
Designing a DHT for low latency and high throughput

Frank Dabek, Jinyang Li, Emil Sit, James Robertson, M. Frans Kaashoek, Robert Morris ∗

MIT Computer Science and Artificial Intelligence Laboratory
fdabek, jinyang, sit, jsr, kaashoek, rtm@csail.mit.edu

Abstract
Designing a wide-area distributed hash table (DHT) that
provides high-throughput and low-latency network stor-
age is a challenge. Existing systems have explored a range
of solutions, including iterative routing, recursive routing,
proximity routing and neighbor selection, erasure coding,
replication, and server selection.

This paper explores the design of these techniques and
their interaction in a complete system, drawing on the
measured performance of a new DHT implementation and
results from a simulator with an accurate Internet latency
model. New techniques that resulted from this exploration
include use of latency predictions based on synthetic co-
ordinates, efficient integration of lookup routing and data
fetching, and a congestion control mechanism suitable for
fetching data striped over large numbers of servers.

Measurements with 425 server instances running on
150 PlanetLab and RON hosts show that the latency opti-
mizations reduce the time required to locate and fetch data
by a factor of two. The throughput optimizations result
in a sustainable bulk read throughput related to the num-
ber of DHT hosts times the capacity of the slowest access
link; with 150 selected PlanetLab hosts, the peak aggre-
gate throughput over multiple clients is 12.8 megabytes
per second.

1 Introduction
The Internet has transformed communication for dis-
tributed applications: each new system need not imple-
ment its own network, but can simply assume a shared
global communication infrastructure. A similar transfor-
mation might be possible for storage, allowing distributed
applications to assume a shared global storage infrastruc-
ture. Such an infrastructure would have to name and find
data, assure high availability, balance load across avail-
able servers, and move data with high throughput and low
latency.

Distributed hash tables (DHTs) are a promising path to-
wards a global storage infrastructure, and have been used

∗This research was conducted as part of the IRIS project
(http://project-iris.net/), supported by the National Sci-
ence Foundation under Cooperative Agreement No. ANI-0225660.

as the basis for a variety of wide-area file and content pub-
lishing systems [13, 26, 34, 38]. Good performance, how-
ever, is a challenge: the DHT nodes holding the data may
be far away in the network, may have access link capaci-
ties that vary by orders of magnitude, and may experience
varying degrees of congestion and packet loss.

This paper explores design choices for DHT read and
write algorithms. Existing work has investigated how to
make the lookup of keys in DHTs scalable, low-latency,
fault-tolerant, and secure, but less attention has been paid
to the efficiency and robustness with which DHTs read
and store data. This paper considers a range of design op-
tions for efficient data handling in the context of a single
DHT, DHash++. The decisions are evaluated in simula-
tion and in an implementation of DHash++ on the Planet-
Lab [29] and RON [2] test-beds.

To bound the discussion of design decisions, we have
made a number of assumptions. First, we assume that all
nodes cooperate; the algorithms for reading and writing
are likely to be more expensive if they have to defend
against malicious nodes. Second, we assume that lookups
are routed using one of the O(log N)-style schemes, in-
stead of using the recently proposed O(1) schemes [14,
17, 18, 44]. Finally, we assume that the DHT stores small
blocks (on the order of 8192 bytes). Relaxing these as-
sumptions will result in different DHT designs with dif-
ferent latency and throughput properties, which we hope
to explore in the future.

The paper makes the following contributions. Recur-
sive lookups take about 0.6 times as long as iterative; the
reason why the reduction is not a factor of two is the cost
of the final return trip. The latency of the last few hops
in a lookup acts as a lower bound on the performance
of Proximity Neighbor Selection [37, 16], which approxi-
mates 1.5 times the average round trip time in the underly-
ing network. This result holds regardless of the number of
DHT nodes (and thus regardless of the number of hops).
Replicated data allows for low-latency reads because there
are many choices for server selection, while erasure-coded
data reduces bandwidth consumption for writes at the ex-
pense of increased read latency. Integration of key lookup
and data fetch reduces the lower bound imposed by the
last few lookup hops. Finally, using an integrated trans-

Catacomb

Catacomb

Catacomb

Catacomb

Catacomb

Chord

STP

DHT

Vivaldi

Backup FS CDN

Figure 1: DHash++ system overview.

port protocol rather than TCP provides opportunities for
efficiency in alternate routing after timeouts and allows
the DHT freedom to efficiently contact many nodes.

The rest of this paper is structured as follows. Section 2
outlines the complete system that surrounds the specific
mechanisms detailed in the paper. Section 3 describes the
methods behind the paper’s measurements and quantita-
tive evaluations. Section 4 discusses design decisions that
affect latency, and Section 5 discusses throughput. Sec-
tion 6 describes related work. We conclude in Section 7.

2 Background
For concreteness, this evaluates design decisions in the
context of a complete DHT called DHash++. This section
describes the parts of DHash++ that are needed to under-
stand the rest of the paper.

2.1 Chord
DHash++ uses the Chord lookup algorithm to help it find
data [42]. Chord provides a function lookup(key) →
set-of-IP, which maps a 160-bit key to the set of IP
addresses of the nodes responsible for that key. Each node
has a 160-bit identifier, and Chord designates the s nodes
whose identifiers immediately follow a key as responsible
for that key; these are the key’s successors. To provide
reliable lookup even if half of the nodes fail in a 216-node
network, the number of successors, s, is 16 in the Chord
implementation. The ID space wraps around, so that zero
immediately follows 2160 − 1.

The base Chord lookup algorithm (which will be modi-
fied in subsequent sections) works as follows. Each Chord
node maintains a finger table, consisting of the IP ad-
dresses and IDs of nodes that follow it at power-of-two
distances in the identifier space. Each node also maintains
a successor list referring to its s immediate successors.
When a node originates a lookup, it consults a sequence
of other nodes, asking each in turn which node to talk to
next. Each node in this sequence answers with the node

Figure 2: An illustration of a Chord identifier ring. The tick
mark denotes the position of a key in ID space. The square
shows the key’s successor node, and the circles show the nodes
in the successor’s successor list. The triangles and arrows show
a lookup path. The last node before the tick mark is the key’s
predecessor.

from its finger table with highest ID still less than the de-
sired key. The originating node will find the key’s prede-
cessor node after O(log N) consultations; it then asks the
predecessor for its successor list, which is the result of the
lookup. This style of lookup is called iterative, since the
originating node controls each step of the lookup. All of
the communication uses UDP RPCs.

Figure 2 shows a Chord ring with a key, its successor,
the successor’s successor list, and a lookup path; this pic-
ture is helpful to keep in mind since much of the discus-
sion appeals to the ring geometry. Although this paper
explores optimizations over base Chord, we believe that
these optimizations also apply to other DHTs that route in
ID spaces using an O(log N) protocol.

2.2 DHash++
DHash++ stores key/value pairs (called blocks) on a set
of servers. The DHash++ client API consists of key ←
put(value) and get(key) → value. DHash++
calculates the key to be the SHA-1 hash of the value, and
uses Chord to decide which server should store a given
block; each server runs both Chord and DHash++ soft-
ware. As well as finding and moving data for client ap-
plications, DHash++ authenticates the data and moves it
from server to server as nodes join, leave, and fail [7].

2.3 Synthetic coordinates
Many of the techniques described in this paper use syn-
thetic coordinates to predict inter-node latencies without
having to perform an explicit measurement to determine
the latency. A number of synthetic coordinate systems
have been proposed [10, 24, 27, 30, 33, 39]. We chose
to use Vivaldi [12], because its algorithm is decentralized,
which makes it suitable for use in peer-to-peer systems.

