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1. Introduction

Recent research efforts in peer-to-peer (P2P) systems con-
centrate on providing a “distributed hash table”-like prim-
itive in the P2P system (Stoica et al., 2001). However,
to make P2P systems useful, we need to build a keyword
search engine to index the entire document collection in the
distributed system. Doing keyword search in a distributed
environment poses new challenges for traditional informa-
tion retrieval techniques. Traditional search engines are in-
herently centralized; web pages are collected by crawlers
and put in a centralized repository. Subsequently, a global
index of the entire document collection is built and used for
answering keyword queries. There are lots of successful
search engines that index the Web, e.g. Google, Altavista
etc.

One easiest solution to search in a P2P system is to build a
separate centralized search engine like Napster. However,
due to the large amount of resources required to index a
huge amount of data, this straightforward solution requires
too much start-up cost from a single party. Furthermore,
it is prone to legal attacks as in the case of Napster’s cen-
tral song title search engine. In comparison, searching in
Gnutella is done in a completely distributed fashion where
queries are simply flooded to the network. However, this
flooding technique is very costly and it has been noted that
most of the traffic in the Gnutella network is the flooded-
queries.

In Gnutella network, documents are simply distributed
among participating node as they are published and down-
loaded. Therefore, we have to resort to flooding during the
query phase as we have no clue where the matching docu-
ments might reside. This paper proposes intelligent ways of
partitioning documents among different machines to facili-
tate key word search in a distributed environment. We use a
classic machine learning algorithm, Probablistic Latent Se-
mantic Analysis (PLSA) to partition documents according
to their “topics” and evaluated its performance using real
web site query logs and search results from Google.

2. Topic based Document Partitioning

Ideally, we would like to partition the entire document col-
lection according to different “topics” present. Thereafter,
a query like “peer-2-peer systems” will be sent to the parti-
tion that is about“computer science”. This poses two tech-
nical challenges: Firstly, how to partition documents based
on “topics”? Secondly, how to classify a query to a partic-
ular “topic”? We use classic machine learning techniques
to address both problems.

Unlike Cora (McCallum et al., 2000) and other similar
systems, we decide to use “clustering” algorithms (un-
supervised text classification) to group documents into a
small number of clusters to completely avoid human ef-
forts to identify topics and pre-classify training set doc-
uments. Traditional “clustering” algorithm groups docu-
ments according to their word (term) “similarities”. Hy-
Pursuit (Weiss et al., 1996) is an indexing system that
uses clustering to group similar documents together. These
“clustering” algorithms do not explicitly model the “topic”
of each document and we can only assume that documents
on the same “topic” have similar word occurrences and
hence are more likely to be grouped into the same cluster.

The more recent Probabilistic Latent Semantic Analysis
(PLSA) (Hofmann, 2001) is one generative clustering tech-
nique that explicitly models document topics. It models
each document as generated from a number of “hidden
topics” (i.e. topics whose identity or signature we do not
know). Each “hidden topic” has its signature defined as
the conditional probabilities of word occurances in that
topic class. Classic model fitting algorithm like Expecta-
tion Maximization(EM) is then used to fit the model given
a set of documents. As a result of the model fitting, we
obtain the conditional probabilities of word occurances in
each topic class. These probabilities can be used as a topic
class’ signature to classify previously unseen documents
and actual queries into different topic classes.

Because of PLSA’s high computation overhead, we can
only afford to train with a small subset of all web pages for
model fitting. In our experiment, we selected the 10, 000

(0.56% of all crawled pages) top ranked web pages accord-



ing to the well-known Google PageRankalgorithm and ran
PLSA algorithm on them. Our rationale is that “authori-
tative” web pages are more likely to be representative of
their topic classes and hence we are likely to get better re-
sults by fitting our topic model with top ranked web pages.
These web pages are passed through a standard word stop-
per and a Porter’s stemmer before being trained. The rest of
the web pages are classified by comparing each web page’s
term vector with that of each cluster’s term vector. A stan-
dard cosine measure (i.e. inner product of the two term
vectors) is used to measure the similarities between the two
term vectors and the web page is assigned to the cluster
whose term vector is most similar to itself.

In our distributed search system, there is a designated node
(root node) that contains the “signatures” of all document
clusters. All documents belong to a cluster reside on a sin-
gle node where a standard local inverted index is also main-
tained. When a publishing node wants to insert a document
into the system, the cluster “signatures” of all clusters are
retrieved from the root node and the document is classified
and sent to the appropriate cluster node. All queries are
issued to the root node which then returns the conditional
probabilities that the query belongs to each cluster using
Bayes’ rule.1. The query is subsequently forwarded to a
series of clusters with decreasing conditional probabilities
until the user is satisfied with the query results. The root
node should be replicated for better performance and this
could be done easily as there is little space required com-
pared with what is needed for a global search engine.

3. Evaluations

We obtained a web.mit.edu’s search engine’s query log in
October 2001. The log contains 81, 006 queries of which
40, 414 queries are distinct. We assume that Google runs
the “perfect” search engine that we want to compare our-
selves against. We obtained the top 100 Google results
for each query by replaying the query log to Google with
site : mit.edu constraint. We also crawled mit.edu over
the same week period to collect over 1, 800, 000 non-image
webpages. Of all the Google result URLs we gathered,
more than 99% of the web pages have been crawled.

Figure 1 shows the average fraction of result URL (out of
the top 50 Google results for each query) retrieved as a
function of the total number of clusters contacted. Ideally,
we would like to contact just one cluster and still be able to
retrieve 100% of all the matching results. In reality, we are
able to retrieve slightly over 60% of matching result URLs
by contacting 5 clusters out of 20 on average. This prelim-
inary system performance is quite encouraging, however,

1For queries with multiple terms, we use the naive Bayes as-
sumption that given a cluster, all terms in the query are indepen-
dent of each other
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Figure 1. Percentage of matching top 50 Google results retrieved
as a function of the number of clusters contacted

it is far from satisfactory. In particular, we notice that the
queries often fail to be assigned to the biggest matching
cluster that contains most of the results.

4. Conclusions and Future Work

Search in a distributed environment is one important aspect
of Oxygen’s vision of distributed and pervasive comput-
ing. Document clustering based on “topics” holds good
promise for efficient distributed fulltext search. We pre-
sented the preliminary results of our distributed clustering
based search with real web query logs and compared its
performance with Google. Future work includes more ex-
tensive performance evaluation with hundreds or thousands
of clusters. We also plan to introduce a hierarchical organi-
zation of clusters and mechanisms to automaticly reconfig-
ure the clusters based on perceived system performance.
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