacity uij − lij − ∆fij, and (2) ji with capacity ∆fij, where

∆fij = fij − lij.

Consider the cut defined by all vertices reachable from t in the residual

graph of G′ after the second run of MAX FLOW (which was in the opposite

direction). s is not a member of this set, since there is no augmenting path

from t to s.

For every edge ij in G, the residual of G′ must have no edge ji which means

that it saturated the ji edge of G′ of capacity ∆fij. So gij (with respect to

G) is −∆fij (in the s to t direction). On the other hand fij = lij + ∆fij,

hence hij = fij + gij = lij.

For every edge ji in G, the residual of G′ must have no edge ji which means

that it saturated the ji edge of G′ of capacity uji − lji − ∆fji. So gji (with

respect to G) is −(uji − lji − ∆fji) (in the s to t direction). On the other

hand, fji = −(lji + ∆fji), hence hji = fji + gji = −uij.

Summing over all edges that cross the cut, we get that the flow h is exactly

equal to the LBCC of the cut.

4-8



Problem Set 4 (October 7, 2005) Petar Maymounkov

Problem 4c. Set up a graph G with vertices s, t, a1, b1, . . . , an, bn, and

edges:

1. (s, ai) of capacity 1 and lower limit 0, for all i

2. (bi, t) of capacity 1 and lower limit 0, for all i

3. (ai, bi) of capacity 1 and lower limit 1, for all i

4. (bi, aj) of capacity 1 and lower limit 0, for all aj − bi = rij

Run MIN FLOW on this graph. Each flow path (of the flow decomposition)

corresponds to a student’s schedule. (There are no cycles as the graph is

acyclic.)

Edges of types 3 and 4 correspond to actaul work being done (attending

lecture or commuting between lectures). Edges of type 1 correspond to re-

quiring a new student to enter into the schedule. Edges of type 2 correspond

to a student being done with their schedule.

All edges have upper capacities of 1 because it is easily seen that at no point

it makes sense to have more than 2 students with overlapping schedules (as

one of them could be assigned a different schedule, or simply released from

the loop).

4-9