Furthermore, the Vivaldi algorithm is lightweight, since it
can piggy-back on DHash++’s communication patterns to
compute coordinates.

Whenever one Chord or DHash++ node communicates
directly with another, they exchange Vivaldi coordinates.
Nodes store these coordinates along with IP addresses in
routing tables and successor lists. The result of a lookup
for a key carries the coordinates of the nodes responsible
for the key as well as their IP addresses. Thus the request-
ing node can predict the latencies to each of the responsi-
ble nodes without having to first communicate with them.

3 Evaluation methods
The results in this paper are obtained through simulations
and measurements on the PlanetLab and RON test-beds.
The measurements focus on DHT operations that require
low latency or high throughput.

3.1 Evaluation infrastructure
DHT performance depends on the detailed behavior of
the servers and the underlying network. The test-bed mea-
surements in Section 4 were taken from a DHash++ im-
plementation deployed on the PlanetLab and RON test-
beds. 180 test-bed hosts were used, of which 150 were
in the United States and 30 elsewhere. 105 of the hosts
are on the Internet2 network; the rest have connections
via DSL, cable modem, commercial T1 service, or are
at co-location centers. Each host runs three independent
DHash++ processes, or virtual nodes, in order to improve
load balance and to ensure that the total number of nodes
is large compared to the size of the Chord successor list.
The measurements in Section 5 were taken on the 27-node
RON test-bed alone.

The test-bed measurements are augmented with simu-
lation results to explore large configurations, to allow easy
testing of alternate designs, and to allow analytic explana-
tions of behavior in a controlled environment. The simu-
lated network models only packet delay. One input to the
simulator is a full matrix of the round-trip delays between
each pair of simulated hosts. This approach avoids hav-
ing to simulate the Internet’s topology, a currently open
area of research; it requires only the measurement of ac-
tual pair-wise delays among a set of hosts. The simulator
can produce useful speed-of-light delay results, but cannot
be used to predict throughput or queuing delay.

The simulator’s delay matrix is derived from Internet
measurements using techniques similar to those described
by Gummadi et al. [15]. The measurements involved 2048
DNS servers found with inverse DNS lookups on a trace
of over 20,000 Gnutella clients. For each pair of these
servers, a measuring node sends a query to one server that
requires it to contact the other server. Subtracting the de-
lay between the measuring node and the first server from

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Latency (ms)

PlanetLab
King

Figure 3: Round-trip latency distribution over all pairs of
PlanetLab and King dataset hosts. The median and aver-
age King dataset latencies are 134 and 154 milliseconds
respectively. The median and average PlanetLab latencies
are 76 and 90 milliseconds respectively.

the total delay yields the delay between the two servers.
In order to reduce the effects of queuing delay, the min-
imum delay from five experiments is used. In this paper
the results are called the King data-set. All the simula-
tions in this paper involve 2048 DHT nodes using King
delay matrix unless otherwise mentioned. Figure 3 shows
the CDF of the King data-set round-trip times; the median
is 134 milliseconds, while the average is 154 millisec-
onds. The graph also shows the minimum delay of five
pings between each pair of PlanetLab hosts for compar-
ison. The main difference between the two curves is the
longer tail on the King distribution, which is likely caused
by the larger sample of nodes.

3.2 Application workload

The design of a DHT must incorporate assumptions about
probable application behavior, and a DHT evaluation must
also involve either applications or models of application
behavior. The application aspects that most affect perfor-
mance are the mix of read and write operations, the degree
to which operations can be pipelined, and the size of the
data records.

DHash++ is designed to support read-heavy applica-
tions that demand low-latency and high-throughput reads
as well as reasonably high-throughput writes. Examples
of such applications might include the Semantic Free Ref-
erencing system (SFR) [45] and UsenetDHT [40].

SFR is a naming system designed to replace the use
of DNS as a content location system. SFR uses a DHT
to store small data records representing name bindings.
Reads are frequent and should complete with low latency.
Writes are relatively infrequent and thus need not be as

high performance. SFR data blocks are likely to be on the
order hundreds of bytes.

UsenetDHT is a service aiming to reduce the total stor-
age dedicated to Usenet by storing all Usenet articles in a
shared DHT. UsenetDHT splits large binary articles (av-
eraging 100 KB) into small blocks for load balance, but
smaller text articles (typically 5 KB or less) are stored as
single blocks. While readership patterns vary, UsenetDHT
must support low-latency single article reads, as well as
high-throughput pipelined article fetches.

These systems are unlikely to be deployed on high-
churn networks—these systems are all server-class. The
target environment for them is a network with relatively
reliable nodes that have good Internet access.

4 Designing for low latency
This section investigates five design choices that affect
DHT get latency. The naive algorithm against which
these choices are judged, called base DHash++, operates
as follows. Each 8192-byte block is stored as 14 1171-
byte erasure-coded fragments, any seven of which are suf-
ficient to reconstruct the block, using the IDA coding al-
gorithm [31]. The 14 fragments are stored at the 14 imme-
diate successors of the block’s key. When an application
calls get(key), the originating node performs an itera-
tive Chord lookup, which ends when the key’s predecessor
node returns the key’s 16 successors; the originating node
then sends seven parallel requests the first seven succes-
sors asking them each to return one fragment.

Figure 4 gives a preview of the results of this sec-
tion. Each pair of bars shows the median time to fetch a
block on the PlanetLab test-bed after cumulatively apply-
ing each design improvement. The design improvements
shown are recursive rather than iterative routing, proxim-
ity neighbor selection, fetching of data from the closest
copy, and integration of lookup routing and data fetching.
These design improvements together reduce the total fetch
latency by nearly a factor of two.

This paper uses a log(N) protocol for routing lookups.
An optimization that isn’t explored in this paper is an in-
crease in the base to reduce the number of hops, or the use
of a constant-hop protocols. These optimizations would
reduce latency under low churn, because each node would
know about many other nodes. On the other hand, in high
churn networks, these optimizations might require more
bandwidth to keep routing tables up to date or experi-
ence more timeouts because routing tables might contain
recently-failed nodes. The paper’s evaluation infrastruc-
ture isn’t adequate to explore this design decision in de-
tail. We hope to explore this issue in future work. We do
explore the extent to which proximity routing can reduce
the impact of the number of hops on the lookup latency.

Base Recursive lookup Proximity routing Server selection Integration

Latency optimization techniques (cumulative)

0

100

200

300

400

500

M
ed

ia
n

la
te

nc
y

(m
s)

Figure 4: The cumulative effect of successive optimiza-
tions on the latency of a DHash++ data fetch. Each bar
shows the median time of 1,000 fetches of a randomly
chosen 8192-byte data block from a randomly chosen
host. The dark portion of each bar shows the lookup time,
and the light portion shows the time taken to fetch the
data. These data are from the implementation running on
PlanetLab.

4.1 Data layout

The first decision to be made about where a DHT should
store data is whether it should store data at all. A num-
ber of DHTs provide only a key location service, perhaps
with a layer of indirection, and let each application de-
cide where (or even whether) to store data [20, 28]. The
choice is a question of appropriate functionality rather
than performance, though Section 4.5 describes some per-
formance benefits of integrating the DHT lookup and data
storage functions. The approach taken by DHash++ is ap-
propriate for applications that wish to view the DHT as a
network storage system, such as our motivating examples
SFR and UsenetDHT.

For DHTs that store data, a second layout decision is
the size of the units of data to store. A DHT key could re-
fer to a disk-sector-like block of data [13], to a complete
file [38], or to an entire file system image [11]. Large val-
ues reduce the amortized cost of each DHT lookup. Small
blocks spread the load of serving popular large files. For
these reasons, and because some applications such as SFR
require the DHT to store small blocks, DHash++ is opti-
mized with blocks of 8 KB or less in mind.

A third layout decision is which server should store
each block of data (or each replica or coded fragment).
If a given block is likely to be read mostly by hosts in
a particular geographic area, then it would make sense
to store the data on DHT servers in that area. Caching
is one way to achieve this kind of layout. On the other
hand, geographic concentration may make the data more
vulnerable to network and power failures, it may cause

the load to be less evenly balanced across all nodes, and
is difficult to arrange in general without application hints.
At the other extreme, the DHT could distribute data uni-
formly at random over the available servers; this design
would be reasonable if there were no predictable geo-
graphic locality in the originators of requests for the data,
or if fault-tolerance were important. DHash++ uses the
latter approach: a block’s key is essentially random (the
SHA-1 of the block’s value), node IDs are random, and a
block’s replicas or fragments are placed at its key’s suc-
cessor nodes. The result is that blocks (and load) are uni-
formly spread over the DHT nodes, and that a block’s
replicas or fragments are widely scattered to avoid cor-
related failure.

Given a DHT design that stores blocks on randomly
chosen servers, one can begin to form some expectations
about fetch latency. The lower bound on the total time to
find and fetch a block is the round trip time from the orig-
inator to the nearest replica of the block, or the time to
the most distant of the closest set of fragments required
to reconstruct the block. For the typical block this time is
determined by the distribution of inter-host delays in the
Internet, and by the number of choices of replicas or frag-
ments. The DHT lookup required to find the replicas or
fragments will add to this lower bound, as will mistakes
in predicting which replica or fragments are closest.

Most of the design choices described in subsequent
subsections have to do with taking intelligent advantage
of choices in order to reduce lookup and data fetch la-
tency.

4.2 Recursive or iterative?

The base Chord and Kademlia algorithms are iterative: the
originator sends an RPC to each successive node in the
lookup path, and waits for the response before proceed-
ing [25, 42]. Another possibility is recursive lookup [6,
47]: each node in the lookup path directly forwards the
query to the next node, and when the query reaches the
key’s predecessor, the predecessor sends its successor list
directly back to the originator [42]. Recursive lookup,
which many DHTs use, might eliminate half the latency
of each hop since each intermediate node can immedi-
ately forward the lookup before acknowledging the pre-
vious hop.

Figure 5 shows the effect of using recursive rather than
iterative lookup in the simulator with the 2048-node King
data set. For each technique, 20,000 lookups were per-
formed, each from a random host for a random key. The
average number of hops is 6.3. Recursive lookup takes on
average 0.6 times as long as iterative. This decrease is not
quite the expected factor of two: the difference is due to
the extra one-way hop of (on average) 77 milliseconds to
return the result to the originator.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Latency (ms)

Iterative
Recursive

Figure 5: The cumulative distributions of lookup time for
Chord with recursive and iterative lookup. The recursive
median and average are 461 and 489 milliseconds; the it-
erative median and average are 720 and 822 milliseconds.
The numbers are from simulations.

While recursive lookup has lower latency than iterative,
iterative is much easier for a client to manage. If a recur-
sive lookup elicits no response, the originator has no in-
formation about what went wrong and how to re-try in
a way that is more likely to succeed. Sometimes a simple
re-try may work, as in the case of lost packets. If the prob-
lem is that each successive node can talk to the next node,
but that Internet routing anomalies prevent the last node
from replying to the originator, then re-tries won’t work
because only the originator realizes a problem exists. In
contrast, the originator knows which hop of an iterative
lookup failed to respond, and can re-try that hop through
a different node in the same region of the identifier space.

On the the other hand, recursive communication may
make congestion control easier (that is, it is it may make it
more feasible to rely on TCP). We will show in Section 5
that the performance of a naive TCP transport can be quite
poor.

DHash++ uses recursive lookups by default since they
are faster, but falls back on iterative lookups after persis-
tent failures.

4.3 Proximity neighbor selection

Many DHTs decrease lookup latency by choosing nearby
nodes as routing table entries [6, 16, 25, 42, 43, 47],
a technique often called proximity neighbor selection
(PNS). The reason this is possible is that there are usually
few constraints in the choice of routing entries: any node
in the relevant portion of the identifier space is eligible.
A DHT design must include an algorithm to search for
nearby nodes; an exhaustive search may improve lookup
latency, but also consume network resources. This sub-

0

100

200

300

400

500

600

700

800

1 10 100 1000

A
ve

ra
ge

 lo
ok

up
 la

te
nc

y
(m

se
c)

Number of PNS samples

Figure 6: Average lookup latency as a function of the
number of PNS samples. The bar at each x value shows
the 10th, average, and 90th percentile of the latencies ob-
served by 20,000 recursive lookups of random keys from
random nodes using PNS(x). The measurements are from
the simulator with 2048 nodes.

section builds on the work of Gummadi et al. [16] in two
ways: it explains why PNS approximates 1.5 times the av-
erage round trip time in the underlying network and shows
that this result holds regardless of the number of DHT
nodes (and thus regardless of the number of hops).

Following Gummadi et al. [16], define PNS(x) as fol-
lows. The ith Chord finger table entry of the node with ID
a properly refers to the first node in the ID-space range
a + 2i to a + 2i+1 − 1. The PNS(x) algorithm considers
up to the first x nodes in that range (there may be fewer
than x), and routes lookups through the node with lowest
latency. Ideal PNS refers to PNS(x) with x equal to the to-
tal number of nodes, so that every finger table entry points
to the lowest-latency node in the entire allowed ID-space
range. The simulator simply chooses the lowest-latency
of the x nodes, while the real implementation asks each
proper finger entry for its successor list and uses Vivaldi
to select the closest node. This means that the real imple-
mentation requires that x ≤ s (the number of successors).

What is a suitable value for x in PNS(x)? Figure 6
shows the simulated effect of varying x on lookup la-
tency. For each x value, 20,000 lookups were issued by
randomly selected hosts for random keys. Each lookup is
recursive, goes to the key’s predecessor node (but not suc-
cessor), and then directly back to the originator. The graph
plots the median, 10th percentile, and 90th percentile of
latency.

Figure 6 shows that PNS(1) has a simulated average
latency of 489 ms, PNS(16) has an average latency of 224
ms, and PNS(2048) has an average latency of 201 ms. The
latter is ideal PNS, since the neighbor choice is over all

0

50

100

150

200

250

300

100 1000

A
ve

ra
ge

 lo
ok

up
 la

te
nc

y
(m

se
c)

Network Size

PNS(16)
PNS(N)

Figure 7: Average lookup latency of PNS(16) and
PNS(N) as a function of the number of nodes in the sys-
tem, N . The simulated network sizes consist of 128, 256,
512, 1024, 2048 nodes.

nodes in the simulation. PNS(16) comes relatively close
to the ideal, and is convenient to implement in the real
system with successor lists.

Why does ideal PNS show the particular improvement
that it does? The return trip from the predecessor to the
originator has the same median as the one-way delay dis-
tribution of the nodes in the network, δ. For the King
data set, δ = 67ms. The last hop (to the predecessor)
has only one candidate, so its median latency is also δ.
Each preceding hop has twice as many candidate nodes
to choose from on average, since the finger-table interval
involved is twice as large in ID space. So the second-to-
last hop is the smaller of two randomly chosen latencies,
the third-to-last is the smallest of four, etc. The minimum
of x samples has its median at the 1 − 0.5

1

x percentile
of the original distribution, which can be approximated
as the 1

x
percentile for large x. Doubling the sample size

x will halve the percentile of the best sample. Assum-
ing a uniform latency distribution, doubling the sample
size halves the best sampled latency. Therefore, the laten-
cies incurred at successive lookup hops with ideal PNS
can be approximated by a geometric series with the fi-
nal lookup hop to the key’s predecessor being the longest
hop. The lookup process includes an additional final hop
to the originator. If we use the per-hop median latency
as a gross approximation of the average per-hop latency,
the total average lookup latency is thus approximated as:
δ + (δ + δ

2
+ δ

4
+ ...) = δ + 2δ = 3δ. For the King data

set, this gives 201 ms. This is coincidentally the ideal PNS
simulation result of 201 ms.

The fact that the average lookup latency of PNS(N)
can be approximated as an infinite geometric series whose
sum converges quickly suggests that despite the fact that

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 10 20 30 40 50 60 70 80 90 100

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Latency (ms)

 2

 4

 8

16

32
King

Figure 8: The median of the minimum latency taken
from x samples out of the all-pairs empirical latency dis-
tribution of the King dataset. The boxes correspond to
2,4,8,16,32 samples starting from the right.

the number of lookup hops scales as log(N), the total av-
erage lookup latency will stay close to 3δ. Figure 7 shows
the simulated average lookup latency as a function of the
number of nodes in the system. As we can see, there is
indeed little increase in average lookup latency as the net-
work grows.

Why are there diminishing returns in Figure 6 beyond
roughly PNS(16)? First, the King delay distribution is not
uniform, but has a flat toe. Thus increasing the number of
samples produces smaller and smaller decreases in mini-
mum latency. Figure 8 shows this effect for various sam-
ple sizes. Second, for large x, the number of samples is
often limited by the allowed ID-space range for the finger
in question, rather than by x; this effect is more important
in the later hops of a lookup.

One lesson from this analysis is that the last few hops of
a lookup dominate the total latency. As a lookup gets close
to the target key in ID space, the number of remaining
nodes that are closer in ID space to the key decreases, and
thus the latency to the nearest one increases on average.
Section 4.5 shows how to avoid this problem.

4.4 Coding versus replication

Once the node originating a fetch acquires the key’s pre-
decessor’s successor list, it knows which nodes hold the
block’s replicas [13, 38] or fragments of an erasure-coded
block [8, 3, 22, 19]. In the case of replication, the origi-
nator’s strategy should be to fetch the required data from
the successor with lowest latency. The originator has more
options in the case of coded fragments, but a reasonable
approach is to fetch the minimum required number of
fragments from the closest successors. The technique of
fetching the data from the nearest of a set of candidate

nodes is typically called server selection.
The design choice here can be framed as choosing the

coding parameters l and m, where l is the total number
of fragments stored on successors and m is the number
required to reconstruct the block. Replication is the spe-
cial case in which m = 1, and l is the number of replicas.
The rate of coding, r = l

m
, expresses the amount of re-

dundancy. A replication scheme with three replicas has
m = 1, l = 3, and r = 3, while a 7-out-of-14 IDA coding
scheme has m = 7, l = 14, and r = 2.

The choice of parameters m and l has three main ef-
fects. First, it determines a block’s availability when nodes
fail [46]. If the probability that any given DHT node is
available is p0, the probability that a block is still avail-
able is [4]:

pavail =

l
∑

i=m

(

l

i

)

pi

0(1− p0)
l−i (1)

Second, increasing r is likely to decrease fetch latency,
since that provides the originator more choices from
which to pick a nearby node. Third, increasing r increases
the amount of communication required to write a block to
the DHT. These performance aspects of erasure coding
have not been considered previously.

Figure 9 illustrates the relationship between total fetch
latency and block availability. The probability p0 that each
node is available is kept constant at 0.9. Each line repre-
sents a different rate r, and the points on the line are ob-
tained by varying m and setting l = r ×m. Each point’s
x-axis value indicates the probability that a block is avail-
able as calculated by Equation 1. Each point’s y-axis value
is the average latency from 20,000 simulations of fetch-
ing a random block from a random originating node. The
originator performs a lookup to obtain the list of the de-
sired key’s successors, then issues parallel RPCs to the
m of those successors that have lowest latency, and waits
for the last of the RPCs to complete. The y-axis values
include only the data fetch time.

The left-most point on each line corresponds to repli-
cation; that point on the different lines corresponds to
2, 3, and 4 replicas. For each line, the points farther to
the right indicate coding schemes in which smaller-sized
fragments are placed onto larger numbers of nodes. For
each redundancy rate r, replication provides the lowest
latency by a small margin. The reason is easiest to see
for r = 2: choosing the nearest k of 2k fragments ap-
proaches the median as k grows, while choosing the near-
est replica of two yields a latency considerably below the
median. Replication also provides the least availability
because the redundant information is spread over fewer
nodes. The lower lines correspond to larger amounts of re-
dundant information on more nodes; this provides a wider
choice of nodes from which the originator can read the

0

20

40

60

80

100

120

140

0.9 0.99 0.999

M
ed

ia
n

re
ad

 la
te

nc
y

(m
s)

Availability
49’s 59’s 69’s 79’s 88 9’s 99’s 10 9’s

r = 2
r = 3
r = 4

Figure 9: The relationship between read latency and block
availability. The different lines correspond to different
redundancy factors of r = 2, 3, 4. The data points on
each line (starting from the left) correspond to reading
m = 1, 2, 3... fragments out of r × m total fragments.
The x-axis value is computed from Equation 1 with the
per-node availability p0 set to 0.9, while the y-axis value
is the simulated block fetch time (not including lookup
time).

data, which increases the probability that it can read from
nearby nodes, and lowers the fetch latency.

The best trade-off between replication and coding is de-
pendent on the workload: a read-intensive workload will
experience lower latency with replication, while a write-
intensive workload will consume less network bandwidth
with coding. DHash++ uses IDA coding with m = 7 and
l = 14. The number seven is selected so that a fragment
for an 8 KB block will fit in a single 1500-byte packet,
which is important for UDP-based transport. The origina-
tor uses Vivaldi (Section 2.3) to predict the latency to the
successors.

4.5 Integrating routing and fetching

So far the design of the DHT lookup algorithm and the
design of the final data server-selection have been consid-
ered separately. One problem with this approach is that
obtaining the complete list of a key’s s successors re-
quires that the originator contact the key’s predecessor,
which Section 4.3 observed was expensive because the
final lookup steps can take little advantage of proximity
routing. However, of the s successors, only the first l im-
mediate successors store the fragments for the key’s data
block. Furthermore, fragments from any m of these suc-
cessors are sufficient to reconstruct the block. Each of the
s − m predecessor nodes of the key has a successor list
that contains m successors. Thus the lookup could stop
early at any of those predecessors, avoiding the expensive

a.lookup(q, k, d):

overlap = {n′ |n′ ∈ succlista ∧ n′ > k}
if |overlap| ≥ d then

return overlap to the originator q
else if overlap 6= ∅ then

t = {the s − d nodes in succlista immediately pre-
ceding k} ∪ overlap
b = ti ∈ t s.t. dist(a, ti) is minimized
if b ∈ overlap then

t = b.get succlist()
u = merger of t and overlap to produce k first d
successors
return u to the originator q

else
return b.lookup(q, k, d)

else
b = closestpred(lookupfinger, k)
return b.lookup(q, k, d)

Figure 10: Recursive lookup that returns at least d frag-
ments of key k to sender q. Each node’s successor list
contains s nodes.

hop to the predecessor; Pastry/PAST uses a similar tech-
nique [38].

However, this design choice decreases the lookup time
at the expense of data fetch latency, since it decreases the
number of successors (and thus fragments) that the orig-
inator can choose from. Once the recursive lookup has
reached a node n1 whose successor list overlaps the key,
n1 is close enough to be the penultimate hop in the rout-
ing. By forwarding the query to the closest node n2 in its
successor list that can return enough nodes, n1 can ensure
that the next hop will be the last hop. There are two cases
— if n2 is past the key, then n1 must directly retrieve n2’s
successor list and merge it with its own overlapping nodes
to avoid overshooting. Otherwise, n1 can simply hand-off
the query to n2 who will have enough information to com-
plete the request.

Figure 10 shows the pseudo-code for this final version
of the DHash++ lookup algorithm. The d argument indi-
cates how many successors the caller would like. d must
be at least as large as m, while setting d to l retrieves the
locations of all fragments.

The final latency design decision is the choice of d. A
large value forces the lookup to take more hops, but yields
more choice for the data fetch and thus lower fetch la-
tency; while a small d lets the lookup finish sooner but
yields higher fetch latency. Figure 11 explores this trade-
off. It turns out that the cost of a higher d is low, since the
lookup algorithm in Figure 10 uses only nearby nodes as
the final hops, while the decrease in fetch time by using
larger d is relatively large. Thus setting d = l is the best

0

50

100

150

200

7 8 9 10 11 12 13 14

A
ve

ra
ge

 la
te

nc
y

(m
s)

Number of successors fetched, d

Lookup Latency
Fetch Latency

Figure 11: Simulated lookup and fetch time as a func-
tion of the d parameter in Figure 10. Larger d causes the
lookup to take more hops and gather more successors; the
extra successors decrease the fetch latency by providing
more choice of nodes to fetch from. For comparison, the
average lookup and fetch times that result from always
contacting the predecessor are 224 and 129 milliseconds,
respectively.

policy.

4.6 Summary
Figure 12 summarizes the cumulative effect of the design
decisions explored in this section. The leftmost bar in each
triple shows the time on our PlanetLab implementation
(copied from Figure 4). The middle bar was produced by
the simulator using a latency matrix measured between
PlanetLab hosts. The dark portion of each bar shows the
lookup time, and the light portion shows the time taken
to fetch the data. Although the simulator results do not
match the PlanetLab results exactly, the trends are the
same. The results differ because the simulator uses inter-
host delays measured between a slightly different set of
PlanetLab nodes than were used for the implementation
experiments, and at a different time.

The rightmost bar corresponds to simulations of 2048
nodes using the King latency matrix. The absolute num-
bers are larger than for the PlanetLab results, and perhaps
more representative of the Internet as a whole, because
the King data set includes a larger and more diverse set of
nodes. Again, the overall trends are the same.

5 Achieving high throughput
Some applications, such as Usenet article storage, need
to store or retrieve large amounts of data in a DHT. If
data movement is to be fast, the DHT must make efficient
use of the underlying network resources. The DHT must
keep enough data in flight to cover the network’s delay-

Base Recursive lookup Proximity routing Server selection Integration

Latency optimization techniques (cumulative)

0

200

400

600

M
ed

ia
n

la
te

nc
y

(m
s)

Figure 12: The cumulative effect of successive perfor-
mance optimizations on the latency of a DHash++ data
fetch. The leftmost bar in each triple shows the time on our
PlanetLab implementation (copied from Figure 4). The
middle bar was produced by the simulator using a latency
matrix measured between PlanetLab hosts. The rightmost
bar corresponds to simulations of 2048 nodes using the
King latency matrix. The dark portion of each bar shows
the lookup time, and the light portion shows the time taken
to fetch the data.

bandwidth product, stripe data over multiple slow access
links in parallel, and recover in a timely fashion from
packet loss. The DHT must also provide congestion con-
trol in order to avoid unnecessary re-transmissions and to
avoid overflowing queues and forcing packet loss. These
goals are similar to those of traditional unicast transport
protocols such as TCP [21], but with the additional re-
quirement that the solution function well when the data is
spread over a large set of servers.

This section presents two different designs, then com-
pares their efficiency when implemented in DHash++ on
the RON test-bed. We focus here on bulk fetch operations
rather than insert operations.

5.1 TCP transport

Perhaps the simplest way for a DHT to manage its con-
sumption of network resources is to use TCP. Because
TCP imposes a start-up latency, requires time to acquire
good timeout and congestion window size estimates, and
consumes host state that limits the number of simultane-
ous connections, it makes the most sense for a DHT to
maintain a relatively small number of long-running TCP
connections to its neighbors and to arrange that commu-
nication only occur between neighbors in the DHT over-
lay. This arrangement provides congestion control with-
out burdening the DHT with its implementation. Sev-
eral systems use this approach (e.g., [34]), some with
slight modifications to avoid exhausting the number of
file descriptors. For example, Tapestry uses a user-level

re-implementation of TCP without in-order delivery [47].
Restricting communication to the overlay links means

that all lookups and data movement must be recursive:
iterative lookups or direct movement of data would not
be able to use the persistent inter-neighbor TCP connec-
tions. Section 4.2 showed that recursive lookups work
well. However, recursive data movement requires that
each block of data be returned through the overlay rather
than directly. This recursive return of data causes it to be
sent into and out of each hop’s Internet access link, poten-
tially increasing latency and decreasing useful throughput.
In addition, hiding the congestion control inside TCP lim-
its the options for the design of the DHT’s failure recovery
algorithms, as well as making it hard for the DHT to con-
trol its overall use of network resources. Section 5.3 shows
performance results that may help in deciding whether the
convenience of delegating congestion control to TCP out-
weighs the potential problems.

DHash++ allows the option to use TCP as the transport.
Each node keeps a TCP connection open to each of its fin-
gers, as well as a connection to each node in its successor
list. DHash++ forwards a get request recursively through
neighbors’ TCP connections until the request reaches a
node whose successor list includes a sufficient number of
fragments (as in Section 4.5). That node fetches fragments
in parallel over the connections to its successors, trying
the most proximate successors first. It then re-constructs
the block from the fragments and sends the block back
through the reverse of the route that the request followed.
Pond [34] moves data through the Tapestry overlay in this
way.

5.2 STP transport

At the other extreme, a DHT could include its own spe-
cialized transport protocol in order to avoid the problems
with TCP transport outlined above. This approach allows
the DHT more freedom in which nodes it can contact,
more control over the total load it places on the network,
and better integration between the DHT’s failure handling
and packet retransmission.

DHash++ allows the option to use a specialized trans-
port called the Striped Transport Protocol (STP). STP al-
lows nodes to put and get data directly to other nodes,
rather than routing the data through multiple overlay hops.
STP does not maintain any per-destination state; instead,
all of its decisions are based on aggregate measurements
of recent network behavior, and on Vivaldi latency pre-
dictions. STP’s core mechanism is a TCP-like congestion
window controlling the number of concurrent outstanding
RPCs.

While STP borrows many ideas from TCP, DHT data
transfers differ in important ways from the unicast trans-
fers that TCP is designed for. Fetching a large quantity

of DHT data involves sending lookup and get requests to
many different nodes, and receiving data fragments from
many nodes. There is no steady “ACK clock” to pace new
data, since each RPC has a different destination. The best
congestion window size (the number of outstanding RPCs
to maintain) is hard to define, because there may be no
single delay and thus no single bandwidth-delay product.
Quick recovery from lost packets via fast retransmit [41]
may not be possible because RPC replies are not likely
to arrive in order. Finally, averaging RPC round-trip times
to generate time-out intervals may not work well because
each RPC has a different destination.

The rest of this section describes the design of STP.

5.2.1 STP window control

Each DHash++ server controls all of its network activity
with a single instance of STP. STP maintains a window of
outstanding UDP RPCs: it only issues a new RPC when
an outstanding RPC has completed. STP counts both DHT
lookup and data movement RPCs in the window.

STP maintains a current window size w in a manner
similar to that of TCP [21, 9]. When STP receives an RPC
reply, it increases w by 1/w; when an RPC times out, STP
halves w.

STP actually keeps 3w RPCs in flight, rather than w.
Using w would cause STP to transfer data significantly
slower than a single TCP connection: lookup RPCs carry
less data than a typical TCP packet, STP has nothing com-
parable to TCP’s cumulative acknowledgments to mask
lost replies, STP’s retransmit timers are more conserva-
tive than TCP’s, and STP has no mechanism analogous to
TCP’s fast retransmit. The value 3 was chosen empirically
to cause STP’s network use to match TCP’s.

5.2.2 Retransmit timers

Lost packets have a large negative impact on DHash++
throughput because each block transfer is preceded by a
multi-RPC lookup; even a modest packet loss rate may
routinely stall the advancement of the window. Ideally
STP would choose timeout intervals slightly larger than
the true round trip time, in order to to waste the minimum
amount of time. This approach would require a good RTT
predictor. TCP predicts the RTT using long-term measure-
ments of the average and standard deviation of per-packet
RTT [21]. STP, in contrast, cannot count on sending re-
peated RPCs to the same destination to help it character-
ize the round-trip time. In order for STP to perform well
in a large DHT, it must be able to predict the RTT before
it sends even one packet to a given destination.

STP uses Vivaldi latency predictions to help it choose
the retransmit time-out interval for each RPC. However,
Vivaldi tends to under-predict network delays because it
does not immediately account for current network queu-
ing delays or CPU processing time at each end. Since

under-predicting the latency of an RPC is costly (a spuri-
ous loss detection causes a halving of the current window)
STP adjusts the Vivaldi prediction before using it. STP
characterizes the errors that Vivaldi makes by keeping a
moving average of the difference between each success-
ful RPC’s round-trip time and the Vivaldi prediction. STP
keeps this average over all RPCs, not per-destination. STP
chooses an RPC’s retransmission interval in milliseconds
as follows:

RTO = v + 6× α + 15 (2)

where v is the Vivaldi-predicted round trip time to the des-
tination and α is the average error. The weight on the α
term was chosen by analyzing the distribution of RPC de-
lays seen by a running node; the chosen timers produce
less than 1 percent spurious retransmissions with approx-
imately three times less over-prediction in the case of a
loss than a conservative (1 second) timer. This formula
assumes that Vivaldi’s errors are normally distributed;
adding a constant times the error corresponds to sampling
a low percentile of the error distribution. The constant α
plays a part similar to the measured RTT deviation in the
TCP retransmit timer calculation.

The constant term in Equation 2 (15 ms) is necessary to
avoid retransmissions to other virtual nodes on the same
host; Vivaldi predicts small latencies to the local node, but
under high load the observed delay is as much as 15 ms.
This term prevents those retransmissions without adding
significantly to over-prediction for distant nodes.

5.2.3 Retransmit policy

When an STP retransmit timer expires, STP notifies the
application (DHash++) rather than re-sending the RPC.
This gives DHash++ a chance to re-send the RPC to a
different destination. DHash++ re-sends a lookup RPC to
the finger that is next-closest in ID space, and re-sends a
fragment fetch RPC to the successor that is next-closest in
predicted latency. This policy helps to avoid wasting time
sending RPCs to nodes that have crashed or have over-
loaded access links.

DHash++ uses a separate background stabilization pro-
cess to decide whether nodes in the finger table or suc-
cessor list have crashed; it sends periodic probe RPCs and
decides a node is down only when it fails to respond to
many probes in a row.

5.3 Performance comparison
This section presents measurements comparing the la-
tency and throughput of the TCP transport implementa-
tion to the STP implementation when run on the RON
test-bed. We used 26 RON nodes, located in the United
States and Europe. Each physical RON node is located in
a different machine room and ran 4 copies of DHash++.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Latency (ms)

STP
TCP

Figure 13: Distribution of individual 8192-byte fetch latencies
on RON.

The average inter-node round-trip time is 75 ms, and the
median is 72 ms (these reflect the multiple copies of
DHash++ per host).

5.3.1 Fetch latency

Figure 13 shows the distribution of individual block fetch
latencies on RON. The numbers are derived from an ex-
periment in which each node in turn fetched a sequence of
randomly chosen blocks; at any given time only one fetch
was active in the DHT. The median fetch time was 192 ms
with STP and 447 ms with TCP. The average number of
hops required to complete a lookup was 3.

The STP latency consists of approximately 3 one-way
latencies to take the lookup to the predecessor, plus one
one-way latency to return the lookup reply to the origi-
nator. The parallel fetch of the closest seven fragments is
limited by the latency to the farthest fragment, which has
median latency (see Section 4.4). Thus the total expected
time is roughly 4×37.5+72 = 222; the actual median la-
tency of 192 ms is probably less due to proximity routing
of the lookup.

The TCP latency consists of the same three one-way
latencies to reach the predecessor, then a median round-
trip-time for the predecessor to fetch the closest seven
fragments, then the time required to send the 8 KB block
over three TCP connections in turn. If the connection uses
slow-start, the transfer takes 2.5 round trip times (there’s
no need to wait for the last ACK); if not, just half a round-
trip time. A connection only uses slow-start if it has been
idle for a second or more. The connection from the first
hop back to the originator is typically not idle, because it
has usually been used by a recent fetch in the experiment;
the other connections are much more likely to use slow
start. Thus the latency should range from 340 ms if there
was no slow-start, to 600 ms if two of the hops used slow-
start. The measured time of 447 ms falls in this range. This
analysis neglects the transmission time of an 8 KB block

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Throughput (KBytes/second)

STP
TCP

Figure 14: Distribution of average throughput obtained by dif-
ferent RON nodes during 4 megabyte transfers.

(about 131 ms at 1 Mb/s).

5.3.2 Single-client fetch throughput

Figure 14 shows the distribution of fetch throughput
achieved by different RON nodes when each fetches a
long sequence of blocks from DHash++. The applica-
tion maintains 64 one-block requests outstanding to its
local DHash++ server, enough to avoid limiting the size
of STP’s congestion window.

Using TCP transport, the median node achieved a
throughput of 133 KB/s. The minimum and maximum
throughputs were 29 and 277 KB/s. Both the median
throughput and the range of individual node throughputs
are higher when using STP: the median was 261 KB/s, and
throughputs ranged from 15 to 455 KB/s. The TCP trans-
port has lower throughput because it sends each block
back through each node on the recursive route, and thus is
more likely than STP to send a block through a slow ac-
cess link. About half of the three-hop routes pass through
one of the RON sites with sub-one-megabit access links.
STP sends coded fragments directly to the node originat-
ing the request, and thus each fragment encounters fewer
slow links.

To characterize the effectiveness of STP in utilizing
available resources we consider the expected throughput
of a DHash++ system. Assuming an STP window large
enough to keep all links busy, a node can fetch data at a
rate equal to the slowest access link times the number of
nodes, since the blocks are spread evenly over the nodes.

The slowest site access link in RON has a capacity
of about 0.4 Mb/s. With 26 nodes one would expect
0.4 × 26 = 10.4 Mb/s or 1.3 MB/s total throughput for
a fetching site not limited by its own access link. STP
achieves less than half of this throughput at the fastest site.
The reason appears to be that STP has difficulty maintain-
ing a large window in the face of packet loss, which aver-

20 40 60

Number of hosts

0

2

4

6

8

T
ot

al
 t

hr
ou

gh
pu

t
(m

eg
ab

yt
es

/s
ec

on
d)

Figure 15: The effect of system size on total throughput obtain-
able. Each point represents an experiment with DHash++ run-
ning at x sites on the RON and PlanetLab test-beds. Each site
reads 1000 8 KB blocks; the aggregate throughput of the system
in steady state is reported. This throughput increases as addi-
tional capacity (in the form of additional sites) is added to the
system.

ages about 2 percent in these tests.

5.3.3 Scale

This section evaluates the ability of STP and DHash++
to take advantage of additional resources. As the num-
ber of nodes grows, more network capacity (in the form
of additional access links) is added to the system. Fig-
ure 15 shows the total throughput for an N -node DHT
when all N nodes simultaneously read a large number of
blocks, as a function of N . The experiments were run on
the combined PlanetLab and RON test-beds. The slow-
est access link was that of a node in Taiwan, which was
able to send at 200 KB/s to sites in the US. The observed
throughput corresponds to our throughput prediction: the
total throughputs scales with the number of sites. The first
data point consists of ten sites experiencing an aggregate
of ten times the bandwidth available at the slowest site.

A similar experiment run using 150 machines but at 70
unique sites (many PlanetLab sites are home to more than
one node) produces a peak throughput of 12.8 MB/s. As
more machines and DHash++ nodes are added to each
site, that site gains a proportionally greater share of that
site’s link bandwidth and the system’s aggregate band-
width increases.

6 Related work
The primary contribution of this paper is exploring a
large set of design decisions for DHTs in the context
of a single, operational system. This exploration of de-
sign decisions emerged from an effort to understand a
number of recent DHT-like systems with different de-
signs, including OceanStore/Pond [22, 34, 43], CFS [13],
Overnet [28, 32], PAST [6, 37, 38] FarSite [1], and Pas-

tiche [11].
Rhea et al. did a black-box comparison of the imple-

mentations of several structured lookup systems (Chord,
Pastry, Tapestry) and found that the use of proximity in-
formation reduced lookup latency, especially for lookups
destined to nearby hosts [36].

Gummadi et al. studied the impact of routing geometry
on resilience and proximity [16]. They found that flexibil-
ity in the routing geometry in general improved the ability
of the system to find good neighbors. We extend their find-
ings with additional analysis in simulation and with actual
measurements to better understand the performance gains
seen when using proximity.

A number of recent papers discuss design ideas related
to networks with churn [5, 23, 35], some of which are
used by DHash++. These ideas include integrated trans-
port systems that quickly detect node failure and use al-
ternate routes after timeouts.

7 Conclusions and future work
This paper has presented a series of design decisions faced
by DHTs that store data, discussed the design options and
how they interact, and compared a number of variant de-
signs using simulations and measurements of an imple-
mentation running on PlanetLab and RON. The paper pro-
posed techniques that taken together together reduce fetch
latency by a factor of two and allow efficient bulk through-
put.

The list of design decisions is not exhaustive, and fu-
ture work will analyze a wider range of DHT designs and
behavior such as the relationship between lookup robust-
ness and performance, the latency and throughput of DHT
writes, the handling of data movement required when
nodes join and leave, data layout policies, the effects of
block size, and the tradeoffs involved in use of constant-
hop-count lookup protocols.

The simulator and DHash++ are publically available
from http://project-iris.net.

Acknowledgements
We would like to thank Chuck Blake for his help with
data analysis, Thomer Gil, Jeremy Stribling and Russ Cox
for their help writing the simulator, Peter Druschel and
the anonymous reviewers for their helpful comments, and
David Andersen and the PlanetLab project for the RON
and PlanetLab test-beds.

This paper is dedicated to the memory of Josh Cates.

References
[1] ADYA, A., BOLOSKY, W. J., CASTRO, M., CERMAK, G.,

CHAIKEN, R., DOUCEUR, J. R., HOWELL, J., LORCH, J. R.,
THEIMER, M., AND WATTENHOFER, R. P. Farsite: Federated,

available, and reliable storage for an incompletely trusted environ-
ment. In Proc. of the 5th OSDI (Dec. 2002).

[2] ANDERSEN, D., BALAKRISHNAN, H., KAASHOEK, M. F., AND

MORRIS, R. Resilient overlay networks. In Proc. of the 18th ACM
SOSP (Chateau Lake Louise, Banff, Canada, October 2001).

[3] ANDERSON, R. J. The eternity service. In Proc. of the 1996
Pragocrypt (1996).

[4] BLAKE, C., AND RODRIGUES, R. High availability, scalable stor-
age, dynamic peer networks: Pick two. In Proc. of the 9th Work-
shop on Hot Topics in Operating Systems (May 2003).

[5] CASTRO, M., COSTA, M., AND ROWSTRON, A. Performance
and dependability of structured peer-to-peer overlays. Tech. Rep.
MSR-TR-2003-94, Microsoft Research, December 2003.

[6] CASTRO, M., DRUSCHEL, P., HU, Y. C., AND ROWSTRON, A.
Exploiting network proximity in peer-to-peer overlay networks.
Tech. Rep. MSR-TR-2002-82, Microsoft Research, June 2002.

[7] CATES, J. Robust and efficient data management for a distributed
hash table. Master’s thesis, Massachusetts Institute of Technology,
May 2003.

[8] CHEN, Y., EDLER, J., GOLDBERG, A., GOTTLIEB, A., SOBTI,
S., AND YIANILOS, P. A prototype implementation of archival in-
termemory. In Proceedings of the 4th ACM Conference on Digital
libraries (Berkeley, CA, Aug. 1999), pp. 28–37.

[9] CHIU, D.-M., AND JAIN, R. Analysis of the increase and de-
crease algorithms for congestion avoidance in computer networks.
Computer Networks and ISDN Systems 17 (1989), 1–14.

[10] COSTA, M., CASTRO, M., ROWSTRON, A., AND KEY, P. PIC:
Practical Internet coordinates for distance estimation. In 24th In-
ternational Conference on Distributed Computing Systems (Tokyo,
Japan, March 2004).

[11] COX, L. P., AND NOBLE, B. D. Pastiche: making backup cheap
and easy. In Proc. of the 5th OSDI (Dec. 2002).

[12] COX, R., DABEK, F., KAASHOEK, F., LI, J., AND MORRIS, R.
Practical, distributed network coordinates. In Proc. of the Second
workshop on Hot Topics in Networks (HotNets-II) (Nov. 2003).

[13] DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS, R., AND

STOICA, I. Wide-area cooperative storage with CFS. In Proc. of
the 18th ACM SOSP (Oct. 2001).

[14] GANESH, A., KERMARREC, A.-M., AND MASSOULIE, L. HiS-
CAMP: self-organising hierarchical membership protocol. In
Proc. of the 10th European ACM SIGOPS workshop (Sept. 2002).

[15] GUMMADI, K., SAROIU, S., AND GRIBBLE, S. D. King: Esti-
mating latency between arbitrary Internet end hosts. In Proc. of
the 2002 SIGCOMM Internet Measurement Workshop (Marseille,
France, Nov. 2002).

[16] GUMMADI, K. P., GUMMADI, R., GRIBBLE, S., RATNASAMY,
S., SHENKER, S., AND STOICA, I. The impact of DHT routing
geometry on resilience and proximity. In Proc. of the 2003 ACM
SIGCOMM (Karlsruhe, Germany, Aug. 2003).

[17] GUPTA, A., LISKOV, B., AND RODRIGUES, R. One hop lookups
for peer-to-peer overlays. In Proc. of the Ninth Workshop on Hot
Topics in Operating Systems (May 2003).

[18] GUPTA, I., BIRMAN, K., LINGA, P., DEMERS, A., AND VAN

RENESSE, R. Kelips: Building an efficient and stable P2P DHT
through increased memory and background overhead. In Proc. of
the 2nd IPTPS (Feb. 2003).

[19] HAND, S., AND ROSCOE, T. Mnemosyne: Peer-to-peer stegano-
graphic storage. In Proc. of the 1st IPTPS (Mar. 2001).

[20] IYER, S., ROWSTRON, A., AND DRUSCHEL, P. Squirrel: A de-
centralized, peer-to-peer web cache. In Proc. 21st Annual ACM
Symposium on Principles of Distributed Computing (PODC). (July
2002).

[21] JACOBSON, V. Congestion avoidance and control. In Proc. of the
ACM SIGCOMM (Aug. 1988).

[22] KUBIATOWICZ, J., BINDEL, D., CHEN, Y., CZERWINSKI, S.,
EATON, P., GEELS, D., GUMMADI, R., RHEA, S., WEATH-
ERSPOON, H., WEIMER, W., WELLS, C., AND ZHAO, B.
OceanStore: An architecture for global-scale persistent storage. In
Proceeedings of the Ninth International Conference on Architec-
tural Support for Programming Languages and Operating Systems
(ASPLOS 2000) (Boston, MA, Nov. 2000), pp. 190–201.

[23] LI, J., STRIBLING, J., MORRIS, R., KAASHOEK, M. F., AND

GIL, T. DHT routing tradeoffs in networks with churn. In Proc.
of the 3rd IPTPS (Feb. 2004).

[24] LIM, H., HOU, J., AND CHOI, C.-H. Constructing an Internet
coordinate system based on delay measurement. In Proc. of the
2003 SIGCOMM Internet Measurement Conference (Oct. 2003).

[25] MAYMOUNKOV, P., AND MAZIERES, D. Kademlia: A peer-to-
peer information system based on the XOR metric. In Proc. of the
1st IPTPS (Mar. 2002).

[26] MUTHITACHAROEN, A., MORRIS, R., GIL, T. M., AND CHEN,
B. Ivy: A read/write peer-to-peer file system. In Proc. of the 5th
OSDI (Dec. 2002).

[27] NG, T. S. E., AND ZHANG, H. Predicting Internet network dis-
tance with coordinates-based approaches. In Proc. of the 2002
IEEE Infocom (June 2002).

[28] Overnet. http://www.overnet.com/.

[29] PETERSON, L., ANDERSON, T., CULLER, D., AND ROSCOE,
T. A blueprint for introducing disruptive technology into the In-
ternet. In Proc. of HotNets-I (October 2002). http://www.
planet-lab.org.

[30] PIAS, M., CROWCROFT, J., WILBUR, S., HARRIS, T., AND

BHATTI, S. Lighthouses for scalable distributed location. In Proc.
of the 2nd IPTPS (Feb. 2003).

[31] RABIN, M. Efficient dispersal of information for security, load
balancing, and fault tolerance. Journal of the ACM 36, 2 (Apr.
1989), 335–348.

[32] RANJITA BHAGWAN, S. S., AND VOELKER, G. Understanding
availability. In Proc. of the 2nd IPTPS (Feb. 2003).

[33] RATNASAMY, S., HANDLEY, M., KARP, R., AND SHENKER, S.
Topologically-aware overlay construction and server selection. In
Proceedings of Infocom 2002 (2002).

[34] RHEA, S., EATON, P., GEELS, D., WEATHERSPOON, H., ZHAO,
B., AND KUBIATOWICZ, J. Pond: the OceanStore prototype. In
Proc. of the 2nd USENIX Conference on File and Storage Tech-
nologies (FAST) (Apr. 2003).

[35] RHEA, S., GEELS, D., ROSCOE, T., AND KUBIATOWICZ, J.
Handling churn in a DHT. Tech. Rep. UCB/CSD-3-1299, UC
Berkeley, Computer Science Division, Dec. 2003.

[36] RHEA, S., ROSCOE, T., AND KUBIATOWICZ, J. Structured peer-
to-peer overlays need application-driven benchmarks. In Proc. of
the 2nd IPTPS (Feb. 2003).

[37] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer systems. In
Proceedings of the 18th IFIP/ACM International Conference on
Distr ibuted Systems Platforms (Middleware 2001) (Nov. 2001).

[38] ROWSTRON, A., AND DRUSCHEL, P. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer storage util-
ity. In Proc. of the 18th ACM SOSP (Oct. 2001).

[39] SHAVITT, Y., AND TANKEL, T. Big-bang simulation for embed-
ding network distances in Euclidean space. In Proc. of IEEE Info-
com (April 2003).

[40] SIT, E., DABEK, F., AND ROBERTSON, J. UsenetDHT: A low
overhead usenet server. In Proc. of the 3rd IPTPS (Feb. 2004).

[41] STEVENS, W. R. RFC2001: TCP slow start, congestion avoid-
ance, fast retransmit, and fast recovery algorithms. Tech. rep., In-
ternet Assigned Numbers Authority, 1997.

[42] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F.,
AND BALAKRISHNAN, H. Chord: A scalable peer-to-peer lookup
service for Internet applications. In Proc. of the ACM SIG-
COMM (San Diego, Aug. 2001). An extended version appears
in ACM/IEEE Trans. on Networking.

[43] STRIBLING, J. Optimizations for locality-aware structured peer-
to-peer overlays. In Proc. of the 1st IRIS Student Workshop (Cam-
bridge, MA, Aug. 2003).

[44] VOULGARIS, S., AND VAN STEEN., M. An epidemic protocol
for managing routing tables in very large peer-to-peer networks.
In Proc. of the 14th IFIP/IEEE Workshop on Distributed Systems:
Operations and Management (DSOM 2003) (Oct. 2003).

[45] WALFISH, M., BALAKRISHNAN, H., AND SHENKER, S. Untan-
gling the web from DNS. In Proc. of the 1st NSDI (Mar. 2004).

[46] WEATHERSPOON, H., AND KUBIATOWICZ, J. D. Erasure cod-
ing vs. replication: A quantitative comparison. In Proc. of the 1st
IPTPS (Mar. 2002).

[47] ZHAO, B. Y., HUANG, L., STRIBLING, J., RHEA, S. C., JOSEPH,
A. D., AND KUBIATOWICZ, J. D. Tapestry: A resilient global-
scale overlay for service deployment. IEEE Journal on Selected
Areas in Communications 22, 1 (Jan. 2004).

